Линейная комбинации строк или столбцов матриц. Теория слау

Пусть в матрице А размеров (m; n) выбраны произвольно k строк и k столбцов (k ≤ min(m; n)). Элементы матрицы, стоящие на пересечении выбранных строк и столбцов, образуют квадратную матрицу порядка k, определитель которой называется минором M kk порядка k y или минором k-го порядка матрицы A.

Рангом матрицы называется максимальный порядок r отличных от нуля миноров матрицы A, а любой минор порядка r, отличный от нуля, — базисным минором. Обозначение: rang A = r. Если rang A = rang B и размеры матриц A и Bсовпадают, то матрицы A и B называются эквивалентными. Обозначение: A ~ B.

Основными методами вычисления ранга матрицы являются метод окаймляющих миноров и метод .

Метод окаймляющих миноров

Суть метода окаймляющих миноров состоит в следующем. Пусть в матрице уже найден минор порядка k, отличный от нуля. Тогда далее рассматриваются лишь те миноры порядка k+1, которые содержат в себе (т. е. окаймляют) минорk-го порядка, отличный от нуля. Если все они равны нулю, то ранг матрицы равен k, в противном случае среди окаймляющих миноров (k+1)-го порядка найдется отличный от нуля и вся процедура повторяется.

Линейная независимость строк (столбцов) матрицы

Понятие ранга матрицы тесно связано с понятием линейной независимости ее строк (столбцов).

называют линейно зависимыми, если найдутся такие числа λ 1 , λ 2 , λ k , что справедливо равенство:

Строки матрицы A называются линейно независимыми, если вышеприведённое равенство возможно лишь в случае, когда все числа λ 1 = λ 2 = … = λ k = 0

Аналогичным образом определяется линейная зависимость и независимость столбцов матрицы A.

Если какая-либо строка (a l) матрицы A (где (a l)=(a l1 , a l2 ,…, a ln)) может быть представлена в виде

Аналогичным образом определяется понятие линейной комбинации столбцов. Справедлива следующая теорема о базисном миноре.

Базисные строчки и базисные столбцы линейно независимы. Любая строка (либо столбец) матрицы A является линейной комбинацией базисных строк (столбцов), т. е. строк (столбцов), пересекающих базисный минор. Таким образом, ранг матрицы A: rang A = k равен максимальному числу линейно независимых строк (столбцов) матрицы A.

Т.е. ранг матрицы — это размерность самой большой квадратной матрицы внутри той матрицы, для которой нужно определить ранг, для которой определитель не равен нулю. Если исходная матрица не является квадратной, либо если она квадратная, но её определитель равен нулю, то для квадратных матриц меньшего порядка строки и столбцы выбираются произвольно.

Кроме как через определители, ранг матрицы можно посчитать по числу линейно независимых строк или столбцов матрицы. Он равен количеству линейно независимых строк или столбцов в зависимости от того, чего меньше. Например, если матрица имеет 3 линейно независимых строки и 5 линейно независимых столбцов, то её ранг равняется трём.

Примеры нахождения ранга матрицы

Методом окаймляющих миноров найти ранг матрицы

Р е ш е н и е. Минор второго порядка

окаймляющий минор M 2 , также отличен от нуля. Однако оба минора четвёртого порядка, окаймляющие M 3 .

равны нулю. Поэтому ранг матрицы A равен 3, а базисным минором является, например, представленный выше минор M 3 .

Метод элементарных преобразований основан на том, что элементарные преобразования матрицы не меняют её ранга. Используя эти преобразования, можно привести матрицу к виду, когда все её элементы, кроме a 11 , a 22 , …, a rr (r ≤min (m, n)), равны нулю. Это, очевидно, означает, что rang A = r. Заметим, что если матрица n-го порядка имеет вид верхней треугольной матрицы, т. е. матрицы, у которой все элементы под главной диагональю равны нулю, то её определитесь равен произведению элементов, стоящих на главной диагонали. Это свойство можно использовать при вычислении ранга матрицы методом элементарных преобразований: необходимо с их помощью привести матрицу к треугольной и тогда, выделив соответствующий определитель, найдём, что ранг матрицы равен числу элементов главной диагонали, отличных от нуля.

Методом элементарных преобразований найти ранг матрицы

Р е ш е н и е. Обозначим i-ю строку матрицы A символом α i . На первом этапе выполним элементарные преобразования

На втором этапе выполним преобразования

Система векторов одного и того же порядка называется линейно-зависимой, если из этих векторов путем соответствующей линейной комбинации можно получить нулевой вектор. (При этом не допускается, чтобы все коэффициенты линейной комбинации были равны нулю, так как это было бы тривиально.) В противном случае векторы называются линейно-независимыми. Например, следующие три вектора:

линейно зависимы, так как что легко проверить. В случае линейной зависимости любой вектор можно всегда выразить через линейную комбинацию остальных векторов. В нашем примере: или или Это легко проверить соответствующими расчетами. Отсюда вытекает следующее определение: вектор линейно независим от других векторов, если его нельзя представить в виде линейной комбинации из этих векторов.

Рассмотрим систему векторов, не уточняя, является ли она линейнозависимой или линейно-независимой. У каждой системы, состоящей из вектор-столбцов а, можно выявить максимально возможное число линейно-независимых векторов. Это число, обозначаемое буквой , и является рангом данной системы векторов. Так как каждую матрицу можно рассматривать как систему вектор-столбцов, ранг матрицы определяется как максимальное число содержащихся в ней линейнонезависимых вектор-столбцов. Для определения ранга матрицы пользуются и вектор-строками. Оба способа дают одинаковый результат для одной и той же матрицы, причем не может превосходить наименьшее из или Ранг квадратной матрицы порядка колеблется от 0 до . Если все векторы являются нулевыми, то ранг такой матрицы равен нулю. Если все векторы линейно независимы друг от друга, то ранг матрицы равен. Если образовать матрицу из приведенных выше векторов то ранг этой матрицы равен 2. Так как каждые два вектора могут быть сведены к третьему путем линейной комбинации, то ранг меньше 3.

Но можно убедиться, что любые два вектора из них являются-линейно-независимыми, следовательно, ранг

Квадратную матрицу называют вырожденной, если ее вектор-столбцы или вектор-строки линейно зависимы. Определитель такой матрицы равен нулю и обратной ей матрицы не существует, как уже было отмечено выше. Эти выводы эквивалентны друг другу. Вследствие этого квадратную матрицу называют невырожденной, или неособенной, если ее вектор-столбцы или вектор-строки независимы друг от друга. Определитель такой матрицы не равен нулю и обратная ей матрица существует (сравни со с. 43)

Ранг матрицы имеет вполне очевидную геометрическую интерпретацию. Если ранг матрицы равен , то говорят, что -мерное пространство натянуто на векторов. Если ранг то векторов лежат в -мерном подпространстве, которое всех их включает в себя. Итак, ранг матрицы соответствует минимально необходимой размерности пространства, «в котором содержатся все векторы», -мерное подпространство в -мерном пространстве называют -мерной гиперплоскостью. Ранг матрицы соответствует наименьшей размерности гиперплоскости, в которой еще лежат все векторы.

Ортогональность. Два вектора а и b называются взаимно-ортогональными, если их скалярное произведение равно нулю. Если для матрицы порядка имеет место равенство где D - диагональная матрица, то вектор-столбцы матрицы А попарно взаимно-ортогональны. Если эти вектор-столбцы пронормировать, т. е. привести к длине, равной 1, то имеет место равенство и говорят об ортонормированных векторах. Если В - квадратная матрица и имеет место равенство то матрицу В называют ортогональной. В этом случае из формулы (1.22) следует, что Ортогональная матрица всегда невырожденная. Отсюда из ортогональности матрицы следует линейная независимость ее вектор-строк или вектор-столбцов. Обратное утверждение неверно: из линейной независимости системы векторов не следует попарная ортогональность этих векторов.

Понятие ранга матрицы тесно связано с понятием линейной зависимости (независимости) ее строк или столбцов. В дальнейшем будем излагать материал для строк, для столбцов изложение аналогично.

В матрице A обозначим ее строки следующим образом:

, , …. ,

Две строки матрицы называются равными , если равны их со­ответствующие элементы: , если , .

Арифметические операции над строками матрицы (умножение строки на число, сложение строк) вводятся как операции, прово­димые поэлементно:

Строка е называется линейной комбинацией строк ..., матрицы, если она равна сумме произведений этих строк на произвольные действительные числа:

Строки матрицы называются линейно зависимы­ми , если существуют такие числа , не равные одно­временно нулю, что линейная комбинация строк матрицы равна нулевой строке:

, =(0,0,...,0). (3.3)

Теорема 3.3 Строки матрицы линейно зависимы, если хотя бы одна строка матрицы является линейной комбинацией остальных.

□ Действительно, пусть для определенности в формуле (3.3) , тогда

Таким образом, строка является линейной комбинат остальных строк. ■

Если линейная комбинация строк (3.3) равна нулю тогда и только тогда, когда все коэффициенты равны нулю, то строки называются линейно независимыми.

Теорема 3.4. (о ранге матрицы) Ранг матрицы равен максимальному числу ее линейно независимых строк или столбцов, через которые линейно выражаются все остальные ее строки (столбцы).

□ Пусть матрица A размера m n имеет ранг r (r min ). Это означает, что существует отличный от нуля минор r -го порядка. Всякий ненулевой минор r -го порядка будем называть базисным минором.

Пусть для определенности базисный минор есть ведущий или угловой минор. Тогда строки матрицы линейно независимы. Предположим противное, то есть одна из этих строк, например , является линейной комбинацией остальных . Вычтем из элементов r - ой строки элементы 1-й строки, умноженные на , затем элементы 2-й строки, умноженные на , … и элементы (r - 1) - ой строки, умноженные на . На ос­новании свойства 8 при таких преобразованиях мат­рицы ее определитель D не изменится, но так как r - я строка будет теперь состоять из одних нулей, то D = 0 - противоречие. Следовательно, наше предположение о том, что строки матрицы линейно зависимые, неверно.

Строки назовем базисными . Покажем, что любые (r+1) строк матрицы линейно зависимы, т.е. любая строка выражается через базисные.

Рассмотрим минор (r +1) - го порядка, который получается при дополнении рассматриваемого минора элементами еще одной строки i и столбца j . Этот минор равен нулю, так как ранг матрицы равен r , поэто­му любой минор более высокого порядка равен нулю.

Раскладывая его по элементам последнего (добавленного) столбца, получаем

Где модуль послед­него алгебраического дополнения совпадает с базисным мино­ром D и поэтому отлично от нуля, т.е. 0.

Пусть

Столбцы матрицы размерности . Линейной комбинацией столбцов матрицы называется матрица-столбец , при этом - некоторые действительные или комплексные числа, называемые коэффициентами линейной комбинации . Если в линейной комбинации взять все коэффициенты равными нулю, то линейная комбинация равна нулевой матрице-столбцу.

Столбцы матрицы называются линейно независимыми , если их линейная комбинация равна нулю лишь когда все коэффициенты линейной комбинации равны нулю. Столбцы матрицы называются линейно зависимыми , если существует набор чисел , среди которых хотя бы одно отлично от нуля, а линейная комбинация столбцов с этими коэффициентами равна нулю

Аналогично могут быть даны определения линейной зависимости и линейной независимости строк матрицы. В дальнейшем все теоремы формулируются для столбцов матрицы.

Теорема 5

Если среди столбцов матрицы есть нулевой, то столбцы матрицы линейно зависимы.

Доказательство. Рассмотрим линейную комбинацию, в которой все коэффициенты равны нулю при всех ненулевых столбцах и единице при нулевом столбце. Она равна нулю, а среди коэффициентов линейной комбинации есть отличный от нуля. Следовательно, столбцы матрицы линейно зависимы.

Теорема 6

Если столбцов матрицы линейно зависимы, то и все столбцов матрицы линейно зависимы.

Доказательство. Будем для определенности считать, что первые столбцов матрицы линейно зависимы. Тогда по определению линейной зависимости существует набор чисел , среди которых хотя бы одно отлично от нуля, а линейная комбинация столбцов с этими коэффициентами равна нулю

Составим линейную комбинацию всех столбцов матрицы, включив в нее остальные столбцы с нулевыми коэффициентами

Но . Следовательно, все столбцы матрицы линейно зависимы.

Следствие . Среди линейно независимых столбцов матрицы любые линейно независимы. (Это утверждение легко доказывается методом от противного.)

Теорема 7

Для того чтобы столбцы матрицы были линейно зависимы, необходимо и достаточно, чтобы хотя бы один столбец матрицы был линейной комбинацией остальных.

Доказательство.

Необходимость. Пусть столбцы матрицы линейно зависимы, то есть существует набор чисел , среди которых хотя бы одно отлично от нуля, а линейная комбинация столбцов с этими коэффициентами равна нулю

Предположим для определенности, что . Тогда то есть первый столбец есть линейная комбинация остальных.

Достаточность . Пусть хотя бы один столбец матрицы является линейной комбинацией остальных, например, , где - некоторые числа.

Тогда , то есть линейная комбинация столбцов равна нулю, а среди чисел линейной комбинации хотя бы один (при ) отличен от нуля.

Пусть ранг матрицы равен . Любой отличный от нуля минор - го порядка называется базисным . Строки и столбцы, на пересечении которых стоит базисный минор, называются базисными .

Матрица – прямоугольная таблица произвольных чисел, расположенных в определенном порядке, размером m*n (строк на столбцы). Элементы матрицы обозначаются, где i – номер строки, аj – номер столбца.

Сложение (вычитание) матриц определены только для одноразмерных матриц. Сумма(разность) матриц – матрица, элементы которой являются соответственно сумма(разность) элементов исходных матриц.

Умножение (деление) на число – умножение (деление) каждого элемента матрицы на это число.

Умножение матриц определено только для матриц, число столбцов первой из которых равно числу строк второй.

Умножение матриц – матрица, элементы которых задаются формулами:

Транспонирование матрицы – такая матрицаB, строки (столбцы) которой являются столбцами (строками) в исходной матрицеA. Обозначается

Обратная матрица

Матричные уравнения – уравнения видаA*X=B есть произведение матриц, ответом на данное уравнение является матрицаX, которая находится с помощью правил:

  1. Линейная зависимость и независимость столбцов (строк) матрицы. Критерий линейной зависимости, достаточные условия линейной зависимости столбцов (строк) матрицы.

Система строк (столбцов) называется линейно независимой , если линейная комбинация тривиальна (равенство выполняется только приa1…n=0), гдеA1…n – столбцы(строки), аa1…n – коэффициенты разложения.

Критерий : для того, что бы система векторов была линейно зависма, необходимо и достаточно, чтобы хотя бы один из векторов системы линейно выражался через остальные векторы системы.

Достаточное условие :

  1. Определители матрицы и их свойства

Определитель матрицы (детерминанта) – такое число, которое для квадратной матрицыA может быть вычислено по элементам матрицы по формуле:

, где - дополнительный минор элемента

Свойства:

  1. Обратная матрица, алгоритм вычисления обратной матрицы.

Обратная матрица – такая квадратная матрицаX,которая вместе с квадратной матрицей A того же порядка, удовлевторяет условию:, гдеE – единичная матрица, того же порядка что иA. Любая квадратная матрица с определителем, не равным нулю имеет 1 обратную матрицу. Находится с помощью метода элементарных преобразований и с помощью формулы:

    Понятие ранга матрицы. Теорема о базисном миноре. Критерий равенства нулю определителя матрицы. Элементарные преобразования матриц. Вычисления ранга методом элементарных преобразований. Вычисление обратной матрицы методом элементарных преобразований.

Ранг матрицы – порядок базисного минора (rg A)

Базисный минор – минор порядкаr не равный нулю, такой что все миноры порядка r+1 и выше равны нулю или не существуют.

Теорема о базисном миноре - В произвольной матрице А каждый столбец {строка) является линейной комбинацией столбцов (строк), в которых расположен базисный минор.

Доказательство: Пусть в матрицеAразмеров m*n базисный минор расположен в первых r строках и первых r столбцах. Рассмотрим определитель, который получен приписыванием к базисному минору матрицы А соответствующих элементов s-й строки и k-го столбца.

Отметим, что при любых иэтот определитель равен нулю. Еслиили, то определительD содержит две одинаковых строки или два одинаковых столбца. Если жеи, то определитель D равен нулю, так как является минором (r+λ)-ro порядка. Раскладывая определитель по последней строке, получаем:, где- алгебраические дополнения элементов последней строки. Заметим, что, так как это базисный минор. Поэтому, гдеЗаписывая последнее равенство для, получаем, т.е. k-й столбец (при любом) есть линейная комбинация столбцов базисного минора, что и требовалось доказать.

Критерий d etA=0 – Определитель равен нулю тогда и только тогда, когда его строки(столбцы) линейно зависимы.

Элементарные преобразования :

1) умножение строки на число, отличное от нуля;

2) прибавление к элементам одной строки элементов другой строки;

3) перестановка строк;

4) вычеркивание одной из одинаковых строк (столбцов);

5) транспонирование;

Вычисление ранга – Из теоремы о базисном миноре следует, что ранг матрицы А равен максимальному числу линейно независимых строк(столбцов в матрице), следовательно задача элементарных преобразований найти все линейно независимые строки (столбцы).

Вычисление обратной матрицы ­ - Преобразования могут быть реализованы умножением на матрицу A некоторой матрицы T, которая представляет собой произведение соответствующих элементарных матриц: TA = E.

Это уравнение означает, что матрица преобразования T представляет собой обратную матрицу для матрицы . Тогдаи, следовательно,

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то