Многодиапазонная вертикальная кв антенна inurl id razdel. Многодиапазонная КВ антенна «Несимметричный диполь. Воздушная линия питания

Благодаря новым светодиодным технологиям, в последнее время существенно расширились возможности декорирования как производственных помещений, так и квартир или домов. Одним из самых популярных материалов является дюралайт (duralight). По своей сути, это светящаяся лента, из которой можно сделать узоры или привлекательно оформить помещение, что позволяет создать уют или праздничное настроение, выгодно представить отдельные элементы интерьера или привлечь клиентов. С помощью ленты дюралайт можно решать большое количество задач.

Какой бывает дюралайт

По своей сути, это световая гирлянда, элемент украшения. Она изготавливается из пластика с повышенной гибкостью. Для сохранения от внешнего воздействия и повышения эксплуатационных свойств такой световой шнур покрывается поливинилхлоридом.

Внутри светового шнура находятся светодиодные или LED-светильники, которые и являются источником света. Такая конструкция гирлянды позволяет создавать различные световые эффекты, как внутри помещения, так и снаружи. Этим фактом объясняется популярность, которую данный материал приобрел в последнее время.

Важно! Светодиодные светильники отличаются от своих аналогов более низким расходом электроэнергии, что является дополнительным плюсом при принятии решения о выборе способа освещения дома или офиса.

Дюралайт, несмотря на свой буквальный перевод («жесткий свет»), характеризуется мягкостью, отсутствием вреда на сетчатку глаза, что является очень важным фактором. Яркость и интенсивность освещения при этом никак не страдает.

Светодиодный шнур в настоящее время выпускается и продается двух видов:

  • Круглый. Он может быть двух,- или трехжильным. Его диаметр редко превышает 13 мм, что позволяет разместить его практически в любом месте помещения и сформировать такое световое решение, которое представит комнату или отдельные ее элементы наиболее эффектно;
  • Плоский. Данный тип дюралайта еще называют дюрафлекс. Его обычно применяют при украшении или освещении наружных элементов зданий, в том числе вывесок.

Приобретается материал обычно в катушках длиной 50 или 100 метров, что позволяет использовать его без особых ограничений.

Можно выделить следующие основные технические характеристики светодиодного шнура:

  • Способность бесперебойно функционировать при различных погодных условиях. На него не влияют ветер, дождь или другие виды осадков. Наличие покрытия из поливинилхлорида защищает осветительные элементы от агрессивного влияния внешней среды;
  • Высокий уровень безопасности. Благодаря особенностям конструкции, в шнуре практически исключена возможность короткого замыкания, а, значит, его возгорания. Поверхность материала не нагревается, что делает его безопасным для детей при случайном прикосновении;
  • Устойчивость к повреждению. Покрытие из поливинилхлорида не только защищает провод от воздействия природных явлений, но и от случайных повреждений человеком. Это позволяет применять данный материал в публичных помещениях, где высокая проходимость, а, значит, существенный риск случайного повреждения провода.

Конструкция из описываемого материала может функционировать в следующих режимах:

  • Постоянное свечение. Это самый простой вариант. Он чаще всего используется при украшении зданий перед праздниками или при изготовлении вывесок;
  • Со сменой интенсивности. При таком режиме появляется возможность создать эффективные переливы света и привлечь внимание проходящих мимо людей;
  • Мигание. При таком режиме периодически отключаются и включаются определенные лампочки, что также является эффективным способом привлечения внимания;
  • Смена цветов;
  • Объединенный режим мигания и смены цветов.

Сфера применения

Чаще всего дюралайт светодиодный используется в рекламной отрасли. С его помощью можно декорировать помещение в фирменном стиле, выложить на стене фирменную символику компании, что создаст положительное впечатление перед клиентом. Кроме того, с помощью данного светящегося материала можно выделять отдельные элементы интерьера, создавать различные конфигурации помещений, организовывать навигацию и так далее.

Второе направление – украшение жилых домов. Благодаря гибкости материала, владелец дома или дизайнер может создавать из дюралайта любые формы: оригинальные рисунки снаружи, выделять отдельные элементы дома и так далее. Особенно популярным данный материал становится в период новогодних праздников, когда каждый владелец дома стремится его по-особенному украсить.

Третий способ применения – изготавливать вывески и рекламные щиты на фасадах зданий. Дюралайт, благодаря своим техническим характеристикам, пришел на смену неоновым украшениям.

Дополнительная информация. Во-первых, светодиодные элементы не перегорают (если подключение произведено корректно), и вывеска сохраняет свой внешний вид. Во-вторых, дюралайт является более гибким, что позволяет создавать более сложные конструкции.

Особенности подключения

Схема подключения зависит от количества каналов гирлянды. От этого будет зависеть тип переходника, с помощью которого производятся включения светодиодного шнура в сеть.

Пошаговая инструкция подключения гирлянды выглядит следующим образом:

  • Шаг 1. Нарезка материала. Данная операция осуществляется с помощью обычных ножниц или ножа;

Обратите внимание! Резать дюралайт можно только в специально помеченных местах. Если повредить кабель в другом месте, гирлянда не будет функционировать.

  • Шаг 2. С помощью переходников собирается необходимая конструкция и соединяется со шнуром с вилкой и контроллером управления для включения в сеть;
  • Шаг 3. Зафиксировать все стыки и проверить качество соединения.

Теперь можно смело подключать устройство к сети и пользоваться результатом.

Преимущества дюралайта

Специалисты, дизайнеры, а также те, кто использовал изделие для украшения своего дома или квартиры, выделяют следующие его достоинства:

  • Яркость и насыщенность света. От взгляда на украшения, созданные из светового шнура, не устают глаза. Благодаря особенному излучаемому спектру, дюралайт не наносит вреда органам зрения человека. Цвет, который излучает гирлянда, может быть любым, что предоставляет широкий простор для дизайнеров;
  • Устойчивость цвета. Материал практически не выгорает, что позволяет сохранять внешний вид конструкции на протяжении длительного времени практически в первоначальном виде. Кроме того, в отличие от обычной электрической гирлянды, у описываемого материала не перегорают лампочки. При правильном подключении и соединении у световой конструкции не будет пробелов, а сама она будет служить на протяжении длительного времени;
  • Высокая выносливость и гибкость. Световой шнур практически не подвержен повреждениям. Он очень прочный, но при этом достаточно гибкий, что позволяет сохранять его от повреждений, но при этом из него можно формировать разные фигуры, закреплять практически на любой поверхности и так далее, что и позволяет активно применять его для придания помещению индивидуального облика;
  • Простота монтажа. Подключение гирлянды дюралайт не требует каких-либо специальных навыков, достаточно обладать базовыми знаниями в области электротехники, чтобы правильно установить данный декоративный элемент и заставить его светиться;
  • Длительный срок эксплуатации. Благодаря использованию светодиодов в конструкции, срок службы такого светового шнура существенно выше, чем на лампах. При этом он на протяжении всего периода эксплуатации сохраняет свои свойства (в первую очередь, насыщенность и яркость света).

Итак, отвечая на вопрос, что такое дюралайт, и как подключить гирлянду к сети, следует отметить, что это наиболее популярный материал для осуществления световых декораций в настоящее время. Он характеризуется надежностью, длительным сроком эксплуатации, гибкостью и возможностью изготовления из него практически любых форм, а подключение его к сети не требует специальных навыков.

Видео

Распространённый вариант на сегодняшнее время всеми полюбившейся светодиодной ленты. Отличие светодиодного дюралайта от обычной светодиодной ленты лишь в том, что светодиоды в дюралайте зафиксированы не на тонкой ленте, а заключены в силиконовую оболочку.

Как и светодиодная лента, светодиодный дюралайт также само может легко сгибаться под разными и углами и в различные формы. Светодиодный дюралайт является прекрасным световым решением для красивого оформления интерьера в доме. Всё что потребуется для того, чтобы придать интерьеру изюминку, так это приобрести светодиодный дюралайт и подключить его своими руками.

Как подключить светодиодный дюралайт? Да очень просто! Для этого всего лишь нужен специальный переходник и адаптер.

Как подключить светодиодный дюралайт своими руками

Огромное преимущество такой подсветки в том, что установить и подключить светодиодный дюралайт можно и своими руками, без посторонней помощи и навыков электромонтажных работ. Из светодиодного дюралайта можно сделать неплохую гирлянду, которая будет намного красивей обычного заводского изделия.

Чтобы подключить светодиодный дюралайт своими руками, нужно знать и подготовить вот что:

  • иметь минимальный набор инструментов. Паяльник, отвёртку, острый нож и изоленту;
  • лучше светодиодный дюралайт подключать на постоянное соединение, а не как это многие делают через розетку;

Если световой дюралайт уже куплен вместе с адаптером питания, то можно смело переходить к его установки и подключению.

Для подключения светодиодного дюралайта обязательно нужно иметь специальный переходник. Он установлен на конце провода питания, который подключается к розетке или напрямую к сети 220 Вольт. В сам кабель питания для подключения светового дюралайта встроен адаптер, который уменьшает и выравнивает напряжение из сети 220 Вольт посредством диодного моста.

В зависимости от того, какой приобретён светодиодный дюралайт (однорядный или двухрядный) такой же нужен и переходник для его подключения. Для однорядного дюралайта нужен переходник в виде двух штырей, а для двухрядного дюралайте, переходник, на конце которого установлено три штыря.

Если необходимо соединить два куска светового дюралайта, то для этого применяется переходник, точно с такими же штырьками. Обязательно противоположный конец светового дюралайта, на котором имеются оголённые провода, перед подключением необходимо закрыть пластмассовой заглушкой.

Монтаж светового дюралайта к поверхности потолка или на стены выполняется посредством специальных пластиковых скоб. В этом сложного ничего нет.

Следует знать, подключая светодиодный дюралайт своими руками так это то, что чаще всего он разрезается на куски в один или два метра.

Это делается из-за особенных схематических возможностей светового дюралайта, поэтому очень важно данный факт учитывать при оформлении им интерьера в комнате.

В нашем интернет-магазине Вы можете приобрести все необходимое для красивого светового оформления интерьера в доме.

Очень часто, хочется иметь антенну одну, хорошую и на все диапазоны. При этом антенна ещё должна быть простой и не занимать много места. Утопия? Конечно! Но если ограничить диапазоны от 7 МГц и выше, то вырисовываются варианты. Одним из таких вариантов выступает антенна — штырь конструкции UA1DZ . Судя по размерам — никаких компромиссов. Четверть волны на сороковку, аж пол волны на двадцатку, пять восьмых на фифтын. Бери — повторяй- ставь нет проблем. Антенна UA1DZ имеет хорошую повторяемость если выполнить её правильно. На основе всех статей и опыта настройки удалось сделать полное описание конструкции. Делать или нет — решать только Вам, я лишь опишу свой взгляд.

Почему её не стоит делать:

  • потому что вы поставите 10 метровую палку, а качественно закроете только 3-4 диапазона;
  • придется потратить минимум один световой день на настройку придется возится с линиями согласования;
  • после настройки всё равно останется чувство компромисса;
  • нужны изолированные противовесы, заземлить не выйдет;
  • изолятор в основании нужен с малой ёмкостью и приличным пробойным напряжением. Для согласующего с приемлемым КПД нужен хороший кабель 75 Ом.

Почему её стоит делать:

  • потому что на 14 мегагерц это полуволновый вертикальный диполь;
  • потому что на 21 это почти пять восьмых;
  • потому что питается одним фидером;
  • потому что не требует переключений и согласовалок с добротными катушками и КПЕ;
  • потому что позволяет получить удовольствие в процессе настройки (в перерывах между тем как хочется распилить всё на части).

Для успешного изготовления штыря UA1DZ понадобится:

  • антенный анализатор для измерения параметров кабеля согласования и настройки антенны;
  • коаксиальный кабель 75 ом хорошего качества (от 7 до 10 метров, в зависимости от коэффициента укорочения);
  • материал для изготовления выскоомной линии 450ом. Длинна линии — до метра;
  • провода для противовесов, из расчёта минимум четырёх- пяти штук длинной 9,4 метра;
  • изолятор или продуманный конструктив основания с маленькой ёмкостью. Это важно;
  • полотно самого штыря. общая длинна 9,3 метра;
  • оттяжки, фидер, герметик для гидроизоляции кабелей и прочяя мелочёвка.

Принципиальных проблем с ней действительно нет, антенна рабочая, но есть грабли. Постараюсь их осветить своим набитым опытом.

Сперва, ещё раз о конструкции антенны:

Длинна высокоомной линии обычно 500-800мм. Согласующие отрезки — ориентировочно 2,66 и 4,26 метра но могут значительно отличатся в зависимости от применяемого кабеля. Лучше самому промерять и пересчитать, тем более что это не сложно.

Антенна конструкции UA1DZ представляет из себя:

  • вертикальный штырь высотой около 9,3 метра;
  • резонансные противовесы длинной около 9,4 метра;
  • линию согласования состаящую из выскоомной линии и двух отрезков коаксиального кабеля;
  • в варианте есть ещё костыль излучатель на 28 мегагерц. О нём почему-то многие забывают, не забывая вспомнить никакую работу на десятке.

Первые грабли заключаются в том, что в сети представлено несколько различных вариантов антенны. Указываются различные длинны, частоты, марки кабелей и т.д. Человеку, который не проникся темой приходится выбирать варианты по принципу верю-не верю,руководствуясь интуицией. Неразберихи придаёт ещё и первоначальная ошибка в публикации.В итоге берутся размеры которые больше всего понравились по наитию, делается попытка всё это настроить без уверенности в результате и размерах. Итог немного предсказуем. Специально для этого описываю, из практики изготовления нескольких антенн, по факту:

  1. Антенна работает на диапазонах: 7, 14, 21 мГц;
  2. Антенна работает на 28 мГц (с дополнительным излучателем) и кое-как греет луну (без дополнительного излучателя);
  3. Антенна абсолютно не работает на 1,8 3,5 10 и 24 мГц, последний, правда, можно ввести как open sleeve параллельно костылю на десятку;
  4. Антенна позволяет неплохо работать с тюнером на 18 мГц.

Ещё одно заблуждение, которое гуляет из описания в описание — это то, что антенна рассчитана на сопротивление 75 Ом и на 50 это будет означать как минимум повышенный КСВ. Это не правда. Сопротивление фидера прекрасно настраивается и под выход 50 Ом. Как это сделать будет описано ниже.

Грабли вторые — ошибочное использование изолятора с большой ёмкостью. Тут логика очень простая. Самая изюминка данного штыря заключается в диапазоне 14 Мегагерц. Сам излучатель тут имеет малые углы и отличнейший КПД- потери в земле(противовесах) практически отсутствуют. Загвоздка в том, что питается он с конца, где его сопротивление около 1,5 кило ома. Сопротивление ёмкости изолятора на этой частоте можно легко прикинуть, получится: 5 пФ = 1700 ом, 10 пФ = 980 ,Ом 20 пФ = 500 Ом. Делаем вывод — какой зря изолятор ставить нельзя — 10 пик уже зашунтирует антенну на опору. Кроме того важно понимать, что при ста ваттах на изоляторе будет напряжение под 400 вольт. Если есть желание вдуть туда киловатт, стоит понимать — напряжение будет за кило вольт.

Грабли третьи, самые распространённые — длинна, сопротивление согласующих линий и их качество. Сперва о качестве этих кабелей — оно должно быть максимально хорошим. Это не означает что добротный кабель нужен для мощегонства. Это означает, что на плохом кабеле антенна не будет работать вообще. Смысл в том, что КСВ в этой линии — огромно, малейшие потери и КПД стремится к нулю. КПД от мощности не зависит. При малой мощности Вас просто не услышат, а при большой кабель запросто пробьётся или отгорит.

Если говорить о качестве коаксиального кабеля — то тут два момента.

Первый момент — состояние и густота оплётки, не стоит боятся кабелей с оплёткой и фольги если он не будет сильно болтаться на ветру. Состояние оплётки гораздо важнее её густоты. Минимальное подозрение на окисление — кабель в топку! В этом случае это уже не коаксиальный кабель — когда центральный провод окружён сплошным экраном. Это уже центральный провод и много дросселей по кругу, где каждый провод, каждый повив — уже сам по себе! Оплётка должна быть без малейшего подозрения но окисел.

Второй момент имеет не меньшее значение — это качество диэлектрика, заполнителя. От этого зависит диэлектрические потери и пробивное напряжение. Самый нормальный из доступных диэлектрик у кабелей со вспененным заполнителем. Косвенным признаком качества заполнителя является коэффициент укорочения. Упрощённо можно сказать и так: чем меньше коэффициент укорочения, тем меньшие потери будут в кабеле. Если посмотреть в различные таблицы, мы увидим что этот показатель намного лучше у кабелей 75 Ом. Именно с этим связано применение кабелей 75 Ом в линии согласования. Однако, если у Вас есть в наличии кабель 50 Ом с малыми потерями (и не обязательно сильным укорочением) смело можете его ставить.

Из практики, достаточно найти оператора кабельного телевидения, который использует магистральный коаксиальный кабель. Толщина применяемого там кабеля — от 11 до 16 миллиметров. Оплётка — клеенная фольга + стальная оплетка. Центральная жила — обмеднённая, но отличнейшего качества. Потери в таком кабеле- ничтожно малы на наших частотах, а коэффициент укорочения может достигать 0,88 (!) у толстого кабеля. Монтажная бригада без проблем может поделится с вами обрезками такого кабеля. При обращении с таким кабелем особо обратите внимание на допустимый радиус изгиба — его нельзя резко изгибать, там очень вспененный заполнитель и довольно мощная центральная жила. Для соединения с оплёткой кабеля нужно применять либо стандартные накрутки F-типа соответствующего диаметра (можно разжиться у тех же монтажников) либо бронзовые резьбовые переходы из сантехники, которые плотно накручиваются на плетение с фольгой. Ни в коем случае не стоит вплетать медные провода — в оплётку — будет гальванопара и контакт там пропадёт очень быстро. Отрезки проводов припаиваются к переходу (F-ки или резьбы) и только затем накручиваются на оплётку, если паять по месту — деформируется лёгкий заполнитель. Центральная жила паяется обычным образом. Как правило, такой кабель со встроенной несущей жилой.

Изготовление высокоомной линии проблем не вызывает никогда. Можно с успехом применять обычный гибкий провод в виниловой изоляции. Для сопротивления в 450 ом соотношение диаметров проводников и расстояния между их осями должно быть 23 . Если у Вас провод 2 миллиметра диаметром (не сечением!) то расстояние между ними будет 46 мм. Главное в линии что бы она не перекручивалась без напряга механически держала согласовалки.

На фото пример того, как можно использовать латунные или бронзовые резьбы для надёжного соединения с оплёткой толстого кабеля в согласующее «под накрутку». Сверху будет электрическая изоляция и герметик.

Для изготовления согласующих отрезков:

— Измерьте по факту коэффициент укорочения вашего кабеля антенным анализатором или другим способом.
— Скачайте программу apak-el , с его помощью подберите длинну кабелей на свой вариант кабеля.
— На длинный отрезок сделайте запас около 10-15 см для настройки.

Теперь о том, что такое APAK и с чем его едят. Это программа для расчёта линий согласования. Взять её можно с сайта DL2KQ . Интерфейс очень простой. Вбиваем данные по трём позициям (для каждого диапазона) c активными и реактивными значениями. проставляем галочки которые отвечают за схему согласования. Для простоты можно скопировать то что показано на картинке.Приведённые значения на картинке — это сопротивление и реактивности голого штыря 9.3 метра с противовесами 9,4 на указанных частотах. Если есть желание поиграться со своим конструктивом GP, можно сделать это в MMANA и ввести активности реактивности частоты сюда. Всё прекрасно совпадает на практике.

Для выбора кабелей для разный линий нужно нажать на кнопку «линии» . Будет вот такое окошко:

Если в списке нет вашего кабеля, можно подогнать любой подобный под все ваши параметры (коэффициент укорочения) а затем выбрать его. Именно так вы будете уверены, что размеры отрезков будут именно под ваш кабель. У меня совпадало с точностью до сантиметра!

После этого находим общую оптимальную длинну, и точку оптимального согласования для всех введённых диапазонов (вкладка «график» — доступна после обсчёта КСВ на основной вкладке «Таблица»).

На фото — вариант развлечения для радиолюбителя. По оси Х — длинна коаксиальных отрезков.

Очень удобно поиграться длинной линий. Вы сразу поймёте, как настраивать эту антенну. В частности у меня по расчётам получились совершенно не авторские размеры. Расчёт полностью подтвердился практикой. Румянцев давал размеры под свой кабель, со своими параметрами. Из-за разности в кабелях и появились все споры о том что у кого-то работает у кого-то нет. Если вы потратите час на APAK , вы экономите минимум пол дня на крыше.

Настройка антенны самой антенны на крыше ведётся так:

  • длинной высокоомной лесенки находится резонанс на 7 и 21 МГц. Этим мы как бы меняем длину самого вибратора;
  • длинной противовесов подбираем, что бы резонанс и на 7 и на 21 был в нужном месте. Влияние противовесов различно на этих диапазонах;
  • слепым, длинным отрезком подбираем минимум КСВ на 14 МГц.Само полотно мы уже настроили на 7, так что на второй гармонике оно работать будет как полуволновое, наша задача теперь настроить согласование — что бы из ужаса в полтора килоома с реактивностью сделать 50 ом активного;
  • отрезок от лестнички до тройника по возможности нужно делать точно по расчёту. Это самый неудобный элемент для подстройки. Но если минимум никак не получается. Придется подстраивать и его.

Длинный слепой отрезок лучше всего свернуть в бухту. Колец на неё одевать не стоит. Кольца или любой другой конструктив запорного дросселя лучше одевать на сам фидер у тройника. Ни в коем случае не стоит путать длинный разомкнутый отрезок с ёмкостью. Это заблуждение. Легко убедится в этом — если попробовать заменить его двумя отрезками по половине, ничего работать не будет! Поэтому если отрезали лишнего, добавлять нужно с конца, а не как не параллельно.

Если после описания вам ещё не расхотелось её делать — вперёд на крышу, лучше если это будет мокрый снег и ветер. День настройки Вам обеспечен. Особенно благоприятно делать антенну в мороз, при этом монтажки не выпадают из рук. После этого она будет особенно радовать вас лёгкими QSO в пайл-апах даже c LP по LP.


В радиосвязи, антеннам отводится центральное место, для обеспечения лучшего ее, радиосвязи, действия антеннам следует уделять самое пристальное внимание. В сущности, именно антенна и осуществляет сам процесс радиопередачи. Действительно, передающая антенна, питаясь током высокой частоты от передатчика, производит преобразование этого тока в радиоволны и излучает их в нужном направлении. Приемная же антенна, осуществляет обратное преобразование – радиоволны в ток высокой частоты, а уже радиоприемник выполняет дальнейшие преобразования принятого сигнала.

У радиолюбителей, где всегда хочется побольше мощности, для связи с возможно более дальними интересными корреспондентами, бытует максима – лучший усилитель (КВ), это антенна.

К этому клубу по интересам, пока принадлежу несколько опосредовано. Радиолюбительского позывного нет, но интересно же! Работать на передачу нельзя, а вот послушать, составить представление, это, пожалуйста. Собственно, такое занятие называется радионаблюдение. При этом, вполне можно обменяться с радиолюбителем которого вы услышали в эфире, карточками-квитанциями, установленного образца, на сленге радиолюбителей QSL. Приветствуют подтверждения приема и многие радиовещательные КВ станции, иногда поощряя такую деятельность мелкими сувенирами с логотипами радиостанции – им важно знать условия приема их радиопередач в разных точках мира.

Радиоприемник наблюдателя может быть довольно простым, по крайней мере, на первых порах. Антенна же, сооружение не в пример более громоздкое и дорогостоящее и чем ниже частота, тем более громоздкое и дорогостоящее – все привязано к длине волны.

Громоздкость антенных конструкций, во многом вызвана и тем, что на малой высоте подвеса, антенны, особенно для низкочастотных диапазонов – 160, 80,40м, работают плохо. Так что громоздкость им обеспечивают как раз мачты с оттяжками, ну и длины в десятки, иногда сотни метров. Словом, не особенно миниатюрные штуки. Хорошо бы иметь для них отдельное поле рядом с домом. Ну, это как повезет.

Итак, несимметричный диполь.

Выше, чертеж-схема нескольких вариантов. Упомянутая там MMAНа – программа для моделирования антенн.

Условия на местности оказались таковы, что удобно умещался вариант из двух частей 55 и 29м. На нем и остановился.
Несколько слов о диаграмме направленности.

Антенна имеет 4 лепестка, «прижатых» к полотну. Чем выше частота - тем более они «прижимаются» к антенне. Но правда и усиление имеют больше. Так что на этом принципе

можно строить вполне направленные антенны, имеющие правда, в отличии от «правильных», не особенно высокое усиление. Так что размещать эту антенну нужно учитывая ее ДН.

Антенна на всех диапазонах указанных на схеме, имеет КСВ (коэффициент стоячей волны, параметр для антенны весьма важный) в пределах разумного для КВ.

Для согласования несимметричного диполя - он же Windom – нужен ШПТДЛ (широкополосный трансформатор на длинных линиях). За сим страшным названием скрывается относительно несложная конструкция.

Выглядит примерно так.

Итак, что было сделано.
Первым делом определился со стратегическими вопросами .

Убедился в наличии основных материалов, в основном конечно, подходящего провода для полотна антенны в должном количестве.
Определился с местом подвеса и «мачтами». Рекомендуемая высота подвеса – 10м. Мою деревянную мачту, стоящую на крыше дровника, по весне свернуло сходящим смерзшимся снегом - не дождалась, как не жаль, пришлось убирать. Решено было пока зацепить одну сторону за конёк крыши, высота при этом будет составлять около 7м. Маловато конечно, зато дешево и сердито. Вторую сторону удобно было подвесить на стоящей напротив дома липе. Высота там получалась 13…14м.

Что использовалось.

Инструменты.

Паяльник, понятно, с принадлежностями. Мощностью, ватт, этак на сорок. Инструмент для радиомонтажа и мелкий слесарный. Что ни будь сверлильное. Очень пригодилась мощная электрическая дрель с длинным сверлом-буром по дереву – коаксиальный кабель снижения пропустить сквозь стену. Конечно удлинитель к ней. Пользовался термоклеем. Предстоят работы на высоте – стоит позаботиться о подходящих крепких лестницах. Очень помогает чувствовать себя увереннее, вдали от земли, страховочный пояс – как у монтеров на столбах. Карабкаться наверх, конечно не очень удобно, зато можно работать уже «там», двумя руками и без особых опасений.

Материалы.

Самое главное – материал для полотна. Применил «полевку» - полевой телефонный провод.
Коаксиальный кабель для снижения, сколько нужно.
Немного радиодеталей, конденсатор и резисторы по схеме. Две одинаковые ферритовые трубочки от ВЧ фильтров на кабелях. Коуши и крепеж для тонкого провода. Маленький блок (ролик) с ухом-креплением. Подходящую пластиковую коробочку для трансформатора. Керамические изоляторы для антенны. Капроновую веревку подходящей толщины.

Что было сделано.

Первым делом отмерил (семь раз) куски проводов для полотна. С некоторым запасом. Отрезал (один раз).

Взялся за изготовление трансформатора в коробочке.
Подобрал ферритовые трубки для магнитопровода. Он изготовлен из двух одинаковых ферритовых трубочек от фильтров на кабелях мониторов. Сейчас старые мониторы на ЭЛТ просто выбрасывают и найти «хвосты» от них не особенно сложно. Можно поспрашивать у знакомых, наверняка у кого ни будь да пылится на чердаках или в гараже . Удача, если есть знакомые системные администраторы. В конце концов, в наше время, когда везде стоят импульсные блоки питания и борьба за электромагнитную совместимость ведется нешуточная, фильтры на кабелях могут быть много где, более того, такие ферритовые изделия вульгарно продаются в магазинах электронных компонентов.

Подобранные одинаковые трубочки сложены на манер бинокля и скреплены несколькими слоями липкой ленты. Намотка выполнена из монтажного провода максимально возможного сечения, такого, чтобы вся обмотка поместилась в окнах магнитопровода. С первого раза не получилось и пришлось действовать методом проб и ошибок, благо, витков совсем немного. В моем случае, под рукой не нашлось подходящего сечения и пришлось мотать двумя проводами одновременно, следя в процессе, чтобы они не перехлёстывались.

Для получения вторичной обмотки - делаем два витка двумя сложенными вместе проводами, потом вытащить каждый конец вторичной обмотки назад (в обратную сторону трубки), получим три витка со средней точкой.

Из кусочка довольно толстого текстолита, сделан центральный изолятор. Существуют специальные керамические именно для антенн, лучше конечно применять их. Поскольку все слоистые пластики пористы и как следствие весьма гигроскопичны, чтобы параметры антенны не «плавали», следует хорошенько пропитать изолятор лаком. Применил масляный глифталевый, яхтный.

Концы проводов очищены от изоляции, несколько раз пропущены через отверстия и хорошенько пропаяны с хлористым цинком (флюс «Паяльная кислота»), чтобы пропаялись и стальные жилки. Места пайки очень тщательно промываются водой от остатков флюса. Видно, что концы проводов, предварительно продеты в отверстия коробочки, где будет сидеть трансформатор, иначе придется потом продевать в эти же дырочки все 55 и 29 метров.

Припаял к местам разделки соответствующие выводы трансформатора, укоротив эти выводы до минимума. Не забывать перед каждым действием, примерять к коробочке, чтобы потом все влезло.

Из кусочка текстолита от старой печатной платы, выпилил кружок на дно коробочки, в нем два ряда дырочек. Через эти дырочки, бандажом из толстых синтетических ниток крепится коаксиальный кабель снижения. Тот, который на фото, далеко не лучший в данном применении. Это телевизионный со вспененной изоляцией центральной жилы, сама жила «моно», для навинчивающихся телевизорных разъемов. Но была в наличии бухточка трофейного. Применил ее. Кружок и бандаж, хорошенько пропитан лаком и высушены. Конец кабеля предварительно разделан.

Припаяны остальные элементы, резистор набран из четырех. Все залито термоклеем, вероятно зря – тяжеловато получилось.

Готовый трансформатор в домике, с «выводами».

Между делом было изготовлено крепление к коньку – там на самом верху две доски. Длинные полосы из кровельной стали, петелька из нержавеющей 1.5мм. Концы колечек приварены. На полосах по ряду из шести отверстий для саморезов – распределить нагрузку.

Подготовлен блок.

Керамических антенных «орешков» не добыл, применил вульгарные ролики от старинной проводки, благо, в старых деревенских домах под снос еще встречаются. По три штуки на каждый край – чем лучше изолирована антенна от «земли», тем более слабые сигналы может принять.

Примененный полевой провод с вплетенными стальными жилками и хорошо выдерживает растягивание. Кроме того, предназначен для прокладывания под открытым небом, что к нашему случаю тоже вполне подходит. Радиолюбители довольно часто изготавливают из него полотна проволочных антенн и провод неплохо себя зарекомендовал. Накоплен некоторый опыт его специфичного применения, который в первую очередь говорит, что не стоит провод сильно изгибать – лопается на морозе изоляция, влага попадает на жилы и они начинают окисляться, в том месте, через некоторое время, провод и рвется.

Вертикальные многодиапазонные антенны

(Описание и практические конструкции для применения)

Предлагается рассмотреть способы построения и реальные конструкции многодиапазонных вертикальных штыревых антенн диапазона коротких волн. Все антенны просты в наладке и обеспечивают высокие параметры при работе в эфире.

Практика показывает, что дефицит свободного пространства в городской черте (это в основном крыши домов) для размещения радиолюбительских КВ антенн и увеличение числа открытых любительских диапазонов, привело к усилению популярности многодиапазонных вертикальных антенн. Ведь именно многодиапазонные вертикальные антенны не занимают много места для своей установки. При помощи вертикальных антенн возможна организация радиолюбительской связи и в городских условиях.

Трёхдиапазонная вертикальная антенна

При недостатке места на крыше многоквартирного дома для установки отдельной вертикальной антенны на каждый верхний любительский КВ диапазон можно использовать комбинированную трёхдиапазонную антенну. Схема такой антенны показана на рис. 1.

Рис. 1. Комбинированная трёхдиапазонная антенна

Три (3) четвертьволновых вибратора подключаются параллельно к центральной жиле коаксиального кабеля. Не менее двух четвертьволновых противовесов для каждого диапазона работы антенны подключаются к оплётке коаксиального кабеля.

В табл. 1 приведено сочетание диапазонов, на которых параллельно включенные вибраторы антенны оказывают минимальное влияние друг на друга. Использование более трех вибраторов для выполнения многодиапазонной вертикальной антенны не целесообразно. Ёмкостная составляющая импеданса многодиапазонной вертикальной антенны будет сравнима с активной частью её входного сопротивления на верхних диапазонах работы антенны, в результате чего эффективность работы антенны на них значительно падает.

Таблица 1. Сочетание диапазонов работы комбинированной трёхдиапазонной антенны


Конструкция этой многодиапазонной антенны зависит только от реальных возможностей самого радиолюбителя. Вибраторы антенны могут быть жёстко прикручены к металлическому уголку, как это показано на рис. 2.

Если упругость вибраторов не позволяет достигнуть жёсткости конструкции антенны, то расстояние между ними относительно друг друга, может быть зафиксировано при помощи пластиковых изоляторов, как это показано на рис. 3.

Наоборот, достаточно жёсткие вибраторы антенны могут располагаться веером, как показано на рис. 4.

Штыри для работы на высокочастотных диапазонах могут быть выполнены из медных или дюралевых трубок, могут быть растянуты из толстого медного провода. На конце коаксиального кабеля питания желательна установка высокочастотного дросселя.

Рис. 2. Расположение вибраторов антенны на металлическом уголке

Рис. 3. Фиксация вибраторов антенны

Рис. 4. Веерное расположение вибраторов антенны

Количество резонансных противовесов, используемых с многодиапазонной вертикальной антенной, должно быть не менее двух для каждого диапазона работы антенны. В случае размещения антенны на небольшой высоте над металлической крышей и хорошего контакта оплётки коаксиального кабеля с этой крышей, многодиапазонная вертикальная антенна может быть использована без противовесов.

Трёхдиапазонная антенна для низкочастотных диапазонов

На низкочастотные КВ диапазоны вибраторы антенны целесообразно выполнить из медного провода диаметром 1-2 мм. На низкочастотных диапазонах влияние окружающих антенну предметов на нее будет высоким. Следовательно, скорей всего потребуется подстройка длины каждого вибратора на каждом диапазоне работы антенны.

При выполнении антенны необходимо предусмотреть конструктивную возможность для такой подстройки. Для этого вибраторы антенны целесообразно выполнить чуть больше чем четверть длины волны. Настройку вибраторов многодиапазонной вертикальной антенны в резонанс на каждый диапазон работы в этом случае целесообразно производить с помощью укорачивающих конденсаторов, как это показано на рис. 5.

Рис. 5. Настройка вибраторов антенны в резонанс при помощи укорачивающих конденсаторов

Конечно, настраивать антенну в резонанс при помощи укорачивающих конденсаторов можно не только на нижних коротковолновых диапазонах но и на верхних. Ёмкость укорачивающего конденсатора может быть до 100 пФ при работе вибраторов антенны в диапазонах 6-17 м, до 150 пФ при работе вибраторов антенны в диапазонах 20-30 м, 200 пФ при работе вибраторов антенны в диапазонах 40-80 м, и до 250 пФ при работе антенны на 160 м.

Следует обратить серьёзное внимание на то, что на конце коаксиального кабеля питания вышеописанных антенн должен быть установлен высокочастотный дроссель. Этот дроссель препятствует затеканию высокочастотных токов на внешнюю оболочку коаксиального кабеля, которая в этом случае будет служить излучающей частью антенны. Это приведет к увеличению уровня помех при работе антенны на передачу. Наиболее простая конструкция такого высокочастотного дросселя — это 10 — 30 ферритовых колец, туго одетых на конце коаксиального кабеля.

Можно использовать ферритовые трубки, которые одеваются на шнуры мониторов компьютеров. Такие ферритовые трубки также вполне успешно можно использовать для создания высокочастотных дросселей на конце коаксиального кабеля антенны.

Вертикальный штырь в работе многодиапазонной антенны

Среди радиолюбителей распространено использовать один вертикальный вибратор для работы на нескольких любительских диапазонах. Однако простым подбором физической длины вибратора антенны невозможно подогнать его входное сопротивление к волновому сопротивлению коаксиального кабеля на нескольких любительских диапазонах. Следовательно, невозможно использовать коаксиальный кабель для прямого питания такой антенны. В этом случае для питания вертикальной антенны вполне возможно использовать двухпроводную открытую линию. Двухпроводная линия допускает работу с большим значением КСВ.

В такой конструкции антенной системы двухпроводная линия на одном конце подключается непосредственно к штырю антенны, а другой конец двухпроводной линии через согласующее устройство подключается к трансиверу. Схема многодиапазонной вертикальной антенны с питанием по двухпроводной линии показана на рис. 6.


Рис. 6. Схема многодиапазонной вертикальной антенны с питанием по двухпроводной линии

Антенна состоит из штыря, длиной LА и минимум четырех противовесов длиной LС. Для эффективной работы вертикальной антенны, штырь которой не настроен в резонанс с излучаемым ей сигналом, необходимо, чтобы электрическая длина штыря была не менее 1/8 длины волны. При такой длине активное входное сопротивление штыря составляет около пяти Ом. Эта та крайняя величина входного сопротивления антенны, которое еще поддается удовлетворительному согласованию при питании штыревой антенны при помощи двухпроводной линии. Следовательно, для того, чтобы антенна работала в любительских диапазонах 6 — 80 метров, достаточно, чтобы длина ее вертикальной части была равна не менее 5 метров.

Как указывается во многих радиолюбительских источниках, для работы такой суррогатной вертикальной многодиапазонной антенны необязательно использовать резонансные противовесы, которые, безусловно, улучшают работу антенны, но в то же время значительно усложняют ее конструкцию. Вполне достаточно четырех противовесов длиной равной высоте штыря.

До сих пор среди радиолюбителей нет единого мнения, какой длины штырь необходимо использовать для создания многодиапазонной вертикальной антенны с питанием по двухпроводной открытой линии. Есть два противоположных мнения о длине штыря. Первое, что штырь должен иметь резонансы на верхних любительских диапазонах, на которых используется антенна, и другое, что не обязательно, чтобы штырь имел резонансы на диапазонах работы антенны.

Теоретически, для работы этой антенны нет разницы, используется ли штырь резонансной длины, либо резонанс штыря лежит вне любительского диапазона и, следовательно, будет требоваться компенсация реактивной части импеданса антенны посредством согласующего устройства. На практике, однако, может даже оказаться, что эффективнее будет работать многодиапазонная нерезонансная штыревая антенна, питаемая по двухпроводной линии. Часто, используя двухпроводную линию, более просто осуществить согласование нерезонансного штыря, чем в случае использования штыревой антенны имеющей резонансы на нескольких любительских диапазонах.

Антенна резонансной длины обязательно будет иметь на каком-либо любительском диапазоне входное сопротивление равное несколько тысяч ом, т.е. будет узел напряжения на ее входе. Это может усложнить согласование штыря с линией передачи и далее с согласующим устройством на резонансном диапазоне. Поскольку все же число сторонников резонансных и нерезонансных штыревых многодиапазонных антенн почти одинаково, разберем оба эти варианта выполнения антенны.

Классической нерезонансной конструкцией многодиапазонного вертикального штыря, используемого радиолюбителями мира необходимо признать антенну WB6AAM, рассмотренную в литературе . Штырь антенны и ее противовесы имеют длину равную 6,1 метра. В табл. 2 приведены значения коэффициента усиления антенны WB6AAM относительно четвертьволнового несимметричного вибратора работающего на сравниваемом диапазоне. Как видно из этой таблицы, параметры этой антенны весьма хороши на диапазонах 6 — 20 метров, удовлетворительны при работе в диапазонах 30-40 метров, и антенна может быть использована для вспомогательной работы на диапазоне 80 метров.

В литературе радиолюбителем DL2JWN приведено описание нерезонансной антенны с длиной вертикальной части и противовесов равной по 6,7 метра. Очевидно, что параметры антенны DL2JWN незначительно отличаются от параметров антенны WB6AAM. Практически, для работы антенны нет разницы, какая длина штыря используется для построения многодиапазонной вертикальной антенны, или 6,1 или 6,7 метра. Длина штыря зависит только от удобства использования тех или иных материалов для выполнения многодиапазонной антенны.

Таблица 2. Значения коэффициента усиления антенны WB6AAM


Давайте рассмотрим многодиапазонные вертикальные антенны с питанием по двухпроводной линии и имеющих штырь, резонансной длины для некоторых ее диапазонов работы. Антенна, с высотой вертикальной части и длиной противовесов по 508 см описана радиолюбителем с позывным W4VON в литературе . Эта антенна работает в резонансном режиме на диапазонах 10 и 20 метров. Высота антенны W4VON меньше, чем высота антенны WB6AAM. Следовательно, антенна W4VON работает немного менее эффективно, чем антенна WB6AAM. Антенна W4VON питается при помощи двухпроводной линии, указывается на возможность ее работы в любительских диапазонах 10 – 80 метров.

Вертикальная многодиапазонная антенна с длиной вертикальной части 10 метров и тремя противовесами такой же длины описана радиолюбителем с позывным W1AB в литературе . Антенна имеет резонансы на любительских диапазонах 10, 20 и 40 метров. Эта антенна, вследствие относительно большой длины вертикальной части может обеспечить работу не только на диапазонах 10 — 80 м, как указано в ее описании, но и на диапазоне 160 метров. Усиление ее будет примерно в полтора раза выше по сравнению с вертикальной антенной WB6AAM (см. табл. 2). Конечно, при наличии достаточного места для размещения антенны, при наличии материалов, опыта установки высоких вертикальных антенн, лучше использовать многодиапазонную антенну с длиной вертикальной части составляющей 10 и более метров.

Двухпроводная линия передачи для питания многодиапазонных вертикальных антенн может быть использована с любым волновым сопротивлением. Это может быть самодельная двухпроводная линия имеющая случайное волновое сопротивление, можно использовать стандартный ленточный кабель, например типа КАТВ.

При мощности, подводимой к антенне не более 100 ватт, можно использовать в качестве двухпроводной линии передачи телефонный двухпроводный кабель типа ТРП, ТРВ, ПРПП, который среди радиолюбителей больше известен под названием «лапша». К сожалению, этот кабель при его эксплуатации под действием атмосферных условий обычно через несколько лет выходит из строя. Это происходит вследствие разрушения пластиковой наружной изоляции, и вследствие этого, окисления жил линии передачи. Линия передачи с окисленными жилами совершенно непригодна для использования в качестве линии передачи высокочастотной энергии.

Антенны с питанием по открытой линии передачи используются радиолюбителями все еще редко. Это, на мой взгляд, можно объяснить только отсутствием в продаже недорогих открытых линий передачи, которые могут работать достаточно долгое время под воздействием атмосферных условий. Использовать самодельные открытые линии передачи не всегда удобно. Доступный радиолюбителям телефонный кабель ТРП, ТРВ, ПРПП «живет» на открытом воздухе только 2 — 3 года. Это ограничивает его использование для построения антенн.

Однако в последнее время в широкой продаже и по приемлемым ценам начинают появляться двухпроводные импортные линии передачи (типа нашего КАТВ) различных волновых сопротивлений. Можно надеяться, что интерес к многодиапазонным вертикальным антеннам с питанием по двухпроводной линии среди радиолюбителей возрастет снова.

Антенна UA1DZ

Именно из-за дефицита открытых линий передачи, радиолюбители предпринимают попытки питать многодиапазонную антенну через коаксиальный кабель с использованием различных согласующих устройств, расположенных непосредственно на штыре антенны. Одна из наиболее удачных конструкций многодиапазонной вертикальной антенны была осуществлена радиолюбителем UA1DZ. Наиболее раннее описание этой антенны, данное самим радиолюбителем UA1DZ, было приведено в литературе . Конструкция многодиапазонной вертикальной антенны UA1DZ и ее согласующих устройств показана на рис. 7.

Рис. 7. Конструкция многодиапазонной вертикальной антенны UA1DZ

Высота штыря антенны UA1DZ составляет 9,3 м. Эта длина выбрана не случайно. Для конструкции штыря антенны радиолюбитель UA1DZ использовал старую военную штыревую антенну, длина которой была равна 9,3 метра. Противовесы антенны имеют длину, равную по 9,4 м. Они выполнены из провода диаметром 1,5 мм и расположены противоположно друг другу.

Первоначальное согласование входного сопротивления штыря антенны и системы противовесов с волновым сопротивлением коаксиального кабеля питания осуществляется с помощью открытой линии «А», длиной примерно один метр и волновым сопротивлением 450 Ом. Она служит для предварительной трансформации входного сопротивления антенной системы в волновое сопротивление питающего коаксиального кабеля. Далее с помощью согласующего отрезка коаксиального кабеля «Б» волновым сопротивлением 75 Ом, производят дальнейшую трансформацию входного сопротивления антенной системы в волновое сопротивление коаксиального кабеля питания 75 Ом. Отрезок коаксиального кабеля «В» производит компенсацию реактивной составляющей в линии питания антенны. Антенна может работать на диапазонах 7, 14, 21, МГц с КСВ менее 2.

Следует обратить внимание, что в разных описаниях антенны UA1DZ приводились несколько отличающиеся друг от друга длины согласующих линий А, Б, В. Современные программы моделирования антенн позволили найти оптимальные длины для этих согласующих линий. Они были рассчитаны радиолюбителем VA3TTT (ex UA9XCD, UZ3XWB). В литературе приведены оптимизированные длины для этих согласующих линий. Оптимизированные длины линий приведены на рис. 7 в скобках. Как видно, только для линии В оптимизированная длина и длина согласующей секции, указанная радиолюбителем UA1DZ в первом описании этой антенны, приведенной в литературе немного не совпадают.

Точную настройку антенны UA1DZ можно осуществить при помощи мостового измерителя сопротивления. Он должен быть расположен на входе согласующих устройств антенны. Уменьшая длину отрезка «А» добиваются минимального КСВ на диапазонах 7 и 21 МГц. Укорочение длины линии А на 5 сантиметров вызывает смещение резонанса вверх на 200 кГц на 21 МГц, и на 60 кГц на 7 МГц. Вполне можно настроить антенну так, что бы минимальный КСВ находился внутри диапазонов 21 и 7 МГц. При настройке антенны для работы на этих диапазонах КСВ антенны на 14 МГц должен стать “на свое место”. В качестве открытой линии можно использовать или самодельную открытую линию с волновым сопротивлением 450 Ом, или двухпроводную линию промышленного изготовления.

По сообщению радиолюбителя VA3TTT, на диапазоне 7 МГц эта антенна имеет усиление 3,67 dB, на диапазоне 14 МГц усиление 4 dBi, на диапазоне 21 МГц усиление 7,6 dB. В литературе указывается на возможность работы антенны UA1DZ на диапазоне 28 МГц, однако, исследования, проведенные VA3TTT, не позволили достигнуть низких значений КСВ на этом диапазоне при использовании указанных здесь согласующих устройств на входе антенны.

На конце коаксиального кабеля, питающего антенну UA1DZ, должен быть установлен высокочастотный дроссель, аналогичный тому, который описан в этой главе в параграфе о трехдиапазонных антеннах.

Многодиапазонные вертикальные антенны с заградительными контурами

Среди радиолюбителей широко распространены антенны с заградительными контурами, установленными в ее полотне. Впервые эта антенна была запатентована в США H. K. Morgan, патент №2229856 от 1938 (согласно источника ). В радиолюбительской литературе описание многодиапазонных антенн с заградительными контурами впервые появилось в литературе . Давайте рассмотрим принцип работы антенны с заградительными контурами. Схема такой антенны показана на рис. 8.

Рис. 8. Вертикальная антенна с заградительными контурами

В этой антенне секция «А» настраивается для работы в диапазоне 10 метров. Заградительный контур L1С1, настроенный на диапазон 10 метров, «отключает» верхнюю часть антенны при ее работе в этом диапазоне. При работе антенны в диапазоне 15 метров секция «Б» удлиняет секцию «А» до длины, резонансной в этом диапазоне. Контур L2С2, настроенный на диапазон 15 метров, отключает верхнюю часть антенны при ее работе в диапазоне 15 метров. Для работы на диапазоне 20 метров антенна настраивается в резонанс изменением длины секции «В». Аналогично антенну можно настроить и на остальные радиолюбительские КВ диапазоны. На практике радиолюбители обычно не используют вертикальные антенны с заградительными контурами в полотне антенны числом более одного. Это связано с тем, что секции антенны должны быть электрически изолированы друг от друга, а на практике выполнить достаточно прочное для существования антенны изолирующее соединение затруднительно.

В 1955 году в литературе появилась статья радиолюбителя W3DZZ об многодиапазонной антенне в которой использовался только один заградительный контур. Благодаря соответствующему распределению высокочастотного тока, который обеспечивал этот контур, эта антенна могла работать на нескольких диапазонах. Ниже мы разберем работу нескольких популярных многодиапазонных антенн, которые используют только один контур.

Одной из наиболее популярных вертикальных антенн с заградительными контурами, используемой на 10 и 15 метров, является антенна, описанная радиолюбителем WA1LNQ в литературе . Схема этой антенны показана на рис. 9. Она выполнена из двух изолированных друг от друга трубок длиной 240,7 и 62,9 см. Длина изолирующей вставки 5,8 см. Вокруг этой вставки намотана катушка заградительного контура. Катушка выполнена из медной трубки диаметром 3 – 5 мм и содержит 2 витка провода с шагом 1 виток на 25 мм намотки. Средний диаметр катушки составляет 55 мм. В качестве конденсатора используется отрезок коаксиального кабеля волновым сопротивлением 50 Ом с начальной длиной 80 см, который в процессе настройки постепенно укорачивается по достижению минимального КСВ в диапазоне 10 метров. После этой настройки возможна небольшая подстройка длины верхней секции антенны по минимальному значению КСВ на диапазоне 15 метров. Для выполнения антенны могут быть использованы медные или алюминиевые трубки диаметром 18-25 мм.

Рис. 9. Антенна WA1LNQ

Другой популярной многодиапазонной вертикальной антенной с заградительными контурами является четырёх диапазонная вертикальная антенна K2GU, описание которой было приведено в литературе .

Антенна работоспособна в любительских диапазонах 10, 15, 20, 40 метров. Схема антенны показана на рис. 10. Для питания антенны используется 50-омный коаксиальный кабель. КСВ, реально достижимые с ним – 1,3:1 на 7,05 МГц; 1,1:1 на 14,1 МГц; 2,5:1 на 21,2 МГц; 1,1:1 на 28,5 МГц.

Рис. 10. Четырёхдиапазонная вертикальная антенна с одним заградительным контуром

Рассмотрим работу антенны. На диапазоне 20 метров заградительный контур LC отключает верхнюю секцию антенны «А». Оставшаяся секция «Б» эффективно работает как четвертьволновый вибратор. На диапазоне 40м геометрическая длина антенны меньше четверти волны, но контур LC на этом диапазоне имеет индуктивный характер сопротивления, который компенсирует емкостную составляющую короткого штыря. Контур здесь работает как удлиняющая индуктивность которая увеличивает электрическую длину антенны до резонансной четвертьволновой в диапазоне 40 метров.

На диапазоне 10 метров контур LC имеет емкостной характер сопротивления, который приводит общую электрическую длину антенны к величине 3/4 длины волны. На диапазоне 15 метров антенна имеет КСВ больший 2,5:1, но в то же время при использовании совместно с трансивером внешнего согласующего устройства может на нем эффективно работать.

Рассмотрим конструкцию заградительного контура. Катушка, используемая в нем, бескаркасная, содержит 10 витков, диаметр ее провода равен 2 мм, диаметр намотки катушки 6 см, шаг намотки – 4 мм. Заградительный контур LC должен быть настроен в резонанс на частоту 14,1 МГц. Его предварительно настраивают с помощью ГИР. Во время настройки параллельно контурному конденсатору подключают добавочный конденсатор емкостью 2 – 3 пФ. Этот конденсатор имитирует емкость между изолирующей вставкой верхнего и нижнего конца антенны. Контурный конденсатор необходимо защищать от воздействия на него атмосферных воздействий. Настройку этой антенны производят изменением длины секций «А» и «Б» по наименьшему КСВ антенны на ее диапазонах работы.

На подобном принципе укорочения-удлинения полотна антенны до резонансного с помощью заградительного контура можно построить антенны, работающие и на других любительских диапазонах. В отечественной литературе была описана вертикальная антенна с одним заграждающим контуром, работающая в диапазонах 10, 15, 20, 40, 80 метров. Схема этой антенны показана на рис. 11.

Рис. 11. Пятидиапазонная вертикальная антенна с одним заградительным контуром

Заградительный контур антенны составлен из катушки индуктивностью 8,3 мкГн и конденсатора емкостью 60 пФ. Это обычный контур, используемый в антенне W3DZZ, и его конструктивные данные неоднократно приводились в радиолюбительской литературе, например в . Приведем здесь данные для его выполнения. Диаметр катушки равен 50 мм, число витков 19, длина намотки 80 мм, использован провод диаметром 1,5 мм.

Рассмотрим работу этой антенны. При работе на диапазоне 40 метров заградительный контур отключает верхнюю часть антенны «А», и электрическая длина антенны равна?/4. На диапазоне 80 метров катушка заградительного контура имеет индуктивное сопротивление и удлиняет короткую антенну до электрической длины 1/4 длины волны в этом диапазоне. На диапазоне 20 метров заградительный контур имеет емкостный характер сопротивления, и электрическая длина антенны укорачивается до 3/4 длины волны. При работе на диапазонах 10 и 15 метров за счет емкостной составляющей заградительного контура антенна укорачивается соответственно до электрической длины 7/4 и 5/4 длины волны.

Для эффективной работы этой антенны необходима система из резонансных противовесов количеством не менее 4 противовесов для каждого диапазона работы антенны. Антенну можно питать через коаксиальный кабель волновым сопротивлением 50 или 75 Ом электрической длиной кратной половине длины волны в диапазоне 80 метров. При коэффициенте укорочения кабеля 0,66, его физическая длина при этом будет равна 27,9 метров. В этом случае КСВ антенны на диапазонах работы антенны не превышает 2. Для изготовления вертикального вибратора можно использовать алюминиевые трубы диаметром 40 -50 мм. Большой диаметр труб обусловлен значительной высотой антенны, и, следовательно, необходима механическая прочность ее конструкции.

На конце коаксиального кабеля, питающего любую из описанных здесь многодиапазонных вертикальных антенн с заградительным контуром, должен быть установлен высокочастотный дроссель. Конструкция этого дросселя может быть аналогичный дросселю, который был описан в этой главе в параграфе о трехдиапазонных антеннах.

Open Sleeve

В конце этой главы остановимся на очень интересной многодиапазонной антенне известной под названием “Open Sleeve”. Эта антенна была разработана в 1946 году при Stanford Research Institute, известным исследователем Dr. J. T. Bollijahn . В первое время эта антенна не получила широкого распространения. Но в последнее десятилетие к этой антенне возрос интерес, как среди радиолюбителей, так и среди профессионалов. Это вызвано тем, что, в настоящее при помощи широко распространенных компьютерных программ расчёта антенн, можно смоделировать конструктивно простую многодиапазонную антенну.

Давайте разберем принцип работы антенны Open Sleeve. Предположим, мы установили четвертьволновую вертикальную антенну на диапазон 20 метров, как показано на рис. 12а. Такая антенна длиной 5,1 метра при расположении над идеальной проводящей поверхностью имеет входное сопротивление 36 Ом. Эту антенну можно сравнительно просто согласовать с коаксиальным кабелем волновым сопротивлением 50 или 75 Ом. А теперь давайте расположим рядом с этой четвертьволновой вертикальной антенной диапазона 20 метров провод длиной 2,5 метра. Этот провод подключен к земле (или к оплетке коаксиального кабеля), и расположен на расстоянии примерно 10 сантиметров от штыря антенны (рис. 12б).

Рис. 12. Переход от четвертьволновой антенны к антенне Open Sleeve

Что изменилось в работе этой вертикальной антенны на диапазоне 20 метров? Добавочный проводник, подключенный к земле и расположенный рядом с вибратором антенны, немного понизил резонансную частоту вертикальной антенны. Для того, что бы для диапазона 20 метров частоту настройки вибратора антенны «вернуть на место», его необходимо немного укоротить.

А что изменилось в работе этой антенны на других диапазонах, например, на 10 метров? Входное сопротивление “чистой” вертикальной антенны высотой 5,1 метров и электрической длиной для диапазона 10 метров длиной 0,5 длины волны является чрезвычайно высоким. Но с добавочным проводником, расположенным рядом с вибратором антенны, эквивалентная схема антенной системы будет соответствовать приведенной на рис. 13.


Рис. 13. Эквивалентная схема антенны Open Sleeve

На диапазоне 10 метров можно рассматривать, что часть вибратора антенны “L”, длиной 2,5 метра, которая имеет входное сопротивление Z1 в точке “А”, через четвертьволновую линию, имеющую волновое сопротивлением Z2, подключена к питающему коаксиальному кабелю, который имеет волновое сопротивление Z3. Соответствующим выбором Z1, Z2, Z3 можно провести согласование вибратора антенны для ее работы на диапазоне 10 метров. Входное сопротивление Z1 зависит от длины части антенны “L”, входное сопротивление Z2 линии образованной вибратором антенны и добавочным проводником около нее зависит от физических размеров этой линии, Z3 это стандартное волновое сопротивление коаксиального кабеля. Оно может быть равно 50 или 75 Ом. Следовательно, только при помощи добавления одного добавочного проводника около антенны, можно синтезировать двухдиапазонную антенну! В этой антенне основной вибратор принято называть Master- вибратор, а вспомогательные вибраторы, которые заставляют работать антенну на ее верхних диапазонах, принято называть Slave – вибраторы.

Ранее, практическое воплощение таких антенн было затруднено. Для создания таких антенн было два пути. Первый из них – макетирование антенны. Для того, что бы сконструировать антенну с удовлетворительными параметрами, необходимо было проделать множество экспериментов. Второй путь – расчет параметров антенны на бумаге. Однако, математическая оптимизация одной двухдиапазонной антенны требовала проделать сотни вычислений! В 50-60 годах эти вычисления производились с помощью логарифмической линейки, затем с помощью ЭВМ на лампах и транзисторах. Только быстрое развитие компьютеров в 80 — 90-х годах 20 века устранило сложность многочисленных расчетов, необходимых для оптимизации этой антенны. Теперь современная недорогая компьютерная программа для расчета и моделирования антенн и даже ее демонстрационная бесплатная версия могут рассчитать антенну Open Sleeve.

Конечно, радиолюбитель может сразу задать вопрос. Только ли двухдиапазонные антенны Open Sleeve можно построить по приведенной выше методике? Конечно, нет! На таком принципе можно построить трех, четырех и даже пяти диапазонные антенны! рассмотрим для примера построение трехдиапазонной антенны, рассчитанной для работы в диапазонах 10, 15 и 20 метров. Конструкция такой антенны показана на рис. 14, эквивалентная схема антенны показана на рис. 15 .

Рис. 15. Эквивалентная схема антенны

Работает антенна следующим образом. На диапазоне 20 метров в месте подключения коаксиального кабеля питания (точка “А”) входное сопротивление Z1, которое имеет вибратор антенны равно волновому сопротивлению этого коаксиального кабеля. Это равенство выполняется с учетом влияния на параметры вибратора антенны близко расположенных проводников S1 и S2. На диапазоне 10 метров входное сопротивление Z2, которую имеет часть вибратора антенны длиной L1 в точке “В” при помощи трансформатора Т1 приводится к волновому сопротивлению коаксиального кабеля. На диапазоне 15 метров входное сопротивление Z3, которую имеет часть вибратора антенны длиной L2 в точке в точке “С”, при помощи трансформатора Т2 приводится к волновому сопротивлению коаксиального кабеля.

Просчитать размеры трехдиапазонной антенны с помощью логарифмической линейки весьма затруднительно. Такой расчет может занять наверное не один месяц напряженной работы. Вот почему, широкое освоение антенн типа Open Sleeve, и особенно их трёх-, четырёхдиапазонных вариантов началось только в наше время. Время, когда программы расчета антенн стали широкодоступны, а скорость работы компьютеров увеличилась.

Для работы антенны Open Sleeve необходима хорошая радиотехническая земля. Оптимальный вариант — расположение антенны над металлической проводящей крышей. Если это условие выполнить невозможно, то необходимо применить 3 — 5 противовеса резонансных для нижнего диапазона работы антенны. Использовать резонансные противовесы для верхних диапазонов работы антенны нежелательно.

При точном выполнении антенны по рассчитанным размерам, ее резонансные частоты уже должны находиться в любительских диапазонах. Однако, из — за влияния окружающих предметов, из – за погрешностей при неточном выполнении антенны по размерам, антенна Open Sleeve обычно требует небольшой подстройки в реальных условиях ее установки. Давайте разберем процесс настройки антенны Open Sleeve. Настройка антенны заключается в получении значения ее входного сопротивления на клеммах подключения коаксиального кабеля питания равного волновому сопротивлению этого коаксиального кабеля. Измерять входное сопротивление этой антенной системы удобно при помощи высокочастотного моста.

Рис. 16. Настройка двухдиапазонной антенны Open Sleeve

Определяем резонансную частоту и входное сопротивление антенны на верхнем диапазоне. Допустим, верхняя резонансная частота антенны получилась ниже необходимой, а входное сопротивление выше волнового сопротивления коаксиального кабеля. Это наиболее благоприятный вариант при настройке антенны. Приближаем элемент S к вибратору М. При уменьшении расстояния W между вибратором М и элементом S уменьшается волновое сопротивление согласующего трансформатора, образованного элементом S и частью вибратора М. Вследствие этого уменьшается входное сопротивление антенны на стороне питания ее коаксиальным кабелем. При приближении элемента S к вибратору М, верхняя частота работы антенны увеличивается . Если с помощью только одного приближения элемента S к вибратору М не удается установить верхний диапазон работы антенны в нужный участок, то тогда придется изменять длину элемента S.

Если входное сопротивление системы на резонансе уже составляет 50 Ом, а резонансная частота ниже требуемой, то можно попробовать укоротить элемент S. Очевидно, что в этом случае согласующий трансформатор антенны настроен ниже необходимой частоты. Уменьшение длины трансформатора (или длины элемента S) повысит частоту его работы. После уменьшения длины трансформатора (элемента S), при помощи приближения или удаления этого элемента относительно вибратора “М” снова добиваются входного сопротивления 50 Ом на верхней рабочей частоте антенны.

Если наоборот, окажется что при входном сопротивлении 50 Ом верхняя частота работы антенны Open Sleeve выше необходимой, увеличивают длину элемента “S”, или, что, то же самое, понижают частоту настройки согласующего трансформатора. Исходя из выше изложенного, понятна стратегия настройки антенны.

  1. Приближение элемента “S” к вибратору “М” понижает входное сопротивление антенны, и увеличивает её резонансную частоту.
  2. Удаление элемента “S” от вибратора “М” увеличивает входное сопротивление антенны и понижает её рабочую частоту.
  3. Увеличение длины элемента “S” (или, то же самое, увеличение рабочей длины волны четвертьволнового трансформатора) понижает частоту настройки антенны.
  4. Уменьшение длины элемента “S” (или, то же самое, уменьшение рабочей длины волны четвертьволнового трансформатора) повышает частоту настройки антенны.

После окончательной настройки антенны на верхней рабочей частоте полезно проверить параметры антенны на ее нижней рабочей частоте. Как видно из этого описания, настройка антенны Open Sleeve на один диапазон относительно несложна. Но настройка 3, 4 или 5-диапазонной антенны уже не такая простая задача. Элементы “S” оказывают влияние друг на друга и на вибратор “M”, и настроив антенну на одном из ее верхних диапазонов работы, резонансная частота антенны на других диапазонах тоже изменится. И все же, при настойчивости, вполне возможно произвести настройку антенны Open Sleeve для работы на 3 и даже на 5 диапазонах!

В табл. 3 приведены данные для выполнения антенны Open Sleeve для 2 и 3 любительских диапазонов. Эти антенны были рассчитаны радиолюбителем UA3AVR . На рис. 17 приведены конструкции антенн, поясняющие Таблицу 3.

Таблица 3. Данные для выполнения антенны Open Sleeve


  • Ground Plane с двухпроводным фидером //QST. – 1968. – №4, раздел «За рубежом». – Радио. – №9. – 1968. – С. 62.
  • Ол Брогдон W1AB // QST. – 1999. – №6. – С. 56-57, из раздела «Дайджест». – Радиохобби. – №4. – 1999. – С. 24-25.
  • RB5IM.: Ground plane UA1DZ. Бюллетень UCC. –№ 4, 1993, С.27.
  • А. Барский. Антенна UA1DZ . www.krasnodar.online.ru/hamradio
  • By Alois Krischke: Rothammels Antennenbuch // Franckh – Kosmos, Verlags – GmbH@Co., Stuttgart, 1995, 11 edition.
  • Morgan h. K. : Multifrequency Tuned Antenna System. // Electronics, vol. 13, August 1940, pp. 42-50.
  • Buchman C. L., W3DZZ: The multimatch Antenna System. // QST, March 1955, pp.22-23, 130.
  • Jay Rusgrove, WA1LNQ: The Cheapie GP // QST, 1976, February, p31.
  • The Radio Amateur’s Handbook, 1970, by ARRL publication.
  • Чирков М. UL7GCC. Многодиапазонная, вертикальная… //Радио. – №12. – 1991. С. 21.
  • Ротхаммель К. Антенны. – СПб: «Бояныч». – 1998 – 656 с.
  • ARRL Antenna Book, 19th- Edition, Publication by ARRL
  • Федоров Д (UA1AVR).: Многодиапазонные вертикалы Open Sleeve.- Радиомир. КВ и УКВ, 2001, №8 с.34-36.
    • Сергей Савенков

      какой то “куцый” обзор… как будто спешили куда то