На что влияют ядра процессора в ноутбуке. На что влияет количество ядер процессора? Многоядерный процессор

Гонку за дополнительную производительность на рынке процессоров могут выиграть только те производители, которые на основе текущих технологий производства смогут обеспечить разумный баланс между тактовой частотой и количеством вычислительных ядер. Благодаря переходу на 90- и 65-нм техпроцессы появилась возможность создавать процессоры с большим числом ядер. В немалой степени это было обусловлено и новыми возможностями регулировки тепловыделения, и размерами ядер, именно поэтому сегодня мы наблюдаем появление всё большего числа четырёхядерных процессоров. Но как насчёт программного обеспечения? Насколько хорошо оно масштабируется от одного до двух или четырёх ядер?

В идеальном мире программы, оптимизированные под многопоточность, позволяют операционной системе распределять несколько потоков по доступным вычислительным ядрам, будь то один процессор или несколько, с одним ядром или с несколькими. Добавление новых ядер позволяет получить больший прирост производительности, чем любой прирост тактовой частоты. Это действительно имеет смысл: большее количество рабочих почти всегда справятся с заданием быстрее, чем меньшее количество более быстрых рабочих.

Но имеет ли смысл оснащать процессоры четырьмя или даже большим числом ядер? Хватит ли работы, чтобы нагрузить четыре ядра или большее их количество? Не стоит забывать, что весьма сложно распределить работу между ядрами, чтобы такие физические интерфейсы, как HyperTransport (AMD) или Front Side Bus (Intel), не стали "узким местом". Есть и третий вариант: механизм, который распределяет нагрузку между ядрами, а именно, диспетчер ОС, может тоже стать "узким местом".

Переход AMD с одного на два ядра прошёл практически безупречно, поскольку компания не увеличивала тепловой пакет до экстремального уровня, как это было у процессоров Intel Pentium 4. Поэтому процессоры Athlon 64 X2 были дорогими, но вполне разумными, а линейка Pentium D 800 прославилась своей горячей работой. Но 65-нм процессоры Intel и, в особенности, линейка Core 2 изменили картину. Intel смогла сочетать два процессора Core 2 Duo в одной упаковке, в отличие от AMD, в результате чего мы и получили современные Core 2 Quad. AMD обещает выпустить до конца этого года свои собственные четырёхядерные процессоры Phenom X4.

В нашей статье мы рассмотрим конфигурацию Core 2 Duo на четырёх ядрах, двух ядрах и на одном ядре. И посмотрим, насколько хорошо масштабируется производительность. Стоит ли сегодня переходить на четыре ядра?

Одно ядро

Под термином "одноядерный" скрывается процессор, который обладает одним вычислительным ядром. Сюда подпадают практически все процессоры с зарождения архитектуры 8086 вплоть до Athlon 64 и Intel Pentium 4. Пока техпроцесс производства не стал достаточно тонким, чтобы создавать два вычислительных ядра на одном кристалле, переход на меньший техпроцесс использовался для снижения рабочего напряжения, увеличения тактовых частот или добавления функциональных блоков и кэш-памяти.

Работа одноядерного процессора на высоких тактовых частотах может дать более высокую производительность для одного приложения, но подобный процессор в один момент времени может выполнять только одну программу (поток). Intel реализовала принцип Hyper-Threading, который эмулирует наличие нескольких ядер для операционной системы. Технология HT позволила лучше загрузить длинные конвейеры процессоров Pentium 4 и Pentium D. Конечно, прирост производительности был невелик, но отзывчивость системы оказалась определённо лучше. А в многозадачном окружении это может быть и важнее, поскольку вы сможете выполнять какую-либо работу, пока ваш компьютер работает над определённой задачей.

Поскольку двуядерные процессоры сегодня стоят очень дёшево, мы не рекомендуем брать одноядерные процессоры, если только вы не хотите экономить каждую копейку.


Процессор Core 2 Extreme X6800 на момент выхода был самым быстрым в линейке Intel Core 2, работая на частоте 2,93 ГГц. Сегодня двуядерные процессоры достигли 3,0 ГГц, правда, при более высокой частоте шины FSB1333.

Переход на два процессорных ядра означает в два раза большую вычислительную мощность, но только на приложениях, оптимизированных под многопоточность. Обычно такие приложения включают профессиональные программы, которым нужна высокая вычислительная мощность. Но двуядерный процессор всё равно имеет смысл, даже если вы используете свой компьютер лишь для электронной почты, просмотра интернет-страниц и работы с офисными документами. С одной стороны, современные модели двуядерных процессоров потребляют не особо больше энергии, чем одноядерные модели. С другой стороны, второе вычислительное ядро не только добавляет производительность, но и улучшает отзывчивость системы.

Вы когда-нибудь ждали, пока WinRAR или WinZIP закончат сжатие файлов? На одноядерной машине вы вряд ли сможете быстро переключаться между окнами. Даже воспроизведение DVD может нагружать одно ядро не меньше, чем сложная задача. Двуядерный процессор позволяет легче справляться с одновременным запуском нескольких приложений.

Двуядерные процессоры AMD содержат два полноценных ядра с кэш-памятью, интегрированным контроллером памяти и кросс-коммутатором, который обеспечивает совместный доступ к памяти и к интерфейсу HyperTransport. Intel пошла путём, схожим с первым Pentium D, установив в физический процессор два ядра Pentium 4. Поскольку контроллер памяти является частью чипсета, системную шину приходится использовать и для связи между ядрами, и для доступа к памяти, что накладывает определённые ограничения на производительность. Процессор Core 2 Duo оснащён более совершенными ядрами, которые дают лучшую производительность на такт и лучшее соотношение производительности на ватт. У двух ядер используется общий кэш L2, который позволяет обмениваться данными без использования системной шины.

Процессор Core 2 Quad Q6700 работает на частоте 2,66 ГГц, используя внутри два ядра Core 2 Duo.

Если сегодня существует много причин, чтобы перейти на двуядерные процессоры, то четыре ядра выглядят пока не так убедительно. Одна из причин заключается в ограниченной оптимизации программ под несколько потоков, но существуют и определённые проблемы в архитектуре. Хотя AMD сегодня критикует Intel за упаковку двух двуядерных кристаллов в одном процессоре, считая это не "настоящим" четырёхядерным CPU, подобный подход Intel работает хорошо, поскольку процессоры действительно обеспечивают четырёхядерную производительность. С точки зрения производства легче получить высокий уровень выхода годных кристаллов и выпускать больше продуктов с небольшими ядрами, которые затем можно соединить вместе для нового, более мощного продукта на новом техпроцессе. Что же касается производительности, то есть "узкие места" - два кристалла взаимодействуют друг с другом через системную шину, поэтому весьма сложно управлять несколькими ядрами, распределёнными на несколько кристаллов. Хотя наличие нескольких кристаллов позволяет обеспечить лучшую экономию энергии и регулировать частоты отдельных ядер для нужд приложения.

Настоящие четырёхядерные процессоры используют четыре ядра, которые, вместе с кэш-памятью, располагаются на одном кристалле. Здесь важно наличие общего унифицированного кэша. AMD будет реализовывать такой подход, оснащая 512 кбайт кэша L2 каждое ядро и добавляя кэш L3 для всех ядер. Преимущество AMD заключается в том, что можно будет выключать отдельные ядра и ускорять другие, чтобы получить более высокую производительность однопоточных приложений. Intel пойдёт тем же путём, но не раньше представления в 2008 году архитектуры Nehalem.

Утилиты вывода системной информации, такие, как CPU-Z, позволяют узнать число ядер и объёмы кэша, но не раскладку процессора. Вы не узнаете, что Core 2 Quad (или четырёхядерный Extreme Edition, показанный на скриншоте) состоит из двух ядер.


* всегда актуальные вопросы, на что стоит обращать внимание при выборе процессора, чтобы не ошибиться.

Наша цель в данной статье — описать все факторы влияющие на производительность процессора и другие эксплуатационные характеристики.

Наверняка ни для кого не секрет, что процессор – является главной вычислительной единицей компьютера. Можно даже сказать – самая главная часть компьютера.

Именно он занимается обработкой практически всех процессов и задач, которые происходят в компьютере.

Будь то — просмотр видео, музыка, интернет сёрфинг, запись и чтение в памяти, обработка 3D и видео, игр. И многого другого.

Поэтому к выбору Ц ентрального П роцессора, стоит отнестись очень тщательно. Может получиться ситуация, что вы решили поставить мощную видеокарту и не соответствующий её уровню процессор. В этом случае процессор, не будет раскрывать потенциал видеокарты, что будет тормозить её работу. Процессор будет полностью загружен и буквально кипеть, а видеокарта будет ожидать своей очереди, работая на 60-70% от своих возможностей.

Именно поэтому, при выборе сбалансированного компьютера, не стоит пренебрегать процессором в пользу мощной видеокарты. Мощности процессора должно быть достаточно для раскрытия потенциала видеокарты, иначе это просто выброшенные деньги.

Intel vs. AMD

*догонялки навсегда

Корпорация Intel , располагает огромными человеческими ресурсами, и почти неисчерпаемыми финансами. Многие инновации в полупроводниковой индустрии и новые технологии идут именно из этой компании. Процессоры и разработки Intel , в среднем на 1-1,5 года опережают наработки инженеров AMD . Но как известно, за возможность обладать самыми современными технологиями – приходится платить.

Ценовая политика процессоров Intel , основывается как на количестве ядер , количестве кэша , но и на «свежести» архитектуры , производительности на такт ватт , техпроцесса чипа . Значение кэш-памяти, «тонкости техпроцесса» и другие важные характеристики процессора рассмотрим ниже. За обладание такими технологии как и свободного множителя частоты, тоже придётся выложить дополнительную сумму.

Компания AMD , в отличии от компании Intel , стремится к доступности своих процессоров для конечного потребителя и к грамотной ценовой политике.

Можно даже сказать, что AMD – «Народная марка ». В её ценниках вы найдёте то, что вам нужно по очень привлекательной цене. Обычно через год, после появления новой технологии у компании Intel , появляется аналог технологии от AMD . Если вы не гонитесь за самой высокой производительностью и больше обращаете внимание на ценник, чем на наличие передовых технологий, то продукция компании AMD – именно для вас.

Ценовая политика AMD , больше основывается на количестве ядер и совсем немного — на количестве кэш памяти, наличии архитектурных улучшений. В некоторых случаях, за возможность обладать кэш памятью третьего уровня, придётся немного доплатить (Phenom имеет кэш память 3 уровня, Athlon довольствуется только ограниченной, 2 уровня). Но иногда AMD «балует» своих фанатов возможность разблокировать более дешёвые процессоры, до более дорогих. Разблокировать можно ядра или кэш-память. Улучшить Athlon до Phenom . Такое возможно благодаря модульной архитектуре и при недостатке некоторых более дешёвых моделей, AMD просто отключает некоторые блоки на кристалле более дорогих (программно).

Ядра – остаются практически неизменными, отличается только их количество (справедливо для процессоров 2006-2011 годов). За счёт модульности своих процессоров, компания отлично справляется со сбытом отбракованных чипов, которые при отключении некоторых блоков, становятся процессором из менее производительной линейки.

Компания много лет работала над совершенно новой архитектурой под кодовым именем Bulldozer , но на момент выхода в 2011 году, новые процессоры показали не самую лучшую производительность. AMD грешила на операционные системы, что они не понимают архитектурных особенностей сдвоенных ядер и «другой многопоточности».

Со слов представителей компании, следует ждать особых исправлений и заплаток, чтобы ощутить всю производительность данных процессоров. Однако в начале 2012 года, представители компании отложили выход обновления для поддержки архитектуры Bulldozer на вторую половину года.

Частота процессора, количество ядер, многопоточность.

Во времена Pentium 4 и до него – частота процессора , была главным фактором производительности процессора при выборе процессора.

Это не удивительно, ведь архитектуры процессоров — специально разрабатывались для достижения высокой частоты, особенно сильно это отразилось как раз в процессоре Pentium 4 на архитектуре NetBurst . Высокая частота, была не эффективна при том длинном конвейере, что был использован в архитектуре. Даже Athlon XP частотой 2Ггц , по уровню производительности был выше чем Pentium 4 c 2,4Ггц . Так что, это был чистой воды маркетинг. После этой ошибки, компания Intel осознала свои ошибки и вернулась на сторону добра начала работать не над частотной составляющей, а над производительностью на такт. От архитектуры NetBurst пришлось отказаться.

Что же нам даёт многоядерность ?

Четырёх-ядерный процессор с частотой 2,4 Ггц , в много-поточных приложениях, теоретически будет примерным эквивалентом, одноядерного процессора с частотой 9,6Ггц или 2-х ядерному процессору с частотой 4,8 Ггц . Но это только теоретически . Практически же, два двухъядерных процессора в двух сокетной материнской плате, будут быстрее одного 4-ядерного, на той же частоте функционирования. Ограничения по скорости шины и задержки памяти дают о себе знать.

* при условии одинаковых архитектур и количества кэш памяти

Многоядерность, даёт возможность выполнять инструкции и вычисления по частям. К примеру нужно выполнить три арифметических действия. Первые два выполняются на каждом из ядер процессора и результаты складываются в кэш-память, где с ними может быть выполнено следующее действие любым из свободных ядер. Система очень гибкая, но без должной оптимизации может и не работать. Потому очень важна оптимизация под многоядерность для архитектуры процессоров в среде ОС.

Приложения, которые «любят» и используют многопоточность: архиваторы , плееры и кодировщики видео , антивирусы , программы дефрагментаторы , графические редакторы , браузеры , Flash .

Так же, к «любителям» многопоточности, можно отнести такие операционные системы как Windows 7 и Windows Vista , а так же многие ОС , основанные на ядре Linux , которые работают заметно быстрее при наличии многоядерного процессора.

Большинству игр , бывает вполне достаточно 2-х ядерного процессора на высокой частоте. Сейчас однако, выходит всё больше игр «заточенных» под многопоточность. Взять хотя бы такие SandBox игры, как GTA 4 или Prototype , в которые на 2-х ядерном процессоре с частотой ниже 2,6 Ггц – комфортно себя не чувствуешь, фреймрейт проваливается ниже 30 кадров в секунду. Хотя в данном случае, скорее всего причиной таких казусов является «слабая» оптимизация игр, недостаток времени или «не прямые» руки тех, кто переносил игры с консолей на PC .

При покупке нового процессора для игр, сейчас стоит обращать внимание на процессоры с 4-мя и более ядрами. Но всё же, не стоит пренебрегать 2-х ядерными процессорами из «верхней категории». В некоторых играх, данные процессоры чувствуют себя порой лучше, чем некоторые многоядерные.

Кэш память процессора.

– это выделенная область кристалла процессора, в которой обрабатываются и хранятся промежуточные данные между процессорными ядрами, оперативной памятью и другими шинами.

Она работает на очень высокой тактовой частоте (обычно на частоте самого процессора), имеет очень высокую пропускную способность и процессорные ядра работают с ней напрямую (L1 ).

Из-за её нехватки , процессор может простаивать в трудоёмких задачах, ожидая пока в кэш поступят новые данные для обработки. Так же кэш-память служит для записи часто повторяющихся данных, которые при необходимости могут быть быстро восстановлены без лишних вычислений, не заставляя процессор тратить время на них снова.

Производительности, так же добавляет факт, если кэш память объединённая, и все ядра равноправно могут использовать данные из неё. Это даёт дополнительные возможности для многопоточной оптимизации.

Такой приём, сейчас используется для кэш памяти 3-го уровня . У процессоров Intel существовали процессоры с объединённой кэш памятью 2-го уровня (C2D E 7*** , E 8*** ), благодаря которым и появился данный способ увеличить многопоточную производительность.

При разгоне процессора, кэш память может стать слабым местом, не давая разогнать процессор больше, чем её предельная частота функционирования без ошибок. Однако плюсом является то, что она будет работать на той же частоте, что и разогнанный процессор.

В общем, чем больше кэш памяти, тем быстрее процессор. В каких именно приложениях?

Во всех приложениях, где используется множество числовых данных с плавающей запятой, инструкций и потоков, кэш память активно используется. Кэш память очень любят архиваторы , кодировщики видео , антивирусы и графические редакторы и т.д.

Благоприятно к большому количеству кэш-памяти относятся игры . Особенно стратегии, авто-симуляторы, RPG, SandBox и все игры, где есть много мелких деталей, частиц, элементов геометрии, потоков информации и физических эффектов.

Кэш память играет очень немалую роль в раскрытии потенциала систем с 2-мя и более видеокартами. Ведь какая то доля нагрузки, ложится на взаимодействие ядер процессора как между собой, так и для работы с потоками нескольких видео-чипов. Именно в этом случае важна организация кэш — памяти, и очень полезна кэш память 3-го уровня большого объёма.

Кэш память, всегда оснащается защитой от возможных ошибок (ECC ), при обнаружении которых, ведётся их исправление. Это очень важно, ведь маленькая ошибочка в кэш памяти, при обработке может превратиться в гигантскую, сплошную ошибку, от которой «ляжет» вся система.

Фирменные технологии.

(гипер-поточность, HT )–

впервые технология была применена в процессорах Pentium 4 , но работала не всегда корректно и зачастую больше тормозила процессор, чем ускоряла. Причиной был слишком длинный конвейер и не доведённая до ума система предсказания ветвлений. Применяется компанией Intel , аналогов технологии пока нет, если не считать аналогом то? что реализовали инженеры компании AMD в архитектуре Bulldozer .

Принцип системы таков, что на каждое физическое ядро, создаётся по два вычислительных потока , вместо одного. То есть, если у вас 4-х ядерный процессор с HT (Core i 7 ), то виртуальных потоков у вас 8 .

Прирост производительности достигается за счёт того, что в конвейер могут поступать данные уже в его середине, а не обязательно сначала. Если какие то блоки процессора, способные выполнить это действие простаивают, они получают задачу к выполнению. Прирост производительности не такой как у настоящих физических ядер, но сопоставимый(~50-75%, в зависимости от рода приложения). Довольно редко бывает, что в некоторых приложениях, HT отрицательно влияет на производительность. Связано это с плохой оптимизацией приложений под данную технологию, невозможность понять, что присутствуют потоки «виртуальные» и отсутствие ограничителей для нагрузки потоков равномерно.

Turbo Boost – очень полезная технология, которая увеличивает частоту функционирования наиболее используемых ядер процессора, в зависимости от уровня их загруженности. Очень полезна тогда, когда приложение не умеет использовать все 4 ядра, и загружает только одно или два, при этом их частота работы повышается, что частично компенсирует производительность. Аналогом данной технологии у компании AMD , является технология Turbo Core .

, 3 dnow ! инструкции . Предназначены для ускорения работы процессора в мультимедиа вычислениях (видео, музыка, 2D/3D графика и т.д.), а так же ускоряют работу таких программ как архиваторы, программы для работы с изображениями и видео (при поддержке инструкций данными программами).

3dnow ! – довольно старая технология AMD , которая содержит дополнительные инструкции по обработке мультимедиа контента, помимо SSE первой версии .

*А именно возможность потоковой обработки вещественных чисел одинарной точности.

Наличие самой новой версии – является большим плюсом, процессор начинает более эффективно выполнять определённые задачи при должной оптимизации ПО. Процессоры AMD носят похожие названия, но немного другие.

* Пример — SSE 4.1(Intel) — SSE 4A(AMD).

К тому же, данные наборы инструкций не идентичны. Это аналоги, в которых есть небольшие отличия.

Cool’n’Quiet, SpeedStep, CoolCore, Enchanced Half State(C1E) и т . д .

Данные технологии, при низкой нагрузке уменьшают частоту процессора, посредством уменьшения множителя и напряжения на ядре, отключения части КЭШа и т.д. Это позволяет процессору гораздо меньше греться и потреблять меньше энергии, меньше шуметь. Если понадобится мощность, то процессор вернётся в обычное состояние за доли секунды. На стандартных настройках Bios практически всегда включены, при желании их можно отключить, для уменьшения возможных «фризов» при переключении в 3D играх.

Некоторые из этих технологий, управляют скоростью вращения вентиляторов в системе. К примеру, если процессор не нуждается в усиленном отводе тепла и не нагружен, скорость вентилятора процессора уменьшается (AMD Cool’n’Quiet, Intel Speed Step ).

Intel Virtualization Technology и AMD Virtualization .

Эти аппаратные технологии позволяют с помощью специальных программ запускать несколько операционных систем сразу, без какой либо сильной потери в производительности. Так же, её используют для правильной работы серверов, ведь зачастую, на них установлена далеко не одна ОС.

Execute Disable Bit и No eXecute Bit технология, призванная защитить компьютер от вирусных атак и программных ошибок, которые могут вызвать крах системы посредством переполнения буфера .

Intel 64 , AMD 64 , EM 64 T – данная технология позволяет процессору работать как в ОС с 32-х битной архитектурой, так и в ОС с 64-х битной. Система 64 bit – с точки зрения выгоды, для рядового пользователя отличается тем, что в данной системе можно использовать более 3.25Гб оперативной памяти. В 32-х битных системах, использовать бо льший объём оперативной памяти не представляется возможным, из-за ограниченного объёма адресуемой памяти* .

Большинство приложений с 32-х bit архитектурой, можно запустить на системе с 64-х битной ОС.

* Что же поделать, если в далёком 1985 году, никто и подумать не мог о таких гигантских, по меркам того времени, объёмах оперативной памяти.

Дополнительно.

Пара слов о .

На этот пункт стоит обратить пристальное внимание. Чем тоньше техпроцесс, тем меньше процессор потребляет энергии и как следствие — меньше греется. И кроме всего прочего — имеет более высокий запас прочности для разгона.

Чем более тонкий техпроцесс, тем больше можно «завернуть» в чип (и не только) и увеличить возможности процессора. Тепловыделение и энергопотребление при этом тоже уменьшается пропорционально, благодаря меньшим потерям по току и уменьшению площади ядра. Можно заметить тенденцию, что с каждым новым поколением той же архитектуры на новом техпроцессе, растёт и энергопотребление, но это не так. Просто производители идут в сторону ещё большей производительности и перешагивают за черту тепловыделения прошлого поколения процессоров из-за увеличения числа транзисторов, которое не пропорционально уменьшению техпроцесса.

Встроенное в процессор .

Если вам не нужно встроенное видео ядро, то не стоит покупать процессор с ним. Вы получите только худший отвод тепла, лишний нагрев (не всегда), худший разгонный потенциал (не всегда), и переплаченные деньги.

К тому же те ядра, что встроены в процессор, годятся только для загрузки ОС, интернет сёрфинга и просмотра видео (и то не любого качества).

Тенденции на рынке все же меняются и возможность купить производительный процессор от Intel без видео ядра выпадает всё реже. Политика принудительного навязывание встроенного видео ядра, появилась с процессоров Intel под кодовым названием Sandy Bridge , основное новшество которых и было встроенное ядро на том же техпроцессе. Видео-ядро, находится совместно с процессором на одном кристалле , и не такое простое как в предыдущих поколениях процессоров Intel . Для тех кто его не использует, есть минусы в виде некоторой переплаты за процессор, смещённость источника нагрева относительно центра тепло — распределительной крышки. Однако есть и плюсы. Отключенное видео ядро, можно использовать для очень быстрой кодировки видео с помощью технологии Quick Sync вкупе со специальным, поддерживающим данную технологию ПО. В будущем, Intel обещает расширить горизонты использования встроенного видео ядра для параллельных вычислений.

Сокеты для процессоров. Сроки жизни платформ .


Intel ведёт грубую политику для своих платформ. Срок жизни каждой (срок начала и конца продаж процессоров для неё), обычно не превышает 1.5 — 2 года. К тому же, у компании есть несколько параллельно развивающихся платформ.

Компания AMD , ведёт противоположную политику совместимости. На её платформу на AM 3 , будут подходить все процессоры будущих поколений, поддерживающие DDR3 . Даже при выходе платформы на AM 3+ и более поздних, отдельно будут выпускаться либо новые процессоры под AM 3 , либо новые процессоры будут совместимы со старыми материнскими платами, и можно будет сделать безболезненный для кошелька апгрейд, поменяв только процессор (без смены мат.платы, ОЗУ и т.д.) и прошив материнской платы. Единственные нюансы несовместимости могут быть при смене типа , так как будет требоваться другой контроллёр памяти, встроенный в процессор. Так что совместимость ограниченная и поддерживается далеко не всеми материнскими платами. Но в целом, экономному пользователю или тем, кто не привык менять платформу полностью каждые 2 года — выбор производителя процессора понятен — это AMD .

Охлаждение процессора.

В стандартной комплектации, с процессором идёт BOX -овый кулер, который будет просто справляться со своей задачей. Представляет он из себя кусок алюминия с не очень высокой площадью рассеивания. Эффективные кулеры на тепловых трубках и закреплёнными на них пластинами, имеют конструкцию, предназначенную для высокоэффективного рассеивания тепла. Если вы не хотите слышать лишний шум от работы вентилятора, то вам стоит приобрести альтернативный, более эффективный кулер с тепловыми трубками, либо систему жидкостного охлаждения замкнутого или не замкнутого типа. Такие системы охлаждения, дополнительно дадут возможность разгона для процессора.

Заключение.

Все важные аспекты, влияющие на производительность и эксплуатационные характеристики процессора, были рассмотрены. Повторим, на что следует обращать внимание:

  • Выбрать производителя
  • Архитектура процессора
  • Техпроцесс
  • Частота процессора
  • Количество ядер процессора
  • Размер и тип кэш-памяти процессора
  • Поддержка технологий и инструкций
  • Качественное охлаждение

Надеемся, данный материал поможет вам разобраться и определиться в выборе соответствующего вашим ожиданиям процессора.

Всем привет Давно идут споры в головах юзерах, что же лучше, высокая частота или количество ядер? Сейчас есть много процессоров и в основном они отличаются или количеством ядер и частотой или всем разом так бы сказать. Потому что именно эти два пункта это и есть основные факторы, которые влияют на производительность.

Значит смотрите, давайте я покажу на примере, почему иногда лучше много ядер, а иногда лучше высокая частота. Смотрите, для примера возьмем офисный комп, где создают и редактируют документы, пользуются интернетом, браузерами. Это все не особо требовательные задачи, но для комфорта лучше чтобы все это работало быстро. Да, тут можно взять например процессор Core i5 и оно таки все будет работать быстро. Но я бы взял тут Pentium G3258 (это как пример), это Пенек, тут два ядра и его можно хорошенько разогнать. Но стоит то он нааамного дешевле чем i5. Разогнать его можно до 4.4 ГГц, это так бы сказать безопасный разгон. И вот такие два ядра на частоте 4.4 ГГц позволят получить достаточно шустрый комп. А если разогнать до 4.6 ГГц, то еще лучше. При этом процессор особо страшно не греется, но хороший радиатор разумеется что нужен.

Вот такой разгон Pentium G3258 будет оправдан и в плане цены и в плане производительности

Теперь возьмем всеми любимые игры. Вы часто играете в несколько игр одновременно? Я думаю что нет. Поэтому в большом количестве ядер смысла нет. Но с другой стороны и два ядра будет маловато. Тут идеальная золотая середина это 4 ядра, это у нас идет процессор i5, это я имею ввиду для стационарных компов, ибо у ноутбучных i5 могут быть то 2 ядра и 4 потока, то просто 4 ядра, но ноутбучные процы однозначно слабее. Для игр идеально это 4 ядра на высокой частоте, хотя бы на 4.2 ГГц, это уже достаточно на пару лет вперед, как мне кажется. Ну на годика три так точно. i7 это почти тоже самое, но ШИРЕ в мощности. Понимаете. Не быстрее, а ШИРЕ, то есть сможет тянуть помимо игры еще что-то, ну например вторую игру, если вы уникум и играете в две игры одновременно..

Еще есть такой момент. По поводу высокой частоты и двух ядер и почему это лучше для офисного компа. Уверены ли вы, что все ваши программы могут работать в многопоточном режиме? И насколько хорошо они оптимизированы для такого режима? Ну что тут сказать, многие проги хорошо работают в многопоточном режиме, старые проги конечно хуже работают. Но как ни крути, НЕ оптимизированная прога лучше всего будет работать на двух мощных ядрах, чем на четырех с не особо высокой частотой, ну например 3 ГГц. Тоже моментик такой, учтите его, если будете выбирать процессор. Так что для тупо офисного компа я бы взял двухядерник с разблокированным множителем, чтобы потом хорошо его разогнать.

Вообще мне кажется что i7 больше подходит не для игр, а для каких-то более ресурсоемких задач. Ну например обработка видео, фотошопы там всякие, конвертирование чего-то.. Для игр он также хорош, спору нет, и если вы хотите взять процессор с хорошим запасом мощности, то конечно лучше взять i7 (но стоит он конечно недешево).

Ну все ребята, на этом все, надеюсь что тут я смог до вас донести свою мысль и что все вам тут было понятно. Удачи вам и чтобы у вас всегда было хорошее настроение

17.11.2016

Добрый день, уважаемые читатели нашего блога. Сегодня постараемся разобраться, что важнее частота или количество ядер процессора? На что влияет каждый из этих параметров в повседневном использовании, в играх и профессиональных приложениях? Играет ли свою роль , или ручной разгон приносит больше пользы? В общем, давайте вникать, как все это работает.

Процедура сравнения будет элементарна до безобразия:

  • преимущества высокой тактовой частоты;
  • преимущества большого числа ядер процессора;
  • необходимость того или иного в зависимости от выбранных задач;
  • итоги.

А теперь давайте приступать.

Высокие частоты — признак комфортного гейминга

Давайте сразу окунемся в игровую индустрию и по пальцам одной руки перечислим те игры, которым нужна многопоточность для комфортной работы. На ум приходят только последние продукты Ubisoft (Assassin"s Creed Origins, Watch Dogs 2), старичок GTA V, свежий Deus Ex и Metro Last Light Redux. Данные проекты с легкостью «съедят» все вакантные вычислительные мощности процессора, включая ядра и потоки.

Но это скорее исключение из правил, поскольку остальные игры более требовательны именно к частоте ЦП и ресурсам видеопамяти. Иными словами, если вы решите запустить старый добрый DOOM на AMD Ryzen Threadripper 1950X c его 16 вычислительными ядрами (дорогой, мощный), то будете крайне разочарованы ввиду следующих факторов:

  • FPS будет низким;
  • большинство ядер и потоков простаивает;
  • переплата крайне сомнительна.

А все потому, что этот чип ориентирован на профессиональные вычисления, рендеринг, обработку видео и иные задачи, в которых «решают» именно и потоки, а не частотный потенциал.
Меняем AMD на Intel Core i5 8600К и видим неожиданный результат — количество кадров увеличилось, стабильность картинки возросла, все ядра задействованы оптимально. А если разогнать камень, то картина получится и вовсе шикарная. Все потому, что гейминг до сих пор корректно воспринимает от 4 до 8 ядер (не считая вышеописанных исключений), и дальнейший рост физических и виртуальных потоков попросту неоправдан, приходится гнать .

В каких случаях нужна многопоточность

А теперь давайте сравним в профессиональных задачах два топовых решения от Intel и AMD: Core 7 8700K (6/12, L3 — 9 МБ) и Ryzen 7 2700x (8/16, L3 — 16 МБ). И здесь уже количество ядер и потоков играет главную и лучшую роль в следующих задачах:

  • архивация;
  • обработка данных;
  • рендеринг;
  • работа с графикой;
  • создание сложных 3D-объектов;
  • разработка приложений.

Стоит отметить, что если программа не рассчитана на мультипоточность, то Intel одерживает пальму первенства только за счет большей частоты, но в остальных случаях лидерство остается за «красными».

Подведем итоги

А теперь давайте рассуждать логично. И AMD и Intel за последние несколько лет неплохо так выровняли свои показатели в плане производительности. Оба чипа построены для новейших платформ Ryzen+ (AM4) и Coffee Lake (s1151v2) и имеют отличный разгонный потенциал, а также задел на будущее.

Если для вас первостепенной задачей является получение высокого FPS в современных игровых проектах, то «синяя» платформа здесь выглядит более оптимальным решением.

Однако стоит понимать, что высокий фреймрейт будет заметен только на мониторах с частотой от 120 Гц и выше. На 60-герцовых вы просто не заметите разницы в плавности картинки.

Вариант от AMD при прочих равных выглядит более «всеядным» и универсальным, да и ядер с у него больше, а значит открываются новые перспективы вроде того же стриминга, который так популярен на Youtube.

Надеемся, теперь вы понимаете, в чем разница между частотой и количеством вычислительных ядер, и в каких случаях переплата за потоки оправдана.

Я считаю, что в данной борьбе, победителя здесь быть не может, так как битва в сравнениях была в разных весовых категориях.

На этой ноте закончим, не забывайте подписываться на блога, пока пока.

Инструкция

Если у вас установлена операционная система Windows, узнать, какое количество ядер в вашем процессоре, можно через свойства . Для этого выберите на рабочем столе значок «Компьютер», нажмите Alt+Enter или правую кнопку мыши и в контекстном меню «Свойства».

Откроется окно с информацией об операционной системе, процессоре, оперативной памяти и имени компьютера. Справа будут ссылки, среди которых нужно найти «Диспетчер устройств».

В диспетчере будет указано оборудование, которое у вас установлено. В списке найдите пункт «Процессор» и нажмите на стрелочку рядом с ним. Развернется столбик, в котором будет указано количество ваших процессоров.

Можно запустить диспетчер задач с помощью комбинации Ctrl+Shift+Esc. Откройте вкладку под названием «Быстродействие». Количество окон в разделе «Хронология загрузки ЦП» соответствует количеству ядер вашего процессора.

Если на компьютере включена имитация работы многоядерного процессора, тогда диспетчер задач будет показывать число сымитированных ядер. Это можно определить, если все ядра показывают совершенно одинаковую нагрузку. Тогда вам может пригодиться бесплатная утилита CPU-Z. На вкладке CPU показана вся информация о процессоре. Внизу есть окно Core, где указано количество ядер.

Можно воспользоваться еще одной бесплатной программой PC Wizard. Ее можно скачать с сайта разработчика. Установите программу на компьютер. Запустите файл PC Wizard.exe, нажмите вкладку «Железо», затем «Процессор». Справа найдите раздел «Элемент», а в нем пункт Number of core. В разделе «Описание» отображено количество ядер.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то