Осциллограф из ноутбука своими руками. Цифровой USB осциллограф из компьютера. Схема и описание. Преобразование компьютера в осциллограф

В наше время использование различных измерительных устройств, построенных на базе взаимодействия с персональным компьютером, достаточно много. Значительным преимуществом их использования является возможность сохранения полученных значений достаточно большого объема в памяти устройства, с последующим их анализом.

Цифровой USB осциллограф из компьютера , описание которого мы приводим в данной статье, является одним из вариантов подобных измерительных инструментов радиолюбителя. Его можно применить в качестве осциллографа и устройства записывающего электрические сигналы в оперативную память и на жесткий диск компьютера.

Схема не сложная и содержит минимум компонентов, в результате чего удалось добиться хорошей компактности устройства.

Основные характеристики USB осциллографа:

  • АЦП: 12 разрядов.
  • Временная развертка (осциллограф): 3…10 мсек/деление.
  • Временной масштаб (рекордер): 1…50 сек/выборка.
  • Чувствительность (без делителя): 0,3 Вольт/деление.
  • Синхронизация: внешняя, внутренняя.
  • Запись данных (формат): ASCII, текстовый.
  • Максимальное входное сопротивление: 1 МОм параллельно к емкости 30 пФ.

Описание работы осциллографа из компьютера

Для осуществления обмена данными, между USB осциллографом и персональным компьютером, применен интерфейс Universal Serial Bus (USB). Данный интерфейс функционирует на базе микросхемы FT232BM (DD2) фирмы Future Technology Devices. Она представляет собой преобразователь интерфейса . Микросхема FT232BM может функционировать как в режиме прямого управления битами BitBang (при использовании драйвера D2XX), так и в режиме виртуального COM-порта (при применении драйвера VCP).

В роли АЦП применена интегральная микросхема AD7495 (DD3) фирмы Analog Devices. Это не что иное, как аналого-цифровой преобразователь с 12 разрядами, с внутренним источником опорного напряжения и последовательным интерфейсом.

В микросхеме AD7495 также есть синтезатор частот, который определяет, с какой скоростью будет происходить обмен информацией между FT232BM и AD7495. Для создания необходимого протокола обмена данными, программа USB осциллографа наполняет выходной буфер USB отдельными значениями битов для сигналов SCLK и CS так, как указано на следующем рисунке:

Измерение одного цикла определяется серией из девятьсот шестидесяти последовательных преобразований. Микросхема FT232BM с частотой, определяемой встроенным синтезатором частот, отправляет электрические сигналы SCLK и CS, параллельно с передачей данных преобразования по линии SDATA. Период 1-го полного преобразования АЦП FT232BM, устанавливающий частоту выборки, соответствует продолжительности периода отправки 34 байтов данных, выдаваемых микросхемой DD2 (16 бит данных + импульс линии CS). Поскольку быстрота передачи данных FT232BM обусловливается частотой внутреннего синтезатора частот, то для модификации значений развертки нужно всего лишь менять значения синтезатора частот микросхемы FT232BM.

Данные, принятые персональным компьютером, после определенной переработки (изменение масштаба, корректировка нуля) выводятся на экран монитора в графическом виде.

Исследуемый сигнал поступает на разъем XS2. Операционный усилитель OP747 предназначен для согласования входных сигналов с остальной схемой USB осциллографа.

На модулях DA1.2 и DA1.3 построена схема сдвига двухполярного входного сигнала в зону положительного напряжения. Поскольку внутренний источник опорного напряжения микросхемы DD3 имеет напряжение 2,5 вольт, то без использования делителей охват входных напряжений равен -1,25..+1,25 В.

Чтобы была возможность исследовать сигналы, имеющие отрицательную полярность, при фактически однополярном питании от разъема USB ( а), использован преобразователь напряжения DD1, который для питания ОУ OP747 вырабатывает напряжение отрицательной полярности. Для защиты от помех аналоговой части осциллографа применены компоненты R5, L1, L2, C3, C7-C11.

Для вывода информации на экран монитора компьютера предназначена программа uScpoe. При помощи данной программы появляется возможность визуально оценивать величину исследуемого сигнала, а так же его форму в виде осциллограммы.

Для управления разверткой осциллографа предназначены кнопки ms/div. В программе можно сохранять осциллограмму и данные в файл при помощи соответствующих пунктов меню. Для виртуального включения и выключения осциллографа используются кнопки Power ON/OF. При отсоединении схемы осциллографа от компьютера, программа uScpoe автоматически переводится в режим OFF.

В режиме записи электрического сигнала (recorder), программа создает текстовый файл, имя которого можно задать по следующему пути: File->Choice data file. изначально формируется файл data.txt. Далее файлы можно импортировать в другие приложения (Excel, MathCAD) для дальнейшей обработки.

(3,0 Mb, скачано: 5 421)

Осциллограф это прибор, помогающий увидеть динамику колебаний. С его помощью можно диагностировать различные поломки и получать необходимые данные в радиоэлектронике. Раньше применялись осциллографы на транзисторных лампах. Это были весьма громоздкие приборы, которые подключались исключительно к встроенному или разработанному специально для них экрану.

Сегодня приборы для снятия основных частотных, амплитудных характеристик и формы сигнала представляют собой удобные портативные и компактнее устройства. Часто их выполняют как отдельную приставку, подключающуюся к компьютеру. Этот манёвр позволяет убрать из комплектации монитор, существенно снизив стоимость оборудования.

Как выглядит классический прибор можно увидеть, рассмотрев фото осциллографа в любой поисковой системе. В домашних условиях также можно смонтировать это устройство, используя недорогие радиодетали и корпуса с другого оборудования для более презентабельного вида.

Как можно получить осциллограф

Оборудование можно заполучить несколькими способами и все зависит исключительно от размера денежных средств, которые можно потратить на приобретение оборудования или деталей.


  • Купить готовый прибор в специализированном магазине или заказать его по сети;
  • Купить конструктор, например, широкой популярностью сейчас пользуются наборы радиодеталей, корпусов, которые продаются на китайских сайтах;
  • Самостоятельно собрать полноценный портативный прибор;
  • Смонтировать только приставку и щуп, а подключение организовать к персональному компьютеру.

Эти варианты приведены в порядке снижения затрат на оборудование. Покупка готового осциллографа будет стоить дороже всего, так как это уже доставленный и работающий блок со всеми необходимыми функциями и настройками, а в случае некорректной работы можно обратиться в центр продажи.

В конструктор входит схема простого осциллографа своими руками, а цена снижается за счет оплаты только себестоимости радиодеталей. В этой категории также необходимо различать более дорогие и простые по комплектации и функционалу модели.

Сборка прибора самому по имеющимся схемам и приобретенных в разных точках радиодеталях не всегда может оказаться дешевле, чем приобретение конструктора, поэтому необходимо предварительно оценивать стоимость затеи, ее оправданность.

Наиболее дешевым способом заполучить осциллограф станет спаять только приставку к нему. Для экрана использовать монитор компьютера, а программы для снятия и трансформации получаемых сигналов можно скачать с разных источников.


Конструктор осциллографа: модель DSO138

Китайские производители всегда славились умением создавать электронику для профессиональных потребностей с очень ограниченным функционалом и за довольно небольшие деньги.

С одной стороны такие приборы не способны полностью удовлетворить ряд потребностей человека, занимающегося радиоэлектроникой в профессиональном русле, однако начинающим и любителям таких «игрушек» будет более, чем достаточно.

Одной из популярных моделей китайского производства типа конструктор осциллографа считается DSO138. Прежде всего, у этого прибора невысокая стоимость, а поставляется он со всем комплектом необходимых деталей и инструкций, поэтому как правильно сделать осциллограф своими руками, используя имеющуюся в комплекте документацию вопросов возникать не должно.

Перед монтажом нужно ознакомиться с содержимым упаковки: плата, экран, щуп, все нужные радиодетали, инструкция для сборки и принципиальная схема.

Облегчает работу наличие практически на всех деталях и самой плате соответствующей маркировки, что действительно превращает процесс в собирание детского конструктора взрослым. На схемах и инструкции хорошо видно все нужные данные и можно разобраться, даже не владея иностранным языком.


На выходе должен получиться прибор с такими характеристиками:

  • Напряжение на входе: DC 9V;
  • Максимальное напряжение на входе: 50 Vpp (1:1 щуп)
  • Потребляемый ток 120 мА;
  • Полоса сигнала: 0-200KHz;
  • Чувствительность: электронное смещение с опцией вертикальной регулировки 10 мВ / дел - 5В / Div (1 - 2 - 5);
  • Дискретная частота: 1 Msps;
  • Сопротивление на входе: 1 MОм;
  • Временной интервал: 10 мкс / Div - 50s / Div (1 - 2 - 5);
  • Точность замеров: 12 бит.

Пошаговая инструкция сборки конструктора DSO138

Следует рассмотреть более детально подробные инструкции для изготовления осциллографа данной марки, ведь аналогичным образом осуществляется сборка других моделей.

Стоит отметить, что в данной модели плата поставляется сразу с впаянным 32-битным на M3 ядре микроконтроллере марки Cortex™. Работает он два 12-битных входа с характеристикой 1 μs и работает в максимальном частотном диапазоне до 72 МГц. Наличие этого девайса уже вмонтированным несколько облегчает задачу.

Шаг 1. Удобнее всего начинать монтаж с smd компонентов. Нужно учитывать правила при работе с паяльником и платой: не перегревать, держать не дольше 2 с, не смыкать между собой разные детали и дорожки, пользоваться паяльной пастой и припоем.

Шаг 2. Припаять конденсаторы, дросселя и сопротивления: нужно вставлять указанную деталь в отведенное на плате для нее место, отрезаем лишнюю длину ножки и запаиваем на плате. Главное не перепутать полярность конденсаторов и не сомкнуть паяльником или припоем соседние дорожки.


Шаг 3. Монтируем оставшиеся детали: переключатели и разъемы, кнопки, светодиод, кварц. Особенное внимание следует уделить стороне диодов и транзисторов. Кварц имеет металл в своем строении, потому нужно обеспечить отсутствие прямого контакта его поверхности с дорожками платы или позаботиться о диэлектрической подкладке.

Шаг 4. 3 разъема припаиваются к плате дисплея. После завершения манипуляций с паяльником нужно плату промыть спиртом без вспомогательных средств – никаких ваток, дисков или салфеток.

Шаг 5. Просушить плату и проверить насколько качественно была проведена пайка. Прежде, чем подсоединить экран, нужно припаять две перемычки к плате. В этом пригодятся имеющиеся откушенные выводы деталей.

Шаг 6. Для проверки работы нужно включить прибор в сеть с током от 200 мА и напряжением 9 В.

Проверка заключается в снятии показателей с:

  • Разъема 9 В;
  • Контрольной точки 3,3 В.

Если все параметры соответствуют нужным значениям, нужно отключить прибор от питания и установить JP4 перемычку.

Ша г 7. В 3 имеющихся разъему нужно вставить дисплей. К входу нужно подключить щуп для осциллографа, своими руками провести включение питания.

Результатом правильной установки и сборки станет появление на дисплее его номера, типа прошивки, ее версии и сайта разработчика. Спустя несколько секунд можно будет наблюдать синусоидные волны и шкалу при выключенном щупе.

Приставка для компьютера

При сборке этого простого прибора понадобится минимальное количество деталей, знаний и навыков. Принципиальная схема очень простая, разве, что нужно будет изготовить самому плату для сборки прибора.

Размеры приставки к осциллографу своими руками будет примерно как коробок для спичек или немножко больше, поэтому лучше всего использовать такого размера пластиковую емкость или бокс от батареек.

Поместив в него собранный прибор с готовыми выходами, можно приступать к организации работы с монитором компьютера. Для этого следует скачать программы «Осциллограф» и «Soundcard Oscilloscope». Можно протестировать их работу и выбрать ту, что понравилась больше.

Подключенный микрофон также сможет ретранслировать на подключенный осциллятор звуковые волны, программа будет отражать изменения. Подключается такая приставка к микрофонному или линейному входу и не требует никаких дополнительных драйверов.

Фото осциллографов своими руками

Digital Oscilloscope V3.0 – популярная радиолюбительская программа, которая превратит ваш компьютер в виртуальный осциллограф

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “ “

Сегодня на сайте мы рассмотрим простую радиолюбительскую программу , превращающую домашний компьютер в осциллограф .

Есть два способа превращения персонального компьютера в осциллограф . Можно купить или сделать приставку, которую подключать к ПК. Приставка будет представлять собой АЦП, программно-управляемый. А на ПК установить соответствующую программу. Но это затратный способ. Второй способ – без затратный, в любом ПК есть уже АЦП и ЦАП – звуковая карта. Используя ее можно компьютер преобразовать в простой низкочастотный осциллограф , только установкой программного обеспечения, ну и придется спаять простой входной делитель. Таких программ существует не мало. Сегодня мы рассмотрим одну из них – Digital Oscilloscope V3.0 .

(149.8 KiB, 61,772 hits)

После запуска программы на экране появится окно внешне очень похожее на обычный осциллограф. Для подачи сигнала используется линейный вход звуковой карты. Подавать на вход обычно нужно сигнал не более 0,5-1 вольт, иначе происходит ограничение, поэтому нужно спаять входной делитель по простой схеме, как показано на рисунке №2.

Диоды КД522 нужны для защиты входа звуковой карты от слишком большого сигнала. После подключения цепи и входного сигнала нужно включить осциллограф. Для этого нажимаем мышкой поле RUN и выбираем START или нажать мышкой треугольник во втором сверху ряду окна. Осциллограф станет показывать сигнал. В нижнем правом углу экрана будут высвечиваться частота и период сигнала. А вот напряжение показанное осциллографом может не соответствовать действительности. При налаживании входного делителя нужно постараться переменным резистором так выставить коэффициент деления, чтобы величина показанного на экране напряжения была максимально реальной.

Назначение органов управления. TIME/DIV – время/деление; TRIGGER – синхронизация; CALIB – уровень; VOLT/DIV – напряжение/деление. И еще одно достоинство этой программы – осциллограф запоминающий – работу можно остановить, а на экране останется осциллограмма которую можно сохранить в памяти ПК или распечатать.


Как сделать цифровой осциллограф из компьютера своими руками?

Начинающим радиолюбителям посвящается!

О том, как собрать самый простой адаптер для программного виртуального осциллографа, пригодный для использования в ремонте и настройке аудиоаппаратуры. https://сайт/

В статье рассказывается также о том, как можно измерить входной и выходной импеданс и как рассчитать аттенюатор для виртуального осциллографа.


Самые интересные ролики на Youtube

Близкие темы.

О виртуальных осциллоскопах.


Когда-то у меня была идея фикс: продать аналоговый осциллограф и купить ему на замену цифровой USB осциллоскоп. Но, прошвырнувшись по рынку, обнаружил, что самые бюджетные осциллографы «начинаются» от 250 долларов, да и отзывы о них не очень хорошие. Более же серьёзные приборы стоят в несколько раз дороже.

Так что, решил я ограничиться аналоговым осциллографом, а для построения какой-нибудь эпюры для сайта, использовать виртуальный осциллограф.

Скачал из сети несколько программных осциллографов и попытался что-нибудь померить, но ничего путного из этого не вышло, так как, либо не удавалось откалибровать прибор, либо интерфейс не годился для скриншотов.


Было, уже забросил это дело, но когда подыскивал себе программу для снятия АЧХ, наткнулся на комплект программ «AudioTester». Анализатор из этого комплекта мне не понравился, а вот осциллограф «Osсi» (далее буду его называть «AudioTester») оказался в самый раз.

Этот прибор имеет интерфейс схожий с обычным аналоговым осциллографом, а на экране есть стандартная сетка, которая позволяет измерять амплитуду и длительность. https://сайт/

Из недостатков можно назвать некоторую нестабильность работы. Программа иногда подвисает и для того, чтобы её сбросить приходится прибегать к помощи Task Manager-а. Но, всё это компенсируется привычным интерфейсом, удобством использования и некоторыми очень полезными функциями, которые я не встречал ни в одной другой программе подобного типа.


Внимание! В комплекте программ «AudioTester» есть генератор низкой частоты. Я не рекомендую его использовать, так как он пытается самостоятельно управлять драйвером аудиокарты, что может привести к необратимому отключению звука. Если Вы решите его использовать позаботьтесь о точке восстановления или о бэкапе ОС. Но, лучше скачайте нормальный генератор из «Дополнительных материалов».


Другую интересную программу виртуального осциллографа «Авангард» написал наш соотечественник Записных О.Л.

У этой программы нет привычной измерительной сетки, да и экран слишком большой для снятия скриншотов, но зато есть встроенный вольтметр амплитудных значений и частотомер, что частично компенсирует указанный выше недостаток.

Частично потому, что на малых уровнях сигнала и вольтметр и частотомер начинают сильно привирать.

Однако для начинающего радиолюбителя, который не привык воспринимать эпюры в Вольтах и миллисекундах на деление, этот осциллограф может вполне сгодиться. Другое полезное свойство осциллографа «Авангард» – возможность независимой калибровки двух имеющихся шкал встроенного вольтметра.


Так что, я расскажу о том, как построить измерительный осциллограф на базе программ «AudioTester» и «Авангард». Конечно, кроме этих программ понадобится и любая встроенная или отдельная, самая бюджетная аудиокарта.


Собственно, все работы сводятся к тому, чтобы изготовить делитель напряжения (аттенюатор), который позволил бы охватить широкий диапазон измеряемых напряжений. Другая функция предлагаемого адаптера – защита входа аудиокарты от повреждения при попадании на вход высокого напряжения.

Технические данные и область применения.

Так как во входных цепях аудиокарты есть разделительный конденсатор, то и осциллограф может использоваться только с «закрытым входом». То есть, на его экране можно будет наблюдать только переменную составляющую сигнала. Однако, при некоторой сноровке, с помощью осциллографа «AudioTester» можно измерить и уровень постоянной составляющей. Это может пригодиться, например, когда время отсчёта мультиметра не позволяет зафиксировать амплитудное значение напряжения на конденсаторе, заряжающемся через большой резистор.


Нижний предел измеряемого напряжения ограничен уровнем шума и уровнем фона и составляет примерно 1мВ. Верхний предел ограничивается только параметрами делителя и может достигать сотен вольт.


Частотный диапазон ограничен возможностями аудиокарты и для бюджетных аудиокарт составляет: 0,1Гц… 20кГц (для синусоидального сигнала).


Конечно, речь идёт о довольно примитивном приборе, но в отсутствие более продвинутого девайса, вполне может сгодиться и этот.

Прибор может помочь в ремонте аудиоаппаратуры или использоваться в учебных целях, особенно если его дополнить виртуальным генератором НЧ. Кроме этого, с помощью виртуального осциллографа легко сохранить эпюру для иллюстрации какого-либо материала, или для размещения в Интернете.

Электрическая схема аппаратной части осциллографа.



На чертеже изображена аппаратная часть осциллографа – «Адаптер».

Для постройки двухканального осциллографа придётся продублировать эту схему. Второй канал может пригодиться для сравнения двух сигналов или для подключения внешней синхронизации. Последнее предусмотрено в «AudioTester-е».


Резисторы R1, R2, R3 и Rвх. – делитель напряжения (аттенюатор).

Номиналы резисторов R2 и R3 зависят от применяемого виртуального осциллографа, а точнее от используемых им шкал. Но, так как у «AudioTester-а» цена деления кратна 1, 2 и 5-ти, а у «Авангард-а» встроенный вольтметр имеет всего две шкалы, связанных между собой коэффициентом 1:20, то использование адаптера, собранного по приведённой схеме не должно доставлять неудобств в обоих случаях.


Входное сопротивление аттенюатора около 1-го мегома. По-хорошему, это значение должно бы быть постоянным, но конструкция делителя при этом бы серьёзно усложнилась.


Конденсаторы C1, C2 и C3 выравнивают амплитудно-частотную характеристику адаптера.


Стабилитроны VD1 и VD2 вместе с резисторами R1 защищают линейный вход аудиокарты от повреждения в случае случайного попадания высокого напряжения на вход адаптера, когда переключатель находится в положении 1:1.


Согласен с тем, что представленная схема не отличается изящностью. Однако это схемное решение позволяет самым простым способом достичь широкого диапазона измеряемых напряжений при использовании всего нескольких радиодеталей. Аттенюатор же, построенный по классической схеме, потребовал бы применения высокомегаомных резисторов, и его входное сопротивление менялось бы слишком значительно при переключении диапазонов, что ограничило бы применение стандартных осциллографических кабелей, рассчитанных на входной импеданс 1МОм.

Защита от «дурака».

Чтобы обезопасить линейный вход аудиокарты от случайного попадания высокого напряжения, параллельно входу установлены стабилитроны VD1 и VD2.



Резистор R1 ограничивает ток стабилитронов до 1мА, при напряжении 1000 Вольт на входе 1:1.

Если Вы, действительно, собираетесь использовать осциллограф для измерения напряжения до 1000 Вольт, то в качестве резистора R1 можно установить МЛТ-2 (двухваттный) или два МЛТ-1 (одноваттных) резистора последовательно, так как резисторы различаются не только по мощности, но и по максимально-допустимому напряжению.

Конденсатор С1 также должен иметь максимальное допустимое напряжение 1000 Вольт.


Небольшое пояснение вышесказанного. Иногда требуется взглянуть на переменную составляющую сравнительно небольшой амплитуды, которая, тем не менее, имеет большую постоянную составляющую. В таких случаях нужно иметь в виду, что на экране осциллографа с закрытым входом можно увидеть только переменную составляющую напряжения.

На картинке видно, что при постоянной составляющей 1000 Вольт и размахе переменной составляющей 500 Вольт, максимальное напряжение, приложенное к входу, будет 1500 Вольт. Хотя, на экране осциллографа мы увидим только синусоиду амплитудой 500 Вольт.

Как измерить выходное сопротивление линейного выхода?

Этот параграф можно пропустить. Он рассчитан на любителей мелких подробностей.

Выходное сопротивление (выходной импеданс) линейного выхода, рассчитанного на подключение телефонов (наушников), слишком мало, чтобы оказать существенное влияние на точность измерений, которые нам предстоит выполнить в следующем параграфе.


Так для чего измерять выходной импеданс?

Так как мы будем использовать для калибровки осциллографа виртуальный низкочастотный сигнал-генератор, то его выходной импеданс будет равен выходному импедансу линейного выхода (Line Out) звуковой карты.

Убедившись в том, что выходной импеданс мал, мы можем предотвратить грубые ошибки при измерении входного импеданса. Хотя, даже при самом плохом стечении обстоятельств эта ошибка вряд ли превысит 3… 5%. Откровенно говоря, это даже меньше возможной ошибки измерений. Но, известно, что ошибки имеют привычку «набегать».


При использовании генератора для ремонта и настройки аудиотехники тоже желательно знать его внутренне сопротивление. Это может пригодиться, например, при измерении ESR (Equivalent Series Resistance) эквивалентного последовательного сопротивления или попросту реактивного сопротивления конденсаторов.


Мне, благодаря этому измерению, удалось выявить самый низкоомный выход в моей аудиокарте.


Если у аудиокарты всего одно выходное гнездо, то тогда всё ясно. Оно одновременно является и линейным выходом и выходом на телефоны (наушники). Его импеданс, как правило, мал, и его можно не измерять. Именно такие аудио-выходы используются в ноутбуках.


Когда же гнёзд целых шесть и есть ещё парочка на передней панели системного блока, а каждому гнезду можно назначить определённую функцию, то выходное сопротивление гнёзд может существенно отличаться.

Обычно, самый низкий импеданс соответствует гнезду салатового цвета, которое по-умолчанию и является линейным выходом.



Пример замера импеданса нескольких разных выходов аудиокарты установленных в режим «Телефоны» и «Линейный выход».



Как видно из формулы, абсолютные значения измеренного напряжения роли не играют, потому эти замеры можно делать задолго до калибровки осциллографа.


Пример расчёта.

U1 = 6 делений.

U2 = 7 делений.


Rx = 30(7 – 6) / 6 = 5 (Ом).


Как измерить входное сопротивление линейного входа?

Чтобы рассчитать аттенюатор для линейного входа аудиокарты, нужно знать входное сопротивление линейного входа. К сожалению, измерить входное сопротивление при помощи обычного мультиметра нельзя. Это связано с тем, что во входных цепях аудиокарт имеются разделительные конденсаторы.

Входные же сопротивления разных аудиокарт могут очень сильно отличаться. Так что, этот замер сделать всё-таки придётся.


Для измерения входного импеданса аудокарты по переменному току, нужно подать на вход через балластный (добавочный) резистор синусоидальный сигнал частотой 50 Гц и рассчитать сопротивление по приведённой формуле.


Синусоидальный сигнал можно сформировать в программном генераторе НЧ, ссылка на который есть в «Дополнительных материалах». Замер амплитудных значений также можно произвести программным осциллографом.

На картинке изображена схема подключений.

Напряжения U1 и U2 нужно измерить виртуальным осциллографом в соответствующих положениях выключателя SA. Абсолютные значения напряжения знать не нужно, поэтому расчёты валидны до калибровки прибора.


Пример расчёта.


Rx = 50 * 100 / (540 – 100) ≈ 11,4 (кОм).


Вот результаты замеров импеданса разных линейных входов.

Как видите, входные сопротивления отличаются в разы, а в одном случае почти на порядок.


Как рассчитать делитель напряжения (аттенюатор)?

Максимальная неограниченная амплитуда входного напряжения аудиокарты, при максимальном уровне записи, около 250мВ. Делитель же напряжения, или как его ещё называют, аттенюатор позволяет расширить диапазон измеряемых напряжений осциллографа.


Аттенюатор можно построить по разным схемам, в зависимости от коэффициента деления и необходимого входного сопротивления.


Вот один из вариантов делителя, позволяющих сделать входное сопротивление кратным десяти. Благодаря добавочному резистору Rдоб. можно подогнать сопротивление нижнего плеча делителя до какой-нибудь круглой величины, например, 100 кОм. Недостаток этой схемы в том, что чувствительность осциллографа будет слишком сильно зависеть от входного сопротивления аудиокарты.

Так, если входной импеданс равен 10 кОм, то коэффициент деления делителя увеличится в десять раз. Уменьшать же резистор верхнего плеча делителя не желательно, так как он определяет входное сопротивление прибора, да и является основным звеном защиты прибора от высокого напряжения.


Так что, я предлагаю Вам самостоятельно рассчитать делитель, исходя из входного импеданса Вашей аудиокарты.

На картинке нет ошибки, делитель начинает делить входное напряжение уже при выборе масштаба 1:1. Расчеты же, конечно нужно делать, опираясь на реальное соотношение плеч делителя.

На мой взгляд, это самая простая и вместе с тем самая универсальная схема делителя.




Пример расчёта делителя.

Исходные значения.

R1 – 1007 кОм (результат замера резистора на 1 мОм).

Rвх. – 50 кОм (я выбрал более высокоомный вход из двух имеющихся на передней панели системного блока).


Расчёт делителя в положении переключателя 1:20.

Сначала рассчитаем по формуле (1) коэффициент деления делителя, определяемый резисторами R1 и Rвх.


(1007 + 50)/ 50 = 21,14 (раз)


Значит, общий коэффициент деления в положении переключателя 1:20 должен быть:


21,14*20 = 422,8 (раз)


Рассчитываем номинал резистора для делителя.


1007*50 /(50*422,8 –50 –1007) ≈ 2,507 (кОм)


Расчёт делителя в положении переключателя 1:100.

Определяем общий коэффициент деления в положении переключателя 1:100.


21,14*100 = 2114 (раз)


Рассчитываем величину резистора для делителя.


1007*50 / (50*2114 –50 –1007) ≈ 0,481 (кОм)


Для облегчения расчётов, загляните по этой ссылке:


Если вы собираетесь использовать только осциллограф «Авангард» и только в диапазонах 1:1 и 1:20, то точность подбора резистора может быть низка, так как «Авангард» можно откалибровать независимо в каждом из двух имеющихся диапазонов. Во всех остальных случаях придётся подобрать резисторы с максимальной точностью. Как это сделать написано в следующем параграфе.


Если Вы сомневаетесь в точности своего тестера, то можно подогнать любой резистор с максимальной точностью методом сравнения показаний омметра.

Для этого, вместо постоянного резистора R2 временно устанавливается подстроечный резистор R*. Сопротивление подстроечного резистора подбирается так, чтобы получить минимальную ошибку в соответствующем диапазоне деления.

Затем сопротивление подстроечного резистора измеряется, а постоянный резистор уже подгоняется под измеренное омметром сопротивление. Так как оба резистора измеряются одним и тем же прибором, то погрешность омметра не влияет на точность замера.

А это парочка формул для расчёта классического делителя. Классический делитель может пригодиться, когда требуется высокое входное сопротивление прибора (мОм/В), а применять дополнительную делительную головку не хочется.


Как подобрать или подогнать резисторы делителя напряжения?

Так как радиолюбители часто испытывают трудности при поиске прецизионных резисторов, я расскажу о том, как можно с высокой точностью подогнать обычные резисторы широкого применения.

Высокоточные резисторы всего в несколько раз дороже обычных, но на нашем радиорынке их продают по 100 штук, что делает их покупку не очень целесообразной.

Использование подстроечных резисторов.


Как видите, каждое плечо делителя состоит из двух резисторов – постоянного и подстроечного.

Недостаток – громоздкость. Точность ограничена только доступной точностью измерительного прибора.


Подбор резисторов.


Другой способ – подбор пар резисторов. Точность обеспечивается за счёт подбора пар резисторов из двух комплектов резисторов с большим разбросом. Сначала все резисторы промеряются, а затем подбираются пары, сумма сопротивлений которых наиболее соответствует схеме.


Именно этим способом, в промышленных масштабах, подгонялись резисторы делителя для легендарного тестера «ТЛ-4».


Недостаток метода – трудоёмкость и потребность в большом количестве резисторов.

Чем длиннее список резисторов, тем выше точность подбора.

Подгонка резисторов при помощи наждачной бумаги.

Подгонкой резисторов, путём удаления части резистивной плёнки, не брезгует даже промышленность.

Однако при подгонке высокоомных резисторов не допускается прорезать резистивную плёнку насквозь. У высокоомных плёночных резисторов МЛТ, плёнка нанесена на цилиндрическую поверхность в виде спирали. Подпиливать такие резисторы нужно крайне осторожно, чтобы не разорвать цепь.

Точную подгонку резисторов в любительских условиях можно осуществить при помощи самой мелкой наждачной бумаги – «нулёвки».


Сначала с резистора МЛТ, у которого заведомо меньшее сопротивление, при помощи скальпеля аккуратно удаляется защитный слой краски.



Затем резистор подпаивается к «концам», которые подключаются к мультиметру. Осторожными движениями шкурки-«нулёвки» сопротивление резистора доводится до нормы. Когда резистор подогнан, место пропила покрывается слоем защитного лака или клея.

Что такое шкурка-«нулёвка» написано .

На мой взгляд, это самый быстрый и простой способ, который, тем не менее, даёт очень хорошие результаты.


Конструкция и детали.

Элементы схемы адаптера размещены в прямоугольном дюралюминиевом корпусе.

Переключение коэффициента деления аттенюатора осуществляется тумблером со средним положением.


В качестве входного гнезда применён стандартный разъём СР-50, что позволяет использовать стандартные кабели и щупы. Вместо него можно применить обычное аудио гнездо типа Джек (Jack) 3,5мм.

Выходной разъём – стандартное аудио гнездо 3,5мм. Адаптер соединяется с линейным входом аудиокарты при помощи кабеля с двумя Джеками 3,5мм на концах.


Сборка произведена методом навесного монтажа.


Для использования осциллографа понадобится ещё кабель со щупом на конце.


Сегодня часто вместо того, чтобы сделать, например, осциллограф из компьютера, большинство людей предпочитают просто приобрести USB-осциллоскоп. Но, пройдясь по магазинам, можно увидеть, что цена бюджетных осциллографов начинается от 200 долларов. А серьезная аппаратура и вовсе стоит в разы дороже. Именно тем людям, которых не устраивает эта цена, проще всего сделать осциллограф из ноутбука или компьютера своими руками.

Что необходимо использовать

Самая оптимальная сегодня – это программа Osci , она имеет интерфейс, похожий на классический осциллограф: на мониторе находится стандартная сетка, с помощью которой вы сможете сами померить амплитуду или длительность.

Из недостатков этой программы можно выделить то, что она работает немного нестабильно. Во время работы утилита может иногда зависать, а чтобы затем ее сбросить, надо использовать специализированный TaskManager. Но все это компенсируется тем, что программа имеет привычный интерфейс, и довольно удобна в использовании, а также имеет большое количество функций, они дают возможность сделать полноценно работающий осциллограф из компьютера или ноутбука.

На заметку

Нужно сказать, что в комплекте данных программ есть специальный низкочастотный генератор , но его использование нежелательно, он пытается полностью сам контролировать работу драйвера звуковой карты, что провоцирует выключение звука. Если решили его опробовать, позаботьтесь, чтобы у вас была точка восстановления либо сделайте бэкап вашей ОС. Самым оптимальным способом, как сделать своими руками из компьютера осциллограф, будет скачивание рабочего генератора.

«Авангард»

Это отечественная программа, она не имеет привычной и стандартной измерительной сетки, и отличается очень большим экраном для фотографирования скриншотов, но в то же время позволяет использовать установленный частотомер и вольтметр амплитудных значений. Это частично компенсирует недостатки, указанные выше.

Сделав этот осциллограф из компьютера, вы столкнетесь со следующим: на небольших уровнях показателей вольтметр и частотомер могут значительно искажать данные, но для новичков-радиолюбителей, эта утилита будет вполне достаточной. Еще одной полезной функцией будет то, что можно делать абсолютно независимую калибровку двух уже находящихся шкал установленного вольтметра.

Как это использовать

Из-за того, что входные цепи звуковой карты имеют специальный разделительный конденсатор, то компьютер в роли осциллографа может работать только с закрытым входом . Таким образом, на мониторе будет видна лишь переменная составляющая показателей, но, имея определенную сноровку, с помощью этих программ можно сделать измерение показателя постоянной составляющей. Это очень актуально в случае, когда, к примеру, время отсчета мультиметра не дает возможности зафиксировать некоторое значение амплитуды напряжения на конденсаторе, заряжающегося с помощью крупного резистора.

Нижнее значение напряжения ограничивается уровнем фона и шума и имеет примерно 1 мВ. Верхний предел ограничивается лишь по показателям делителя и достигает более сотни вольт. Частотный диапазон ограничивается самой возможностью звуковой карты и для старых компьютеров составляет около 20 кГц .

Естественно, в этом случае рассматривается довольно примитивное устройство. Но когда у вас нет возможности, например, использовать USB-осциллограф, то в данном случае его использование вполне приемлемо. Этот прибор поможет вам в ремонте разной аудиоаппаратуры, или может быть использован для учебных целей. Кроме того, программа-осциллограф даст возможность вам сохранить эпюру для иллюстрации материала или для размещения в сети.

Электрическая схема

Если вам необходим приставка к компьютеру, то сделать осциллограф будет гораздо сложнее. Сегодня в интернете можно отыскать довольно большое количество разных схем этих устройств, и для изготовления, например, двухканального осциллографа вам будет необходимо только их продублировать. Второй канал зачастую актуален в случае, когда надо сравнивать два сигнала или же осциллограф используется для подключения внешней синхронизации .

Как правило, схемы очень простые, но так, вы самостоятельно обеспечите очень большой диапазон доступных измерений, используя минимум радиодеталей. Причем аттенюатор, который изготавливается по классической схеме, потребовал бы от вас наличие узкоспециализированных высокомегаомных резисторов, а его сопротивление на входе все время менялось при переключении диапазона. Поэтому вы бы испытывали некоторые ограничения при использовании обычных осциллографических проводов, рассчитанных на импеданс входа не больше 1 мОм.

Как выбрать резисторы делителя напряжения

Из-за того, что зачастую радиолюбители испытывают сложности с тем, чтобы подобрать прецизионные резисторы, часто бывает так, что приходится выбирать устройства широкого профиля, которые надо максимально точно подогнать , иначе сделать своими руками осциллограф из компьютера не получится.

Подстроечные резисторы делителя напряжения

В этом случае каждое плечо делителя имеет два резистора, один является постоянным, второй – подстроечный. Минус этого варианта, это его громоздкость, но точность ограничивается лишь тем, какие доступные характеристики имеет измерительный аппарат.

Как выбрать обычные резисторы

Еще один вариант сделать осциллограф из компьютера – это выбрать пары резисторов. Точность в этом случае обеспечивается благодаря тому, что используются пары из двух комплектов с довольно приличным разбросом. Тут важно изначально выполнить тщательные замеры всех устройств, а после подобрать пары, суммарное сопротивление которых будет самым подходящим для вашей схемы.

Сегодня подгонка резисторов с помощью удаления части пленки часто используется даже в современной промышленности, то есть так, нередко делается осциллограф из компьютера.

Но нужно сказать, что если вы хотите подгонять высокоомные резисторы, то резистивная пленка не должна быть разрезана насквозь. Так как в этих устройствах она находится на цилиндрической поверхности в виде спирали, потому делать подпил надо предельно аккуратно, чтобы не допустить разрыва цепи . Затем:

После, когда резистор полностью подогнан, место пропила покрывают слоем специального защитного лака.

Сегодня этот способ наиболее быстрый и простой, но при этом дает хорошие результаты, что и сделало его оптимальным для домашних условий.

Что нужно учесть

Существует ряд правил, которые необходимо выполнять в любом случае, если решили проводить эти работы:

  • Используемый компьютер для осциллографа обязательно нужно заземлить.
  • Нельзя подключать заземление к розетке. Оно подсоединяется через специальный корпус линейного входного разъема с корпусом системного блока. В данном случае, независимо, попадаете ли вы в фазу или ноль, у вас не будет замыкания.

Говоря иначе, в розетку может подсоединяться только провод, который соединяется с резистором , и находится в схеме адаптера с номинальным значением один мегом. Если же вы попробуете включить в сеть провод, который контактирует с корпусом, то почти во всех случаях это обязательно приведет к самым плачевным последствиям.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то