Основные принципы программирования: стек и куча. Что такое стек и зачем он нужен на примере msp430

Стек - это феномен программирования и естественное решение. Стек сразу пришел в компьютерное дело и стал таким «родным», как будто именно с него все начиналось.

Без стека не работает процессор, нет рекурсии и эффективные вызовы функций организовать невозможно. Любой алгоритм может обойтись без очереди, списка, коллекции, массива или системы организованных объектов, но без памяти и стека не работает ничего, в том числе все перечисленное.

На заре начала: процессор, память и стек

Идеальная память обеспечивает адресацию прямо к значению - это уровни машины и языка высокой степени. В первом случае процессор последовательно перебирает адреса памяти и выполняет команды. Во втором случае программист манипулирует массивами. В обоих эпизодах есть:

  • адрес = значение;
  • индекс = значение.

Адрес может быть абсолютным и относительным, индекс может быть цифровым и ассоциативным. По адресу и индексу может находиться другой адрес, а не значение, но это детали косвенной адресации. Без памяти процессор работать не может, а без стека команд и данных - он, как лодка без весел.

Стопка тарелок - традиционная новелла о сути стека: понятие stack и перевод в общебытовом сознании. Нельзя взять тарелку снизу, можно брать только сверху, и тогда все тарелки будут целы.

Все, что последним приходит в стек, уходит первым. Идеальное решение. По сути, stack, как перевод одного действия в другое, трансформирует представления об алгоритме как последовательности операций.

Суть и понятие стека

Процессор и память - основные конструктивные элементы компьютера. Процессор исполняет команды, манипулирует адресами памяти, извлекает и изменяет значения по этим адресам. На языке программирования все это трансформируется в переменные и их значения. Суть стека и понятие last in first out (LIFO) остается неизменным.

Аббревиатура LIFO уже не используется так часто, как раньше. Вероятно потому, что списки трансформировались в объекты, а очереди first in first out (FIFO) применяются по мере необходимости. Динамика типов данных потеряла свою актуальность в контексте описания переменных, но приобрела свою значимость на момент исполнения выражений: тип данного определяется в момент его использования, а до этого момента можно описывать что угодно и как угодно.

Так, стек - что это такое? Теперь вы знаете, что это вопрос неуместный. Ведь без стека нет современного программирования. Любой вызов функции - это передача параметров и адреса возврата. Функция может вызвать другую функцию - это опять передача параметров и адреса возврата. Наладить механизм вызова значений без стека - это лишняя работа, хотя достижимое решение, безусловно, возможное.

Многие спрашивают: "Стек - что это такое?". В контексте вызова функции он состоит из трех действий:

  • сохранения адреса возврата;
  • сохранения всех передаваемых переменных или адреса на них;
  • вызова функции.

Как только вызванная функция исполнит свою миссию, она просто вернет управление по адресу возврата. Функция может вызывать любое количество других функций, так как ограничение накладывается только размером стека.

Свойства стека

Стек - это не абстрактный тип данных, а реальный механизм. На уровне процессора - это «движок», который уточняет и дополняет работу основного цикла процессора. Как битовая арифметика, стек фиксирует простые и очевидные правила работы. Это надежно и безопасно.

Характерные свойства стека - это его размер и длина элементов. На уровне процессора все определяется разрядностью, адресацией памяти и физикой доступа к ней. Интересная особенность и традиция: стек растет вниз, то есть в сторону уменьшения адресов памяти, а память программ и данных - вверх. Это обычно, но не обязательно. Здесь важен смысл - пришел последним, а ушел первым. Это удивительно простое правило позволяет строить интересные алгоритмы работы прежде всего на языках высокого уровня. Теперь вы не будете спрашивать, стек - что это такое.

Безукоризненная работа аппаратного обеспечения уже очень давно является нормой, но на передовом крае информационных технологий идея стека обретает новые и перспективные применения.

По сути не важно, что такое стек на уровне процессора. Это естественная составляющая архитектуры компьютера. Но в программировании стек зависит от конкретного применения и способностей программиста.

Массивы, коллекции, списки, очереди... Стек!

Часто люди задают вопрос: "Стек - что это такое?". "Программирование" и "систематизация" - интересные понятия: они не синонимы, но так тесно связаны. Программирование прошло очень быстро такой длительный путь, что достигнутые вершины кажутся идеальными. Скорее всего, это не так. Но очевидно другое.

Идея стека стала привычной не только на уровне различных языков программирования, но и на уровне их конструкций и возможностей по созданию типов данных. Любой массив имеет push и pop, а понятия "первый и последний элементы массива" стали традиционными. Раньше были просто элементы массива, а сегодня есть:

  • элементы массива;
  • первый элемент массива;
  • последний элемент массива.

Операция помещения элемента в массив сдвигает указатель, а извлечение элемента с начала массива или с его конца имеет значение. По сути это тот же стек, но в применении к другим типам данных.

Особенно примечательно, что популярные языки программирования не имеют конструкции stack. Но они предоставляют его идею разработчику в полном объеме.

Стек является общей структурой данных для представления данных, которые должны обрабатываться в определенном порядке. Например, когда функция вызывает другую функцию, которая, в свою очередь, вызывает третью функцию, важно, чтобы третья функция вернулась на вторую функцию, а не первую.

Один из способов реализации такого порядка обработки данных — это организовать своего рода очередь вызовов функций. Последняя добавленная в стек функция, будет завершена первой и наоборот, первая добавленная в стек функция будет завершена последней. Таким образом, сама структура данных обеспечивает надлежащий порядок вызовов.

Концептуально, структура данных — стек очень проста: она позволяет добавлять или удалять элементы в определенном порядке. Каждый раз, когда добавляется элемент, он попадает на вершину стека, единственный элемент, который может быть удален из стека — элемент, который находится на вершине стека. Таким образом, стек, как принято говорить, «первым пришел, последним ушел — FILO» или «последним пришел, первым ушел — LIFO». Первый элемент, добавленный в стек будет удален из него в последнюю очередь.

Так в чем же дело? Зачем нам нужны стеки? Как мы уже говорили, стеки — удобный способ организации вызовов функций. В самом деле, «стек вызовов» это термин, который часто используют для обозначения списка функций, которые сейчас либо выполняются, либо находятся в режиме ожидания возвращаемого значения других функций.

В некотором смысле, стеки являются частью фундаментального языка информатики. Когда вы хотите реализовать очередь типа — «первый пришел, последним ушел», то имеет смысл говорить о стеках с использованием общей терминологии. Кроме того, такие очереди участвуют во многих процессах, начиная от теоретических компьютерных наук, например функции push-down и многое другое.

Стеки имеют некоторые ассоциируемые методы:

  • Push — добавить элемент в стек;
  • Pop — удалить элемент из стека;
  • Peek — просмотреть элементы стека;
  • LIFO — поведение стека,
  • FILO Equivalent to LIFO

Этот стек был реализован с шаблонами, чтобы его можно было использовать практически для любых типов данных. Причем размер стека определяется динамически, во время выполнения программы. В стек добавлена также дополнительная функция: peek() , которая показывает n-й элемент от вершины стека.

#ifndef STACK_H #define STACK_H #include // для assert #include #include // для setw template class Stack { private: T *stackPtr; // указатель на стек const int size; // максимальное количество элементов в стеке int top; // номер текущего элемента стека public: Stack(int = 10); // по умолчанию размер стека равен 10 элементам Stack(const Stack &); // конструктор копирования ~Stack(); // деструктор inline void push(const T &); // поместить элемент в вершину стека inline T pop(); // удалить элемент из вершины стека и вернуть его inline void printStack(); // вывод стека на экран inline const T &Peek(int) const; // n-й элемент от вершины стека inline int getStackSize() const; // получить размер стека inline T *getPtr() const; // получить указатель на стек inline int getTop() const; // получить номер текущего элемента в стеке }; // реализация методов шаблона класса STack // конструктор Стека template Stack::Stack(int maxSize) : size(maxSize) // инициализация константы { stackPtr = new T; // выделить память под стек top = 0; // инициализируем текущий элемент нулем; } // конструктор копирования template Stack::Stack(const Stack & otherStack) : size(otherStack.getStackSize()) // инициализация константы { stackPtr = new T; // выделить память под новый стек top = otherStack.getTop(); for(int ix = 0; ix < top; ix++) stackPtr = otherStack.getPtr(); } // функция деструктора Стека template Stack::~Stack() { delete stackPtr; // удаляем стек } // функция добавления элемента в стек template inline void Stack::push(const T &value) { // проверяем размер стека assert(top < size); // номер текущего элемента должен быть меньше размера стека stackPtr = value; // помещаем элемент в стек } // функция удаления элемента из стека template inline T Stack::pop() { // проверяем размер стека assert(top > 0); // номер текущего элемента должен быть больше 0 stackPtr[--top]; // удаляем элемент из стека } // функция возвращает n-й элемент от вершины стека template inline const T &Stack::Peek(int nom) const { // assert(nom <= top); return stackPtr; // вернуть n-й элемент стека } // вывод стека на экран template inline void Stack::printStack() { for (int ix = top - 1; ix >= 0; ix--) cout << "|" << setw(4) << stackPtr << endl; } // вернуть размер стека template inline int Stack::getStackSize() const { return size; } // вернуть указатель на стек (для конструктора копирования) template inline T *Stack::getPtr() const { return stackPtr; } // вернуть размер стека template inline int Stack::getTop() const { return top; } #endif // STACK_H

Шаблон класса Stack реализован в отдельном *.h файле, да, именно реализован, я не ошибся. Все дело в том, что и интерфейс шаблона класса и реализация должны находиться в одном файле, иначе вы увидите список ошибок похожего содержания:

ошибка undefined reference to «метод шаблона класса»

Интерфейс шаблона класса объявлен с 9 по 28 строки. Все методы класса содержат комментарии и, на мой взгляд, описывать их работу отдельно не имеет смысла. Обратите внимание на то, что все методы шаблона класса Стек объявлены как . Это сделано для того, чтобы ускорить работу класса. Так как встроенные функции класса работают быстрее, чем внешние.

Сразу после интерфейса шаблона идет реализация методов класса Стек, строки 32 — 117. В реализации методов класса ничего сложного нет, если знать как устроен стек, шаблоны и . Заметьте, в классе есть два конструктора, первый объявлен в строках 32-33, — это конструктор по умолчанию. А вот конструктор в строках 41-5, — это конструктор копирования. Он нужен для того, чтобы скопировать один объект в другой. Метод Peek , строки 80 — 88 предоставляет возможность просматривать элементы стека. Необходимо просто ввести номер элемента, отсчет идет от вершины стека. Остальные функции являются служебными, то есть предназначены для использования внутри класса, конечно же кроме функции printStack() , она вывод элементы стека на экран.

Теперь посмотрим на драйвер для нашего стека, под драйвером я подразумеваю программу в которой тестируется работа класса. Как всегда это main функция, в которой мы и будем тестировать наш шаблон класса Stack . Смотрим код ниже:

#include using namespace std; #include "stack.h" int main() { Stack stackSymbol(5); int ct = 0; char ch; while (ct++ < 5) { cin >> ch; stackSymbol.push(ch); // помещаем элементы в стек } cout << endl; stackSymbol.printStack(); // печать стека cout << "\n\nУдалим элемент из стека\n"; stackSymbol.pop(); stackSymbol.printStack(); // печать стека Stack newStack(stackSymbol); cout << "\n\nСработал конструктор копирования!\n"; newStack.printStack(); cout << "Второй в очереди элемент: "<< newStack.Peek(2) << endl; return 0; }

Создали объект стека, строка 9, размер стека при этом равен 5, то есть стек может поместить не более 5 элементов. Заполняем стек в , строки 13 — 17. В строке 21 выводим стек на экран, после удаляем один элемент из стека, строка 24 и снова выводим содержимое стека, поверьте оно изменилось, ровно на один элемент. Смотрим результат работы программы:

LOTR! | ! | R | T | O | L Удалим элемент из стека | R | T | O | L Сработал конструктор копирования! | R | T | O | L Второй в очереди элемент: T

В строке 28 мы воспользовались конструктором копирования, о том самом, о котором я писал выше. Не забудем про функцию peek() , давайте посмотри на второй элемент стека, строка 33.

На этом все! Стек у нас получился и исправно работает, попробуйте его протестировать, например на типе данных int . Я уверен, что все останется исправно работать.

Теги: Стек, стек на си, реализация стека, стек на массиве, динамически растущий стек, стек на односвязном сиске

Стек

С тек – наверное, самая простая структура данных, которую мы будем изучать и которой будем постоянно пользоваться. Стек – это структура данных, в которой элементы поддерживают принцип LIFO (“Last in – first out”): последним зашёл – первым вышел. Или первым зашёл – последним вышел.

Стек позволяет хранить элементы и поддерживает, обычно, две базовые операции:

  • PUSH – кладёт элемент на вершину стека
  • POP – снимает элемент с вершины стека, перемещая вершину к следующему элементу

Также часто встречается операция PEEK, которая получает элемент на вершине стека, но не снимает его оттуда.

Стек является одной из базовых структур данных и используется не только в программировании, но и в схемотехнике, и просто в производстве, для реализации технологических процессов и т.д.; стек используется в качестве вспомогательной структуры данных во многих алгоритмах и в других более сложных структурах.

Пусть, например, у нас есть стек чисел. Выполним несколько команд. Изначально стек пуст. Вершина стека – указатель на первый элемент, никуда не указывает. В случае си она может быть равна NULL.

Теперь стек состоит из одного элемента, числа 3. Вершина стека указывает на число 3.

Стек состоит из двух элементов, 5 и 3, при этом вершина стека указывает на 5.

Стек состоит из трёх элементов, вершина стека указывает на 7.

Вернёт значение 7, в стеке останется 5 и 3. Вершина будет указывать на следующий элемент – 5.

Вернёт 5, в стеке останется всего один элемент, 3, на который будет указывать вершина стека.

Вернёт 3, стек станет пуст.

Часто сравнивают стек со стопкой тарелок. Чтобы достать следующую тарелку, необходимо снять предыдущие. Вершина стека – это вершина стопки тарелок.

Когда мы будем работать со стеком, возможны две основные и часто встречающиеся ошибки:

  • 1. Stack Underflow: Попытка снять элемент с пустого стека
  • 2. Stack Overflow: Попытка положить новый элемент на стек, который не может больше расти (например, не хватает оперативной памяти)

Программная реализация

Р ассмотрим три простые реализации стека:

Стек фиксированного размера, построенный на массиве

О тличительная особенность – простота реализации и максимальная скорость выполнения. Такой стек может применяться в том, случае, когда его максимальный размер известен заранее или известно, что он мал.

Сначала определяем максимальный размер массива и тип данных, которые будут в нём храниться:

#define STACK_MAX_SIZE 20 typedef int T;

Теперь сама структура

Typedef struct Stack_tag { T data; size_t size; } Stack_t;

Здесь переменная size – это количество элементов, и вместе с тем указатель на вершину стека. Вершина будет указывать на следующий элемент массива, в который будет занесено значение.

Кладём новый элемент на стек.

Void push(Stack_t *stack, const T value) { stack->data = value; stack->size++; }

Единственная проблема – можно выйти за пределы массива. Поэтому всегда надо проверять, чтобы не было ошибки Stack overflow:

#define STACK_OVERFLOW -100 #define STACK_UNDERFLOW -101 void push(Stack_t *stack, const T value) { if (stack->size >= STACK_MAX_SIZE) { exit(STACK_OVERFLOW); } stack->data = value; stack->size++; }

Аналогично, определим операцию Pop, которая возвращает элемент с вершины и переходит к следующему

T pop(Stack_t *stack) { if (stack->size == 0) { exit(STACK_UNDERFLOW); } stack->size--; return stack->data; }

И функция peek, возвращающая текущий элемент с вершины

T peek(const Stack_t *stack) { if (stack->size <= 0) { exit(STACK_UNDERFLOW); } return stack->data; }

Ещё одно важное замечание – у нас нет функции создания стека, поэтому необходимо вручную обнулять значение size

Вспомогательные функции для печати элементов стека

Void printStackValue(const T value) { printf("%d", value); } void printStack(const Stack_t *stack, void (*printStackValue)(const T)) { int i; int len = stack->size - 1; printf("stack %d > ", stack->size); for (i = 0; i < len; i++) { printStackValue(stack->data[i]); printf(" | "); } if (stack->size != 0) { printStackValue(stack->data[i]); } printf("\n"); }

Заметьте, что в функции печати мы использует int, а не size_t, потому что значение len может стать отрицательным. Функция печатает сначала размер стека, а потом его содержимое, разделяя элементы символом |

Проверка

Stack_t stack; stack.size = 0; push(&stack, 3); printStack(&stack, printStackValue); push(&stack, 5); printStack(&stack, printStackValue); push(&stack, 7); printStack(&stack, printStackValue); printf("%d\n", pop(&stack)); printStack(&stack, printStackValue); printf("%d\n", pop(&stack)); printStack(&stack, printStackValue); printf("%d\n", pop(&stack)); printStack(&stack, printStackValue); _getch();

Рассмотрим также ситуации, когда есть ошибки использования. Underflow

Void main() { Stack_t stack; stack.size = 0; push(&stack, 3); pop(&stack); pop(&stack); _getch(); }

Void main() { Stack_t stack; size_t i; stack.size = 0; for (i = 0; i < 100; i++) { push(&stack, i); } _getch(); }

Динамически растущий стек на массиве

Д инамически растущий стек используется в том случае, когда число элементов может быть значительным и не известно на момент решения задачи. Максимальный размер стека может быть ограничен каким-то числом, либо размером оперативной памяти.

Стек будет состоять из указателя на данные, размера массива (максимального), и числа элементов в массиве. Это число также будет и указывать на вершину.

Typedef struct Stack_tag { T *data; size_t size; size_t top; } Stack_t;

Для начала понадобится некоторый начальный размер массива, пусть он будет равен 10

#define INIT_SIZE 10

Алгоритм работы такой: мы проверяем, не превысило ли значение top значение size. Если значение превышено, то увеличиваем размер массива. Здесь возможно несколько вариантов того, как увеличивать массив. Можно прибавлять число, можно умножать на какое-то значение. Какой из вариантов лучше, зависит от специфики задачи. В нашем случае будем умножать размер на число MULTIPLIER

#define MULTIPLIER 2

Максимального размера задавать не будем. Программа будет выпадать при stack overflow или stack underflow. Будем реализовывать тот же интерфейс (pop, push, peek). Кроме того, так как массив динамический, сделаем некоторые вспомогательные функции, чтобы создавать стек, удалять его и чистить.

Во-первых, функции для создания и удаления стека и несколько ошибок

#define STACK_OVERFLOW -100 #define STACK_UNDERFLOW -101 #define OUT_OF_MEMORY -102 Stack_t* createStack() { Stack_t *out = NULL; out = malloc(sizeof(Stack_t)); if (out == NULL) { exit(OUT_OF_MEMORY); } out->size = INIT_SIZE; out->data = malloc(out->size * sizeof(T)); if (out->data == NULL) { free(out); exit(OUT_OF_MEMORY); } out->top = 0; return out; } void deleteStack(Stack_t **stack) { free((*stack)->data); free(*stack); *stack = NULL; }

Всё крайне просто и понятно, нет никаких подвохов. Создаём стек с начальной длиной и обнуляем значения.

Теперь напишем вспомогательную функцию изменения размера.

Void resize(Stack_t *stack) { stack->size *= MULTIPLIER; stack->data = realloc(stack->data, stack->size * sizeof(T)); if (stack->data == NULL) { exit(STACK_OVERFLOW); } }

Здесь, заметим, в случае, если не удалось выделить достаточно памяти, будет произведён выход с STACK_OVERFLOW.

Функция push проверяет, вышли ли мы за пределы массива. Если да, то увеличиваем его размер

Void push(Stack_t *stack, T value) { if (stack->top >= stack->size) { resize(stack); } stack->data = value; stack->top++; }

Функции pop и peek аналогичны тем, которые использовались для массива фиксированного размера

T pop(Stack_t *stack) { if (stack->top == 0) { exit(STACK_UNDERFLOW); } stack->top--; return stack->data; } T peek(const Stack_t *stack) { if (stack->top <= 0) { exit(STACK_UNDERFLOW); } return stack->data; }

Проверим

Void main() { int i; Stack_t *s = createStack(); for (i = 0; i < 300; i++) { push(s, i); } for (i = 0; i < 300; i++) { printf("%d ", peek(s)); printf("%d ", pop(s)); } deleteStack(&s); _getch(); }

Напишем ещё одну функцию, implode, которая уменьшает массив до размера, равного числу элементов в массиве. Она может быть использована тогда, когда уже известно, что больше элементов вставлено не будет, и память может быть частично освобождена.

Void implode(Stack_t *stack) { stack->size = stack->top; stack->data = realloc(stack->data, stack->size * sizeof(T)); }

Можем использовать в нашем случае

For (i = 0; i < 300; i++) { push(s, i); } implode(s); for (i = 0; i < 300; i++) { printf("%d ", peek(s)); printf("%d ", pop(s)); }

Эта однопоточная реализация стека использует мало обращений к памяти, достаточно проста и универсальна, работает быстро и может быть реализована, при необходимости, за несколько минут. Она используется всегда в дальнейшем, если не указано иное.

У неё есть недостаток, связанный с методом увеличения потребляемой памяти. При умножении в 2 раза (в нашем случае) требуется мало обращений к памяти, но при этом каждое последующее увеличение может привести к ошибке, особенно при маленьком количестве памяти в системе. Если же использовать более щадящий способ выделения памяти (например, каждый раз прибавлять по 10), то число обращений увеличится и скорость упадёт. На сегодня, проблем с размером памяти обычно нет, а менеджеры памяти и сборщики мусора (которых нет в си) работают быстро, так что агрессивное изменение преобладает (на примере, скажем, реализации всей стандартной библиотеки языка Java).

Реализация стека на односвязном списке

Ч то такое односвязный список, . Коротко: односвязный список состоит из узлов, каждый из которых содержит полезную информацию и ссылку на следующий узел. Последний узел ссылается на NULL.

Никакого максимального и минимального размеров у нас не будет (хотя в общем случае может быть). Каждый новый элемент создаётся заново. Для начала определим структуру узел

#define STACK_OVERFLOW -100 #define STACK_UNDERFLOW -101 #define OUT_OF_MEMORY -102 typedef int T; typedef struct Node_tag { T value; struct Node_tag *next; } Node_t;

Функция вставки первого элемента проста: создаём новый узел. Указатель next кидаем на старый узел. Далее указатель на вершину стека перекидываем на вновь созданный узел. Теперь вершина стека указывает на новый узел.

Void push(Node_t **head, T value) { Node_t *tmp = malloc(sizeof(Node_t)); if (tmp == NULL) { exit(STACK_OVERFLOW); } tmp->next = *head; tmp->value = value; *head = tmp; }

Функция pop берёт первый элемент (тот, на который указывает вершина), перекидывает указатель на следующий элемент и возвращает первый. Здесь есть два варианта – можно вернуть узел или значение. Если вернём значение, то придётся удалять узел внутри функции

Node_t* pop1(Node_t **head) { Node_t *out; if ((*head) == NULL) { exit(STACK_UNDERFLOW); } out = *head; *head = (*head)->next; return out; }

T pop2(Node_t **head) { Node_t *out; T value; if (*head == NULL) { exit(STACK_UNDERFLOW); } out = *head; *head = (*head)->next; value = out->value; free(out); return value; }

Теперь вместо проверки на длину массива везде используется проверка на равенство NULL вершины стека.

Простая функция peek

T peek(const Node_t* head) { if (head == NULL) { exit(STACK_UNDERFLOW); } return head->value; }

Итерирование достаточно интересное. Просто переходим от одного узла к другому, пока не дойдём до конца

Void printStack(const Node_t* head) { printf("stack >"); while (head) { printf("%d ", head->value); head = head->next; } }

И ещё одна проблема – теперь нельзя просто посмотреть размер стека. Нужно пройти от начала до конца и посчитать все элементы. Например, так

Size_t getSize(const Node_t *head) { size_t size = 0; while (head) { size++; head = head->next; } return size; }

Конечно, можно хранить размер отдельно, можно обернуть стек со всеми данными ещё в одну структуру и т.д. Рассмотрим всё это при более подробном изучении списков.

Мы используем всё более продвинутые языки программирования, которые позволяют нам писать меньше кода и получать отличные результаты. За это приходится платить. Поскольку мы всё реже занимаемся низкоуровневыми вещами, нормальным становится то, что многие из нас не вполне понимают, что такое стек и куча, как на самом деле происходит компиляция, в чём разница между статической и динамической типизацией, и т.д. Я не говорю, что все программисты не знают об этих понятиях - я лишь считаю, что порой стоит возвращаться к таким олдскульным вещам.

Сегодня мы поговорим лишь об одной теме: стек и куча. И стек, и куча относятся к различным местоположениям, где происходит управление памятью, но стратегия этого управления кардинально отличается.

Стек

Стек - это область оперативной памяти, которая создаётся для каждого потока. Он работает в порядке LIFO (Last In, First Out), то есть последний добавленный в стек кусок памяти будет первым в очереди на вывод из стека. Каждый раз, когда функция объявляет новую переменную, она добавляется в стек, а когда эта переменная пропадает из области видимости (например, когда функция заканчивается), она автоматически удаляется из стека. Когда стековая переменная освобождается, эта область памяти становится доступной для других стековых переменных.

Из-за такой природы стека управление памятью оказывается весьма логичным и простым для выполнения на ЦП; это приводит к высокой скорости, в особенности потому, что время цикла обновления байта стека очень мало, т.е. этот байт скорее всего привязан к кэшу процессора. Тем не менее, у такой строгой формы управления есть и недостатки. Размер стека - это фиксированная величина, и превышение лимита выделенной на стеке памяти приведёт к переполнению стека. Размер задаётся при создании потока, и у каждой переменной есть максимальный размер, зависящий от типа данных. Это позволяет ограничивать размер некоторых переменных (например, целочисленных), и вынуждает заранее объявлять размер более сложных типов данных (например, массивов), поскольку стек не позволит им изменить его. Кроме того, переменные, расположенные на стеке, всегда являются локальными.

В итоге стек позволяет управлять памятью наиболее эффективным образом - но если вам нужно использовать динамические структуры данных или глобальные переменные, то стоит обратить внимание на кучу.

Куча

Куча - это хранилище памяти, также расположенное в ОЗУ, которое допускает динамическое выделение памяти и не работает по принципу стека: это просто склад для ваших переменных. Когда вы выделяете в куче участок памяти для хранения переменной, к ней можно обратиться не только в потоке, но и во всем приложении. Именно так определяются глобальные переменные. По завершении приложения все выделенные участки памяти освобождаются. Размер кучи задаётся при запуске приложения, но, в отличие от стека, он ограничен лишь физически, и это позволяет создавать динамические переменные.

Вы взаимодействуете с кучей посредством ссылок, обычно называемых указателями - это переменные, чьи значения являются адресами других переменных. Создавая указатель, вы указываете на местоположение памяти в куче, что задаёт начальное значение переменной и говорит программе, где получить доступ к этому значению. Из-за динамической природы кучи ЦП не принимает участия в контроле над ней; в языках без сборщика мусора (C, C++) разработчику нужно вручную освобождать участки памяти, которые больше не нужны. Если этого не делать, могут возникнуть утечки и фрагментация памяти, что существенно замедлит работу кучи.

В сравнении со стеком, куча работает медленнее, поскольку переменные разбросаны по памяти, а не сидят на верхушке стека. Некорректное управление памятью в куче приводит к замедлению её работы; тем не менее, это не уменьшает её важности - если вам нужно работать с динамическими или глобальными переменными, пользуйтесь кучей.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то