От песка до процессора. Производство процессоров - от песка до компьютера

Современные микропроцессоры - одни из сложнейших устройств, изготавливаемых человеком. Производство полупроводникового кристалла намного более ресурсоемко, чем, скажем, возведение многоэтажного дома или организация крупнейшего выставочного мероприятия. Однако благодаря массовому выпуску CPU в денежном эквиваленте мы этого не замечаем, да и редко кто задумывается обо всей грандиозности элементов, занимающих столь видное место внутри системного блока. Мы решили изучить детали производства процессоров и поведать о них в данном материале. Благо в Сети сегодня достаточно информации на эту тему, а специализированная подборка презентаций и слайдов корпорации Intel позволяет выполнить поставленную задачу максимально наглядно. Предприятия других гигантов полупроводниковой индустрии работают по тому же принципу, поэтому с уверенностью можно сказать, что все современные микросхемы проходят идентичный путь создания.

Первое, о чем стоит упомянуть, - строительный материал для процессоров. Кремний (англ. silicon) - второй после кислорода наиболее распространенный элемент на планете. Он является природным полупроводником и используется как основной материал для производства чипов всевозможных микросхем. Больше всего кремния содержится в обычном песке (особенно кварце) в виде диоксида кремния (SiO2).

Впрочем, кремний - не единственный материал. Самый близкий его родственник и заменитель - германий, однако в процессе совершенствования производства ученые выявляют хорошие полупроводниковые свойства у соединений других элементов и готовятся опробовать их на практике или уже это делают.

1 Кремний проходит многоступенчатый процесс очистки: сырье для микросхем не может содержать больше примесей, чем один чужеродный атом на миллиард.

2 Кремний расплавляют в специальной емкости и, опустив внутрь постоянно охлаждаемый вращающийся стержень, «наматывают» на него благодаря силам поверхностного натяжения вещество.

3 В итоге получаются продольные заготовки (монокристаллы) круглого сечения, каждая массой около 100 кг.

4 Заготовку нарезают на отдельные кремниевые диски - пластины, на которых будут расположены сотни микропроцессоров. Для этих целей используются станки с алмазными режущими дисками или проволочно-абразивные установки.

5 Подложки полируют до зеркального блеска, чтобы устранить все дефекты на поверхности. Следующий шаг - нанесение тончайшего фотополимерного слоя.

6 Обработанная подложка подвергается воздействию жесткого ультрафиолетового излучения. В фотополимерном слое происходит химическая реакция: свет, проходя через многочисленные трафареты, повторяет рисунки слоев CPU.

7 Реальный размер наносимого изображения в несколько раз меньше собственно трафарета.

8 Участки, «протравленные» излучением, вымываются. На кремниевой подложке получается рисунок, который затем подвергается закреплению.

9 Следующий этап изготовления одного слоя - ионизация, в процессе которой свободные от полимера участки кремния бомбардируются ионами.

10 В местах их попадания изменяются свойства электрической проводимости.

11 Оставшийся полимер удаляют, и транзистор почти готов. В изолирующих слоях делаются отверстия, которые благодаря химической реакции заполняются атомами меди, используемыми в качестве контактов.

12 Соединение транзисторов представляет собой многоуровневую разводку. Если взглянуть в микроскоп, на кристалле можно заметить множество металлических проводников и помещенных между ними атомов кремния или его современных заменителей.

13 Часть готовой подложки проходит первый тест на функциональность. На этом этапе на каждый из выбранных транзисторов подается ток, и автоматизированная система проверяет параметры работы полупроводника.

14 Подложка с помощью тончайших режущих кругов разрезается на отдельные части.

15 Годные кристаллы, полученные в результате данной операции, используются в производстве процессоров, а бракованные отправляются в отходы.

16 Отдельный кристалл, из которого будет сделан процессор, помещают между основанием (подложкой) CPU и теплорас-пределительной крышкой и «упаковывают».

17 В ходе окончательного тестирования готовые процессоры проверяются на соответствие требуемым параметрам и лишь затем сортируются. На основании полученных данных в них прошивается микрокод, позволяющий системе должным образом определить CPU.

18 Готовые устройства упаковываются и направляются на рынок.

Интересные факты о процессорах и их производстве

«Силиконовая долина» (Silicon Valley, США, Калифорния)

Получила свое название благодаря основному строительному элементу, использующемуся в производстве микрочипов.

«Почему пластины для производства процессоров круглые?» - наверняка спросите вы.

Для производства кремниевых кристаллов применяется технология, позволяющая получать только цилиндрические заготовки, которые затем режутся на части. До сих пор еще никому не удавалось изготовить квадратную пластину, лишенную дефектов.

Почему микрочипы квадратные?

Именно такая литография позволяет использовать площадь пластины с максимальной эффективностью.

Зачем процессорам столько ножек/контактов?

Помимо сигнальных линий каждый процессор для работы нуждается в стабильном питании. При энергопотреблении порядка 100-120 Вт и низком напряжении через контакты может протекать ток силой до 100 А. Значительная часть контактов CPU выделена именно под систему питания и дублируется.

Утилизация отходов производства

Раньше дефектные пластины, их остатки и бракованные микрочипы шли в отходы. На сегодняшний день ведутся разработки, позволяющие использовать их в качестве основы для производства солнечных батарей.

«Костюм кролика».

Такое название получил комбинезон белого цвета, который обязаны носить все рабочие производственных помещений. Делается это для поддержания максимальной чистоты и защиты от случайного попадания частиц пыли на производственные установки. «Костюм кролика» впервые был использован на фабриках по производству процессоров в 1973 году и с тех пор стал общепринятым стандартом.

99,9999%

Для производства процессоров пригоден только кремний высочайшей степени чистоты. Заготовки очищают спецхимией.

300 мм

Таков диаметр современных кремниевых пластин для производства процессоров.

1000 раз

Именно настолько чище воздух в помещениях фабрик для производства чипов, чем в операционной.

20 слоев

Процессорный кристалл очень тонкий (меньше миллиметра), но в нем умещаются более 20 слоев сложнейших структурных объединений транзисторов, которые выглядят как многоуровневые хайвеи.

2500

Именно столько кристаллов процессора Intel Atom (имеют наименьшую площадь среди cовременных CPU) размещаются на одной 300-миллиметровой пластине.

10 000 000 000 000 000 000

Сто квинтиллионов транзисторов в виде структурных элементов микрочипов отгружаются с фабрик каждый год. Это приблизительно в 100 раз больше, чем оценочное количество муравьев на планете.

A

Стоимость производства одного транзистора в процессоре сегодня равна цене печати одной буквы в газете.

В процессе подготовки статьи использовались материалы с официального веб-сайта корпорации Intel, www.intel.ua

Для того, чтобы выбрать хороший смартфон, важно опираться не только на внешний вид гаджета, но и на его «начинку». Мощный процессор является несомненным плюсом для устройства, однако не всегда покупатель при выборе смартфона может точно определить, насколько хорош процессор, установленный в нём. Часто подобное происходит из-за того, что люди попросту не знают, какие компании - производители процессоров являются топовыми. В данной статье мы попробуем подробно выяснить этот вопрос.

Одним из безусловных лидеров на современном рынке процессоров для смартфонов является компания Qualcomm. Основана она была в 1985 году в Сан-Диего, Калифорния, двумя профессорами Массачусетского Технологического Университета Ирвином Джейкобсом и Эндрю Витерби. Компания занималась исследованиями в области беспроводных средств связи, а так же разработками однокристальных схем (SoC). Qualcomm сотрудничала с такими корпорациями, как Ericsson, Kyocera и Atheros.

Спектр деятельности компании Qualcomm включал в себя производство мобильных процессоров и коммуникационных решений для смартфонов. Базируется линейка процессоров на архитектуре ARM и имеет широкий модельный ряд, разделённый на несколько классификаций: более ранние процессоры Qualcomm S1, S2, S3 и S4, и современные Qualcomm 200, 400, 600 и 800.

Самый мощный процессор на начало 2015-го является Snapdragon 810, впервые появившийся в смартфоне LG G FLEX2 . В нём 8-ми ядерный процессор Qualcomm Snapdragon 810 (MSM8994), с тактовой частотой до 2 ГГц.

Предыдущая версия Snapdragon 805 используется в смартфонах Samsung Galaxy S5 , Google Nexus 6, LG G3. Количество «баллов» при тестировании с помощью приложения Antutu Benchmark – 37780.

Компания Nvidia «родилась» в 1993 году в городе Санта – Клара, Калифорния, где и сейчас находится её штаб-квартира. Основателем компании является бизнесмен и специалист в области электронных технологий Хуан Жен Сюнь.

Название компании Nvidia известно практически каждому пользователю персонального компьютера, так как она является производителем популярной линейки видеокарт для ПК и ноутбуков Nvidia GeForce. Так же компания занимается разработкой процессоров для мобильный устройств (планшетов, смартфонов и т.д) на базе ARM, объединённых в общую линейку Tegra (Tegra 2,3, 4, K1 и т.д).

Последним поколением процессоров линейки Tegra является Nvidia Tegra K1. Его характеристики – частота 2,3 ГГц и четыре ядра. Этот процессор используют в устройствах Google Nexus , Lenovo и Acer. Баллы Antutu – 43851.

Южно-корейская компания Samsung была основана ещё в далёком 1938 году как компания, занимающаяся поставкой пищевого продовольствия. Однако к концу 60-х годов компания весьма крупно реформировалась и перешла на производство электроники, что до сих пор и является основной сферой её деятельности. Штаб-квартира находится в Сеуле.

Самсунг производит очень широкий спектр устройств: мобильные телефоны, смартфоны, планшеты, мониторы, двд-проигрыватели и т.д. Разумеется, являясь одним из самых крупных в мире производителей смартфонов, компания не могла обойти стороной и сферу производства процессоров для этих устройств.

Линейка процессоров Самсунг носит название Exynos. Базой является архитектура ARM. На конец 2014-го года самыми современными являются процессоры Samsung Exynos 5 Octa 5420 (1,9 ГГц, четыре ядра) и Samsung Exynos 5 Octa 5422 (2,1 ГГц, четыре ядра). Используются в ряду устройств Samsung Galaxy: S5, Note 3 и т.д. Так же компании Apple и Samsung договорились о сотрудничестве и в 2015 году смартфоны и планшеты Apple будут выходить с процессорами произведенными на заводе Samsung.
Баллы Antutu для Exynos 5 Octa 5420 – 34739.

MediaTek MT

Компания, основанная в 1997 году китайскими бизнесменами и специалистами по электронике Цзаем Мингаем и Чжо Чжинчже, базируется в Тайваньском парке высоких технологий в городе Синчжу (хотя имеет множество подразделений по всему миру) и занимается разработкой систем хранения данных, компонентов для мобильных телефонов, смартфонов и планшетов.

Наиболее широкую известность этой компании принесло производство процессоров для мобильных устройств в разных ценовых категориях. Mediatek называют главным конкурентом Qualcomm. Наиболее производительными процессорами для смартфонов на конец 2014-го являются MT6595 (2ГГц, 4 ядра), MT6735 (1,5 ГГц и 4 ядра) и MT6592M (8 ядер и 2 ГГц). Используются процессоры МТ многими компаниями-производителями смартфонов, от Sony до LG. Рейтинг в antutu для MT6592 – 30217.

Выбор смартфонов достаточно широк, так же, как и ряд характеристик. Покупателю нужно всего лишь выбрать подходящий! Внимательно подходите к выбору смартфона, и он будет служить вам верой и правдой достаточно долго.

Корни нашего цифрового образа жизни определённо растут из полупроводников, которые позволили создавать сложные вычислительные чипы на основе транзисторов. Они хранят и обрабатывают данные, что и является основой современных микропроцессоров. Полупроводники, которые сегодня изготавливаются из песка, являются ключевым компонентом практически любого электронного устройства, от компьютеров до ноутбуков и сотовых телефонов. Даже машины теперь не обходятся без полупроводников и электроники, поскольку полупроводники управляют системой кондиционирования воздуха, процессом впрыска топлива, зажиганием, люком, зеркалами и даже рулевым управлением (BMW Active Steering). Сегодня почти любое устройство, которое потребляет энергию, построено на полупроводниках.

Микропроцессоры, без сомнения, находятся среди самых сложных полупроводниковых продуктов, поскольку в скором времени число транзисторов достигнет миллиарда, а спектр функциональности поражает уже сегодня. Скоро выйдут двуядерные процессоры Core 2 на почти готовом 45-нм техпроцессе Intel, причём содержать они будут уже 410 миллионов транзисторов (хотя их большая часть будет использоваться для 6-Мбайт кэша L2). 45-нм процесс назван так по размеру одного транзистора, который теперь примерно в 1 000 раз меньше диаметра человеческого волоса. В определённой степени именно поэтому электроника начинает управлять всем в нашей жизни: даже когда размеры транзистора были больше, производить не очень сложные микросхемы было очень дёшево, бюджет транзисторов был весьма большим.

В нашей статье мы рассмотрим основы производства микропроцессоров, но также коснёмся и истории процессоров, архитектуры и рассмотрим разные продукты на рынке. В Интернете можно найти немало интересной информации, кое-что перечислено ниже.

  • Wikipedia: Microprocessor . В этой статье рассмотрены разные типы процессоров и приведены ссылки на производителей и дополнительные страницы Wiki, посвящённые процессорам.
  • Wikipedia: Microprocessors (Category) . В разделе, посвящённом микропроцессорам, приведено ещё больше ссылок и информации.

Конкуренты в сфере ПК: AMD и Intel

Штаб-квартира компании Advanced Micro Devices Inc., основанной в 1969, располагается в калифорнийском Саннивейле, а "сердце" компании Intel, которая была образована всего на год раньше, располагается в нескольких километрах, в городе Санта-Клара. У AMD сегодня есть два завода: в Остине (Техас, США) и в Дрездене (Германия). Скоро в действие вступит новый завод. Кроме того, AMD объединила усилия с IBM по разработке процессорных технологий и по производству. Конечно, всё это - лишь доля от размера Intel, поскольку у этого лидера рынка сегодня работают почти 20 заводов в девяти местах. Примерно половина из них используется для производства микропроцессоров. Поэтому, когда вы сравниваете AMD и Intel, помните, что вы сравниваете Давида и Голиафа.

У Intel есть бесспорное преимущество в виде огромных производственных мощностей. Да, компания сегодня лидирует по внедрению передовых технологических процессов. Intel примерно на год опережает AMD в этом отношении. В результате Intel может использовать в своих процессорах большее число транзисторов и больший объём кэша. AMD, в отличие от Intel, приходится максимально эффективно оптимизировать техпроцесс, чтобы не отстать от конкурента и выпускать достойные процессоры. Конечно, дизайн процессоров и их архитектура сильно различаются, но технический процесс производства построен на тех же базовых принципах. Хотя, конечно, и в нём отличий много.

Производство микропроцессоров

Производство микропроцессоров состоит из двух важных этапов. Первый заключается в производстве подложки, что AMD и Intel осуществляют на своих заводах. Сюда входит и придание подложке проводящих свойств. Второй этап - тест подложек, сборка и упаковка процессора. Последнюю операцию обычно производят в менее дорогих странах. Если вы посмотрите на процессоры Intel, то найдёте надпись, что упаковка была осуществлена в Коста-Рике, Малайзии, на Филиппинах и т.д.

AMD и Intel сегодня пытаются выпускать продукты для максимального числа сегментов рынка, причём, на основе минимально возможного ассортимента кристаллов. Прекрасный пример - линейка процессоров Intel Core 2 Duo. Здесь есть три процессора с кодовыми названиями для разных рынков: Merom для мобильных приложений, Conroe - настольная версия, Woodcrest - серверная версия. Все три процессора построены на одной технологической основе, что позволяет производителю принимать решения на последних этапах производства. Можно включать или отключать функции, а текущий уровень тактовых частот даёт Intel прекрасный процент выхода годных кристаллов. Если на рынке повысился спрос на мобильные процессоры, Intel может сфокусироваться на выпуске моделей Socket 479. Если возрос спрос на настольные модели, то компания будет тестировать, валидировать и упаковывать кристаллы для Socket 775, в то время как серверные процессоры упаковываются под Socket 771. Так создаются даже четырёхядерные процессоры: два двуядерных кристалла устанавливаются в одну упаковку, вот мы и получаем четыре ядра.

Как создаются чипы

Производство чипов заключается в наложении тонких слоёв со сложным "узором" на кремниевые подложки. Сначала создаётся изолирующий слой, который работает как электрический затвор. Сверху затем накладывается фоторезистивный материал, а нежелательные участки удаляются с помощью масок и высокоинтенсивного облучения. Когда облучённые участки будут удалены, под ними откроются участки диоксида кремния, который удаляется с помощью травления. После этого удаляется и фоторезистивный материал, и мы получаем определённую структуру на поверхности кремния. Затем проводятся дополнительные процессы фотолитографии, с разными материалами, пока не будет получена желаемая трёхмерная структура. Каждый слой можно легировать определённым веществом или ионами, меняя электрические свойства. В каждом слое создаются окна, чтобы затем подводить металлические соединения.

Что касается производства подложек, то из цельного монокристалла-цилиндра их необходимо нарезать тонкими "блинами", чтобы потом легко разрезать на отдельные кристаллы процессоров. На каждом шаге производства выполняется сложное тестирование, позволяющее оценить качество. Для тестов каждого кристалла на подложке используются электрические зонды. Наконец, подложка разрезается на отдельные ядра, нерабочие ядра сразу же отсеиваются. В зависимости от характеристик, ядро становится тем или иным процессором и заключается в упаковку, которая облегчает установку процессора на материнскую плату. Все функциональные блоки проходят через интенсивные стресс-тесты.

Всё начинается с подложек

Первый шаг в производстве процессоров выполняется в чистой комнате. Кстати, важно отметить, что подобное технологичное производство представляет собой скопление огромного капитала на квадратный метр. На постройку современного завода со всем оборудованием легко "улетают" 2-3 млрд. долларов, да и на тестовые прогоны новых технологий требуется несколько месяцев. Только затем завод может серийно выпускать процессоры.

В общем, процесс производства чипов состоит из нескольких шагов обработки подложек. Сюда входит и создание самих подложек, которые в итоге будут разрезаны на отдельные кристаллы.

Всё начинается с выращивания монокристалла, для чего затравочный кристалл внедряется в ванну с расплавленным кремнием, который находится чуть выше точки плавления поликристаллического кремния. Важно, чтобы кристаллы росли медленно (примерно день), чтобы гарантировать правильное расположение атомов. Поликристаллический или аморфный кремний состоит из множества разномастных кристаллов, которые приведут к появлению нежелательных поверхностных структур с плохими электрическими свойствами. Когда кремний будет расплавлен, его можно легировать с помощью других веществ, меняющих его электрические свойства. Весь процесс происходит в герметичном помещении со специальным воздушным составом, чтобы кремний не окислялся.

Монокристалл разрезается на "блины" с помощью кольцевой алмазной пилы, которая очень точная и не создаёт крупных неровностей на поверхности подложек. Конечно, при этом поверхность подложек всё равно не идеально плоская, поэтому нужны дополнительные операции.

Сначала с помощью вращающихся стальных пластин и абразивного материала (такого, как оксид алюминия), снимается толстый слой с подложек (процесс называется притиркой). В результате устраняются неровности размером от 0,05 мм до, примерно, 0,002 мм (2 000 нм). Затем следует закруглить края каждой подложки, поскольку при острых кромках могут отслаиваться слои. Далее используется процесс травления, когда с помощью разных химикатов (плавиковая кислота, уксусная кислота, азотная кислота) поверхность сглаживается ещё примерно на 50 мкм. Физически поверхность не ухудшается, поскольку весь процесс полностью химический. Он позволяет удалить оставшиеся погрешности в структуре кристалла, в результате чего поверхность будет близка к идеалу.

Последний шаг - полировка, которая сглаживает поверхность до неровностей, максимум, 3 нм. Полировка осуществляется с помощью смеси гидроксида натрия и гранулированного диоксида кремния.

Сегодня подложки для микропроцессоров имеют диаметр 200 или 300 мм, что позволяет производителям чипов получать с каждой из них множество процессоров. Следующим шагом будут 450-мм подложки, но раньше 2013 года ожидать их не следует. В целом, чем больше диаметр подложки, тем больше можно произвести чипов одинакового размера. 300-мм подложка, например, даёт более чем в два раза больше процессоров, чем 200-мм.

Мы уже упоминали легирование, которое выполняется во время роста монокристалла. Но легирование производится и с готовой подложкой, и во время процессов фотолитографии позднее. Это позволяет менять электрические свойства определённых областей и слоёв, а не всей структуры кристалла

Добавление легирующего вещества может происходить через диффузию. Атомы легирующего вещества заполняют свободное пространство внутри кристаллической решётки, между структурами кремния. В некоторых случаях можно легировать и существующую структуру. Диффузия осуществляется с помощью газов (азот и аргон) или с помощью твёрдых веществ или других источников легирующего вещества.

Ещё один подход к легированию заключается в ионной имплантации, которая очень полезна в деле изменения свойств подложки, которая была легирована, поскольку ионная имплантация осуществляется при обычной температуре. Поэтому существующие примеси не диффундируют. На подложку можно наложить маску, которая позволяет обрабатывать только определённые области. Конечно, об ионной имплантации можно говорить долго и обсуждать глубину проникновения, активацию добавки при высокой температуре, канальные эффекты, проникновение в оксидные уровни и т.д., но это выходит за рамки нашей статьи. Процедуру можно повторять несколько раз во время производства.

Чтобы создать участки интегральной схемы, используется процесс фотолитографии. Поскольку при этом нужно облучать не всю поверхность подложки, то важно использовать так называемые маски, которые пропускают излучение высокой интенсивности только на определённые участки. Маски можно сравнить с чёрно-белым негативом. Интегральные схемы имеют множество слоёв (20 и больше), и для каждого из них требуется своя маска.

Структура из тонкой хромовой плёнки наносится на поверхность пластины из кварцевого стекла, чтобы создать шаблон. При этом дорогие инструменты, использующие поток электронов или лазер, прописывают необходимые данные интегральной схемы, в результате чего мы получаем шаблон из хрома на поверхности кварцевой подложки. Важно понимать, что каждая модификация интегральной схемы приводит к необходимости производства новых масок, поэтому весь процесс внесения правок очень затратный. Для очень сложных схем маски создаются весьма долго.

С помощью фотолитографии на кремниевой подложке формируется структура. Процесс повторяется несколько раз, пока не будет создано множество слоёв (более 20). Слои могут состоять из разных материалов, причём, нужно ещё и продумывать соединения микроскопическими проволочками. Все слои можно легировать.

Перед тем, как начнётся процесс фотолитографии, подложка очищается и нагревается, чтобы удалить липкие частицы и воду. Затем подложка с помощью специального устройства покрывается диоксидом кремния. Далее на подложку наносится связывающий агент, который гарантирует, что фоторезистивный материал, который будет нанесён на следующем шаге, останется на подложке. Фоторезистивный материал наносится на середину подложки, которая потом начинает вращаться с большой скоростью, чтобы слой равномерно распределился по всей поверхности подложки. Подложка вновь затем нагревается.

Затем через маску обложка облучается квантовым лазером, жёстким ультрафиолетовым излучением, рентгеновским излучением, пучками электронов или ионов - могут использоваться все эти источники света или энергии. Пучки электронов применяются, главным образом, для создания масок, рентгеновские лучи и пучки ионов - для исследовательских целей, а в промышленном производстве сегодня доминируют жёсткое УФ-излучение и газовые лазеры.


Жёсткое УФ-излучение с длиной волны 13,5 нм облучает фоторезистивный материал, проходя через маску.

Для получения требуемого результата очень важны время проецирования и фокусировка. Плохая фокусировка приведёт к тому, что останутся лишние частицы фоторезистивного материала, поскольку некоторые отверстия в маске не будут облучены должным образом. То же самое получится, если время проецирования будет слишком маленьким. Тогда структура из фоторезистивного материала будет слишком широкой, участки под отверстиями будут недодержанными. С другой стороны, чрезмерное время проецирования создаёт слишком большие участки под отверстиями и слишком узкую структуру из фоторезистивного материала. Как правило, очень трудоёмко и сложно отрегулировать и оптимизировать процесс. Неудачная регулировка приведёт к серьёзным отклонениям и в соединительных проводниках.

Специальная шаговая проекционная установка перемещает подложку в нужное положение. Затем может проецироваться строчка или один участок, чаще всего соответствующий одному кристаллу процессора. Дополнительные микроустановки могут вносить дополнительные изменения. Они могут отлаживать существующую технологию и оптимизировать техпроцесс. Микроустановки обычно работают над площадями меньше 1 кв. мм, в то время как обычные установки покрывают площади большего размера.

Затем подложка переходит на новый этап, где удаляется ослабленный фоторезистивный материал, что позволяет получить доступ к диоксиду кремния. Существуют мокрый и сухой процессы травления, которыми обрабатываются участки диоксида кремния. Мокрые процессы используют химические соединения, а сухие процессы - газ. Отдельный процесс заключается и в удалении остатков фоторезистивного материала. Производители часто сочетают мокрое и сухое удаление, чтобы фоторезистивный материал был полностью удалён. Это важно, поскольку фоторезистивный материал органический, и если его не удалить, он может привести к появлению дефектов на подложке. После травления и очистки можно приступать к осмотру подложки, что обычно и происходит на каждом важном этапе, или переводить подложку на новый цикл фотолитографии.

Тест подложек, сборка, упаковка

Готовые подложки тестируются на так называемых установках зондового контроля. Они работают со всей подложкой. На контакты каждого кристалла накладываются контакты зонда, что позволяет проводить электрические тесты. С помощью программного обеспечения тестируются все функции каждого ядра.

С помощью разрезания из подложки можно получить отдельные ядра. На данный момент установки зондового контроля уже выявили, какие кристаллы содержат ошибки, поэтому после разрезания их можно отделить от годных. Раньше повреждённые кристаллы физически маркировались, теперь в этом нет необходимости, вся информация хранится в единой базе данных.

Крепление кристалла

Затем функциональное ядро нужно связать с процессорной упаковкой, используя клейкий материал.

Затем нужно провести проводные соединения, связывающие контакты или ножки упаковки и сам кристалл. Могут использоваться золотые, алюминиевые или медные соединения.


Большинство современных процессоров используют пластиковую упаковку с распределителем тепла.

Обычно ядро заключается в керамическую или пластиковую упаковку, что позволяет предотвратить повреждение. Современные процессоры оснащаются так называемым распределителем тепла, который обеспечивает дополнительную защиту кристалла, а также большую контактную поверхность с кулером.

Тестирование процессора

Последний этап подразумевает тестирование процессора, что происходит при повышенных температурах, в соответствии со спецификациями процессора. Процессор автоматически устанавливается в тестовый сокет, после чего происходит анализ всех необходимых функций.

Есть несколько популярных производителей процессоров для планшетов и смартфонов (мобильных компьютеров). Центральный процессор производит все вычисления в компьютерном аппарате, а тек же он производит обработку информации. В основном от процессора зависит производительность всей системы, но есть и другие компоненты, влияющие на итоговую производительность. От марки центрального процессора сильно зависит цена всего аппарата, выбирая производительный чип будьте готовы и заплатить за него не малые деньги.

Центральный процессор мобильных компьютеров представляет собой систему на чипе, включающую в себя и видеопроцессор, и модем, и различные контролеры и др. Такой чип имеет аббревиатуру SoC (System-on-a-Chip) – система на кристалле.

Немаловажным фактором производительности всего устройства является программное обеспечение. Операционная система и установленные приложения, которые рационально используют возможности центрального процессора могут значительно повысить производительность компьютера.

Qualcomm

Это американская компания, которая основана еще в 1985 году Ирвином Якобсом, Франклином Антонио и др.

Первый процессор фирмы Qualcomm сделан в 2005 году, лицензировав у компании ARM её процессорное ядро Cortex A8, компания Qualcomm разработала на его основе собственный микропроцессор для мобильных телефонов на ядре Scorpion. Чип полностью поддерживает набор инструкций ARMv7, используемый в Cortex A8, но является доработанным по сравнению с базовым ядром ARM. Scorpion работает на более высокой частоте, 1 ГГц и потребляет при этом вдвое меньше электроэнергии. Процессор выпускается по технологии 65 нм.

Сегодня лучшие чипы этой компании называются Snapdragon, самая новая разработка Qualcomm идет под маркой Snapdragon 810 . Этот чип имеет 8 ядер и работает на частоте 2 ГГц.

MediaTek


MediaTek Inc. - полупроводниковая компания, занимающаяся разработкой компонентов для беспроводной связи, оптических систем хранения данных, GPS, HDTV, DVD. Компания основана 28 мая 1997 года. Штаб-квартира расположена в Индустриальном и научном парке Синьчжу (Тайвань); подразделения существуют в Китае, Дании, ОАЭ, Индии, Японии, Южной Корее, Сингапуре, Великобритании, США и Швеции.

MediaTek не имеет собственных производственных мощностей и все производство организовано на заводах других фирм. Разрабатывает системы на кристалле для связи, HDTV, цифрового телевидения, DVD, GPS, Blu-ray.

Чипсеты MediaTek для мобильных телефонов позволили создать смартфоны в ценовом диапазоне ниже 200 долларов, имеющие хорошую производительность.

Последняя разработка для смартфонов называется MT6797 (Helio X20) . Этот чип имеет 10 ядер и работает на частоте до 2,5 ГГц.

Apple


Американская компания, делающая для своих продуктов и свои же комплектующие. Так обстоят дела и с процессорами. Для своих планшетов и смартфонов компания Apple производит и собственные процессоры.

Фирма Apple знаменита своими планшетами iPad и смартфонами iPhone, хотя это и не единственные продукты компании. Находится компания в Купертино, штат Калифорния.

Последний выпущенный процессор от Apple — это А9 и А9Х . И хотя эти чипы имеют 2 ядра и частоту работы 1,8 ГГц, но в связке с фирменной операционной системой iOS устройства, сделанные на чипах А9, получаются вполне производительными.

Свои процессоры Apple не продает другим производителям мобильных компьютеров и на своих устройствах не использует процессоры сторонних фирм.

Intel


Intel Corporation - американская корпорация, производящая широкий спектр электронных устройств и компьютерных компонентов, включая микропроцессоры, наборы системной логики (чипсеты) и др. Штаб-квартира - в городе Санта-Клара, штат Калифорния, США.

Очень популярны процессоры Intel для ноутбуков. А вот для планшетов и смартфонов Intel не является лидером по поставкам центральных процессоров. Продукция Intel в этом сегменте уступает другим фирмам. Популярный чип от Intel для мобильных устройств это – Intel Atom.

Последняя разработка от Intel – это процессор Intel Atom x7-Z8700 . Это 4 ядерный процессор с частотой работы 2,4 ГГц. Он подходит для решения повседневных задач и для несложных игр. Но главное преимущество процессоров от Intel – это экономичность.

Nvidia


Компания NVidia знаменита своими видеокартами. Так же она выпускает и процессоры для смартфонов и планшетов, называются эти чипы Tegra. NVIDIA Tegra - семейство систем на кристалле разработанное компанией NVIDIA как платформа для производства мобильных интернет-устройств. Кристалл Tegra объединяет в себе ARM-процессор, графический процессор, медиа- и DSP- процессоры, контроллеры памяти и периферийных устройств, имея при этом низкое энергопотребление.

Появлению SoC Tegra предшествовало приобретение компанией NVIDIA в 2007 году компании PortalPlayer, которая занималась разработкой и поставкой медиапроцессоров для iPod. Первая модель APX 2500 серии Tegra была анонсирована 12 февраля 2008 года, а полный анонс всей серии и линии продуктов на Tegra состоялся 2 июня, 2008 года.

Последняя разработка вышла в январе 2015 года. NVIDIA Tegra X1 (кодовое название - NVIDIA Erista) - шестое поколение системы на кристалле семейства NVIDIA Tegra. Этот чип имеет 8 ядер.

Чипы Tegra хорошо подойдут для устройств, которые планируется использовать в том числе и для сложных игр. Но цена этих процессоров высока.

Samsung


Samsung Group - южнокорейская группа компаний, основанная в 1938 году. На мировом рынке известен как производитель высокотехнологичных компонентов, телекоммуникационного оборудования, бытовой техники, аудио- и видеоустройств. Главный офис компании расположен в Сеуле.

Exynos - семейство ARM микропроцессоров компании Samsung Electronics, представляющих собой систему на кристалле SoC.

Последняя разработка в области мобильных процессоров: Exynos 7 Octa — содержит четыре ядра ARM Cortex-A57 (ARM Cortex-A72) и четыре ядра ARM Cortex-A53 по принципу ARM big.LITTLE.

Процессоры идут на производство собственных аппаратов.

Huawei


Для собственных аппаратов фирма Huawei разработала и выпускает процессоры Kirin. Последняя разработка - это чип Kirin 950 , который будет представлен в конце 2015 года. Он имеет 8 ядер и работает на частоте 2,4 ГГц. Компания Huawei производит собственные процессоры под брендом Hisilicon.

В конфигурацию Kirin 950 входят четыре процессорных ядра Cortex-A72, четыре Cortex-A53 и GPU Mali-T880. Вполне возможно, что именно на ней будет основан смартфон Honor 7 Plus.

Allwinner


Китайская компания, выпускает процессоры для бюджетных аппаратов. В основном используется в недорогих китайских планшетах от малоизвестных фирм.

Компания Allwinner на выставке CES 2015 представила свою новую однокристальную платформу A64 . Это первая 64-разрядная система производителя. Она предназначена для планшетов и стоит всего $5. При этом в её конфигурацию входят четыре процессорных ядра Cortex-A53. Платформа умеет декодировать видео разрешением до 4K в форматах H. 264 и H.265 (HEVC), а также поддерживает вывод изображения посредством HDMI.

ГДЕ производят процессоры Intel


Как я уже писал в предыдущем посту, на данный момент у компании Intel есть 4 завода, способных массово производить процессоры по технологии 32нм: D1D и D1C в штате Орегон, Fab 32 в штате Аризона и Fab 11X в Нью-Мексико.
Посмотрим как они устроены

Высота каждой фабрики Intel по производству процес-
соров на 300-мм кремниевых пластинах составляет 21
метр, а площадь достигает 100 тысяч квадратных мет-
ров. В здании завода можно выделить 4 основных уро
вня:

Уровень системы вентиляции

Микропроцессор состоит из миллионов транзисторов
- самая маленькая пылинка, оказавшаяся на кремние-
вой пластине, способна уничтожить тысячи транзисто-
ров. Поэтому важнейшим условием производства мик-
ропроцессоров является стерильная чистота помеще-
ний. Уровень системы вентиляции расположен на вер-
хнем этаже — здесь находятся специальные системы,
которые осуществляют 100% очистку воздуха, контро-
лируют температуру и влажность в производственных
помещениях. Так называемые «Чистые комнаты» де-
лятся на классы (в зависимости от количества пылинок
на единицу объема) и самая-самая (класс 1) примерно
в 1000 раз чище хирургической операционной. Для
устранения вибраций чистые комнаты располагаются
на собственном виброзащитном фундаменте.

Уровень «чистых комнат»

Этаж занимает площадь нескольких футбольных полей
- именно здесь изготавливают микропроцессоры. Спе-
циальная автоматизированная система осуществляет
перемещение пластин от одной производственной
станции к другой. Очищенный воздух подается через
систему вентиляции, расположенную в потолке, и уда-
ляется через специальные отверстия, расположенные
в полу.

Помимо повышенных требований к стерильности поме-
щений, «чистым» должен быть и работающий там пер-
сонал — только на этом уровне специалисты работают
в стерильных костюмах, которые защищают (благодаря
встроенной системе фильтрации, работающей от ба-
тареи) кремниевые пластины от микрочастиц текстиль-
ной пыли, волос и частиц кожи.

Нижний уровень

Предназначен для систем поддерживающих работу фа-
брики (насосы, трансформаторы, силовые шкафы и т.п.)
Большие трубы (каналы) передают различные техни-
ческие газы, жидкости и отработанный воздух. Спец-
одежда сотрудников данного уровня включает каску, за-
щитные очки, перчатки и специальную обувь.

Инженерный уровень


Для постройки фабрики такого уровня требуется около 3 лет и порядка 5 миллиардов - именно эту сумму должен будет «отбить» завод в последующие 4 года (к тому времени как появятся новые технологический процесс и архитектура, необходимая для этого производительность - порядка 100 рабочих кремниевых пластин в час). Для постройки завода потребуется:
— более 19 000 тонн стали
— более 112 000 кубических метров бетона
— более 900 километров кабеля

КАК производят микропроцессоры


Технически современный микропроцессор выполнен в виде одной сверхбольшой интегральной схемы, состоящей из нескольких миллиардов элементов — это одна из самых сложных конструкций, созданных человеком. Ключевыми элементами любого микропроцессора являются дискретные переключатели - транзисторы. Блокируя и пропуская электрический ток (включение-выключение), они дают возможность логическим схемам компьютера работать в двух состояниях, то есть в двоичной системе. Размеры транзисторов измеряются в нанометрах. Один нанометр (нм) - это одна миллиардная часть метра.

Вкратце процесс изготовления процессора выглядит так: из расплавленного кремния на специальном оборудовании выращивают монокристалл цилиндрической формы. Получившийся слиток охлаждают и режут на «блины», поверхность которых тщательно выравнивают и полируют до зеркального блеска. Затем в «чистых комнатах» полупроводниковых заводов на кремниевых пластинах методами фотолитографии и травления создаются интегральные схемы. После повторной очистки пластин, специалисты лаборатории под микроскопом производят выборочное тестирование процессоров - если все «ОК», то готовые пластины разрезают на отдельные процессоры, которые позже заключают в корпуса.

Давайте рассмотрим весь процесс более подробно.

Первоначально берется SiO2 в виде песка, который в дуговых печах (при температуре около 1800°C) восстанавливают коксом:
SiO2 + 2C = Si + 2CO

Такой кремний носит название «технический» и имеет чистоту 98-99.9%. Для производства процессоров требуется гораздо более чистое сырье, называемое «электронным кремнием» — в таком должно быть не более одного чужеродного атома на миллиард атомов кремния. Для очистки до такого уровня, кремний буквально «рождается заново». Путем хлорирования технического кремния получают тетрахлорид кремния (SiCl4), который в дальнейшем преобразуется в трихлорсилан (SiHCl3):
3SiCl4 + 2H2 + Si ↔ 4SiHCl3

Данные реакции с использованием рецикла образующихся побочных кремнийсодержащих веществ снижают себестоимость и устраняют экологические проблемы:
2SiHCl3 ↔ SiH2Cl2 + SiCl4
2SiH2Cl2 ↔ SiH3Cl + SiHCl3
2SiH3Cl ↔ SiH4 + SiH2Cl2
SiH4 ↔ Si + 2H2

Получившийся в результате водород можно много где использовать, но самое главное то, что был получен «электронный» кремний, чистый-пречистый (99,9999999%). Чуть позже в расплав такого кремния опускается затравка («точка роста»), которая постепенно вытягивается из тигля. В результате образуется так называемая «буля» — монокристалл высотой со взрослого человека. Вес соответствующий — на производстве такая буля весит порядка 100 кг.

Слиток шкурят «нулёвкой»:) и режут алмазной пилой. На выходе - пластины (кодовое название «вафля») толщиной около 1 мм и диаметром 300 мм (~12 дюймов; именно такие используются для техпроцесса в 32нм с технологией HKMG, High-K/Metal Gate).

Теперь самое интересное -- в отшлифованные кремниевые пластины необходимо перенести структуру будущего процессора, то есть внедрить в определенные участки кремниевой пластины примеси, которые в итоге и образуют транзисторы. Как это сделать?

Проблема решается с помощью технологии фотолитографии — процесса избирательного травления поверхностного слоя с использованием защитного фотошаблона. Технология построена по принципу «свет-шаблон-фоторезист» и проходит следующим образом:
— На кремниевую подложку наносят слой материала, из которого нужно сформировать рисунок. На него наносится фоторезист — слой полимерного светочувствительного материала, меняющего свои физико-химические свойства при облучении светом.
— Производится экспонирование (освещение фотослоя в течение точно установленного промежутка времени) через фотошаблон
— Удаление отработанного фоторезиста.
Нужная структура рисуется на фотошаблоне — как правило, это пластинка из оптического стекла, на которую фотографическим способом нанесены непрозрачные области. Каждый такой шаблон содержит один из слоев будущего процессора, поэтому он должен быть очень точным и практичным.

Пластина облучается потоком ионов (положительно или отрицательно заряженных атомов), которые в заданных местах проникают под поверхность пластины и изменяют проводящие свойства кремния (зеленые участки — это внедренные чужеродные атомы).

В фотографии свет проходил через негативную пленку, падал на поверхность фотобумаги и менял ее химические свойства. В фотолитографии принцип схожий: свет пропускается через фотошаблон на фоторезист, и в тех местах, где он прошел через маску, отдельные участки фоторезиста меняют свойства. Через маски пропускается световое излучение, которое фокусируется на подложке. Для точной фокусировки необходима специальная система линз или зеркал, способная не просто уменьшить, изображение, вырезанное на маске, до размеров чипа, но и точно спроецировать его на заготовке. Напечатанные пластины, как правило, в четыре раза меньше, чем сами маски.

Весь отработанный фоторезист (изменивший свою растворимость под действием облучения) удаляется специальным химическим раствором - вместе с ним растворяется и часть подложки под засвеченным фоторезистом. Часть подложки, которая была закрыта от света маской, не растворится. Она образует проводник или будущий активный элемент - результатом такого подхода становятся различные картины замыканий на каждом слое микропроцессора.

Собственно говоря, все предыдущие шаги были нужны для того, чтобы создать в необходимых местах полупроводниковые структуры путем внедрения донорной (n-типа) или акцепторной (p-типа) примеси. Допустим, нам нужно сделать в кремнии область концентрации носителей p-типа, то есть зону дырочной проводимости. Для этого пластину обрабатывают с помощью устройства, которое называется имплантер — ионы бора с огромной энергией выстреливаются из высоковольтного ускорителя и равномерно распределяются в незащищенных зонах, образованных при фотолитографии.

Там, где диэлектрик был убран, ионы проникают в слой незащищенного кремния - в противном случае они «застревают» в диэлектрике. После очередного процесса травления убираются остатки диэлектрика, а на пластине остаются зоны, в которых локально есть бор. Понятно, что у современных процессоров может быть несколько таких слоев — в таком случае на получившемся рисунке снова выращивается слой диэлектрика и далее все идет по протоптанной дорожке — еще один слой фоторезиста, процесс фотолитографии (уже по новой маске), травление, имплантация…

Логические элементы, которые образовались в процессе фотолитографии, должны быть соединены друг с другом. Для этого пластины помещают в раствор сульфата меди, в котором под действием электрического тока атомы металла «оседают» в оставшихся «проходах» — в результате этого гальванического процесса образуются проводящие области, создающие соединения между отдельными частями процессорной «логики». Излишки проводящего покрытия убираются полировкой.

Ура - самое сложное позади. Осталось хитрым способом соединить «остатки» транзисторов — принцип и последовательность всех этих соединений (шин) и называется процессорной архитектурой. Для каждого процессора эти соединения различны - хоть схемы и кажутся абсолютно плоскими, в некоторых случаях может использоваться до 30 уровней таких «проводов».

Когда обработка пластин завершена, пластины передаются из производства в монтажно-испытательный цех. Там кристаллы проходят первые испытания, и те, которые проходят тест (а это подавляющее большинство), вырезаются из подложки специальным устройством.

На следующем этапе процессор упаковывается в подложку (на рисунке - процессор Intel Core i5, состоящий из CPU и чипа HD-графики).

Подложка, кристалл и теплораспределительная крышка соединяются вместе - именно этот продукт мы будем иметь ввиду, говоря слово «процессор». Зеленая подложка создает электрический и механический интерфейс (для электрического соединения кремниевой микросхемы с корпусом используется золото), благодаря которому станет возможным установка процессора в сокет материнской платы - по сути, это просто площадка, на которой разведены контакты от маленького чипа. Теплораспределительная крышка является термоинтерфейсом, охлаждающим процессор во время работы - именно к этой крышке будут примыкать система охлаждения, будь то радиатор кулера или здоровый водоблок.

Теперь представьте себе, что компания анонсирует, например, 20 новых процессоров. Все они различны между собой - количество ядер, объемы кэша, поддерживаемые технологии… В каждой модели процессора используется определенное количество транзисторов (исчисляемое миллионами и даже миллиардами), свой принцип соединения элементов… И все это надо спроектировать и создать/автоматизировать - шаблоны, линзы, литографии, сотни параметров для каждого процесса, тестирование… И все это должно работать круглосуточно, сразу на нескольких фабриках… В результате чего должны появляться устройства, не имеющие права на ошибку в работе… А стоимость этих технологических шедевров должна быть в рамках приличия…

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то