Понятие uml. Как проектируют программы: от UML до автоматного подхода. Концептуальная модель UML

Если перед вами стоит задача описать работу организации, у вас на руках огромное количество неупорядоченной информации. Вы в растерянности и не знаете, с какой стороны ко всему этому подступиться, советую следующую последовательность действий:

2. Определить какой тип модели бизнес процесса вам необходимо построить и выбрать список методологий, которые могут быть использованы при моделировании (используйте путеводитель, описанный ниже);

3. Сравнить методологии и нотации моделирования для вашего типа модели и выбрать подходящую для вас методологию:

  • Методологии моделирования бизнес процессов верхнего уровня и потоков данных;
  • Методологии моделирования потоков работ;
  • Методологии моделирования структуры информации.

4. Построить модель.

Путеводитель по нотациям и методологиям

Для того, чтобы не запутаться во всевозможных методологиях и нотациях, которые используются для построения самых распространенных моделей организации (модели управления — бизнес процессы на верхнем уровне, модели потоков работ и информационной модели — структура информации), предлагаю путеводитель и его дальнейшую детализацию.

Если хотя бы одно название методологии, нотации вам не знакомо, то читайте далее, если все знакомо, но интересно и хочется освежить память, то бегло просмотрите.

Классические методологии

Несмотря на свое различие, в основном связанное с названием диаграмм и видов используемых объектов, современные методологии описания бизнес процессов практически идентичны и представляют из себя незначительные изменения классических стандартов.

Достоинства UML

  • 1. UML объектно-ориентированный язык, в результате чего методы описания результатов анализа и проектирования семантически близки к методам программирования на современных ОО-языках;
  • 2. UML позволяет описать систему практически со всех возможных точек зрения и разные аспекты поведения системы;
  • 3. Диаграммы UML сравнительно просты для чтения после достаточно быстрого ознакомления с его синтаксисом;
  • 4. Сокращение числа возможных ошибок таких как: несогласованные параметры подпрограмм, несогласованное изменение атрибутов;
  • 5. Повторное использование. Предполагается какой-либо вариант многократного использования уже существующего проекта или его части в новом проекте;
  • 6. UML расширяет и позволяет вводить собственные текстовые и графические стереотипы, что способствует его применению не только в сфере программной инженерии;
  • 7. UML получил широкое распространение и динамично развивается.

Недостатки UML

Несмотря на то, что UML достаточно широко распространённый и используемый стандарт, его часто критикуют из-за следующих недостатков:

  • 1. Избыточность языка. UML часто критикуется, как неоправданно большой и сложный. Он включает много избыточных или практически неиспользуемых диаграмм и конструкций. Чаще это можно услышать в отношении UML 2.0, чем UML 1.0, так как более новые ревизии включают больше компромиссов.
  • 2. Неточная семантика. Так как UML определён комбинацией себя (абстрактный синтаксис), OCL (языком описания ограничений -- формальной проверки правильности) и Английского (подробная семантика), то он лишен скованности присущей языкам, точно определённым техниками формального описания. В некоторых случаях абстрактный синтаксис UML, OCL и Английский противоречат друг другу, в других случаях они неполные. Неточность описания самого UML одинаково отражается на пользователях и поставщиках инструментов, приводя к несовместимости инструментов из-за уникального трактования спецификаций.
  • 3. Проблемы при изучении и внедрении. Вышеописанные проблемы делают проблематичным изучение и внедрение UML, особенно когда руководство насильно заставляет использовать UML инженеров при отсутствии у них предварительных навыков.
  • 4. Только код отражает код. Ещё одно мнение -- что важны рабочие системы, а не красивые модели. Как лаконично выразился Джек Ривс, «The code is the design» («Код и есть проект»). В соответствии с этим мнением, существует потребность в лучшем способе написания ПО; UML ценится при подходах, которые компилируют модели для генерирования исходного или выполнимого кода. Однако этого всё же может быть недостаточно, так как UML не имеет свойств полноты по Тьюрингу и любой сгенерированный код будет ограничен тем, что может разглядеть или предположить интерпретирующий UML инструмент.
  • 5. Кумулятивная нагрузка/Рассогласование нагрузки (Cumulative Impedance/Impedance mismatch). Рассогласование нагрузки -- термин из теории системного анализа для обозначения неспособности входа системы воспринять выход другой. Как в любой системе обозначений UML может представить одни системы более кратко и эффективно, чем другие. Таким образом, разработчик склоняется к решениям, которые более комфортно подходят к переплетению сильных сторон UML и языков программирования. Проблема становится более очевидной, если язык разработки не придерживается принципов ортодоксальной объектно-ориентированной доктрины (не старается соответствовать традиционным принципам ООП).
  • 6. Пытается быть всем для всех. UML -- это язык моделирования общего назначения, который пытается достигнуть совместимости со всеми возможными языками разработки. В контексте конкретного проекта, для достижения командой проектировщиков определённой цели, должны быть выбраны применимые возможности UML. Кроме того, пути ограничения области применения UML в конкретной области проходят через формализм, который не полностью сформулирован, и который сам является объектом критики.
  • 7. Усложнение методологии. Применение объектно-ориентированного подхода требует введения дополнительных способов представления информации о предметной области и методов ее анализа. язык UML включает более 100 различных условных обозначений. Для успешного использования подобного механизма требуется наличие определенного уровня квалификации у специалистов. Для небольших проектов более эффективным может оказаться применение классических методов разработки. Разработка проектов, для которых важнейшей задачей является описание предметной области, и для которых невозможно найти человека, понимающего эту предметную область в целом также требует использования традиционных подходов, в виду их большей доступности для неспециалистов.

UML предназначен для моделирования. Сами авторы UML определяют свое детище следующим образом.

Язык UML ‒ это графический язык моделирования общего назначения, предназначенный для спецификации, визуализации, проектирования и документирования всех артефактов, создаваемых при разработке программных систем.

Мы полностью согласны с этим определением, и не только одобряем выбор ключевых слов, но придаем большое значение порядку, в котором они перечислены.

1.2.1. Спецификация

В типичных случаях в процессе разработки приложений участвуют по меньше мере два действующих лица: заказчик (конкретный человек или группа лиц, или организация) и разработчик (это может быть программист-одиночка, временная команда проекта или целая организация, специализирующаяся на разработке программного обеспечения). Из-за того, что действующих лиц двое, очень многое зависит от степени их взаимопонимания.

Одним из ключевых этапов разработки приложения является определение того, каким требованиям должно удовлетворять разрабатываемое приложение. В результате этого этапа появляется формальный или неформальный документ (артефакт), который называют по-разному, имея в виду примерно одно и то же: постановка задачи, требования, техническое задание, внешние спецификации и др.

Аналогичные по назначению, но, может быть, отличные по форме и содержанию артефакты появляются и на других этапах разработки, особенно если в разработку включено много действующих лиц. Для них также используются различные названия: функциональные спецификации, архитектура приложения и др. Мы будем все такие артефакты называть спецификациями.

Спецификация ‒ это декларативное описание того, как нечто устроено или работает.

Необходимо принимать во внимание три толкования спецификаций.

  • То, которое имеет в виду действующее лицо, являющееся источником спецификации (например, заказчик).
  • То, которое имеет в виду действующее лицо, являющееся потребителем спецификации (например, разработчик).
  • То, которое объективно обусловлено природой специфицируемого объекта.

Эти три трактовки спецификаций могут не совпадать, и, к сожалению, как показывает практика, сплошь и рядом не совпадают, причем значительно. Заказчик может не осознавать своих объективных потребностей, или неверно их интерпретировать, или заблуждаться относительно природы своих затруднений, пытаясь с помощью заказного офисного приложения лечить симптомы, а не причину болезни своего бизнеса. Разработчик может не разбираться в предметной области заказчика и интерпретировать формулировки спецификаций совершенно превратным образом. Если же в формулировке спецификаций участвует разработчик, то злоупотребление технической терминологией может совершенно дезориентировать заказчика.

Основное назначение UML ‒ предоставить, с одной стороны, достаточно формальное , с другой стороны, достаточно удобное , и, с третьей стороны, достаточно универсальное средство , позволяющее до некоторой степени снизить риск расхождений в толковании спецификаций.

1.2.2. Визуализация

Известная поговорка гласит, что лучше один раз увидеть, чем сто раз услышать. Мы добавим: тем паче тысячу раз прочитать пересказ. Особенности человеческого восприятия таковы, что текст с картинками воспринимается легче, чем голый текст. А картинки с текстом (это называется "комиксы") ‒ еще легче. Модели UML допускают представление в форме картинок, причем эти картинки наглядны, интуитивно понятны, практически однозначно интерпретируются и легко составляются. Фактически, развитие и детализация этого тезиса составляет большую часть содержания остальной части книги. Мы не будем забегать вперед, и просто приведем пример без всяких объяснений.

Разве что-нибудь непонятно?

Таким образом, второе по важности назначение UML состоит в том, чтобы служить адекватным средством коммуникации между людьми. Разумеется, наглядность визуализации моделей UML имеет значение, только если они должны составляться или восприниматься человеком ‒ это назначение UML не имеет отношения к компьютерам.

Графическое представление модели UML не тождественно самой модели. Это важное обстоятельство часто упускается из виду при первом знакомстве с UML.

1.2.3. Проектирование

В оригинале данное назначение UML определено с помощью слова construct, которое мы передаем осторожным термином "проектирование". Речь идет о том, что UML предназначен не только для описания абстрактных моделей приложений, но и для непосредственного манипулирования артефактами, входящими в состав этих приложений, в том числе такими, как программный код. Другими словами, одним из назначений UML является, например, создание таких моделей, для которых возможна автоматическая генерация программного кода (или фрагментов кода) соответствующих приложений. Более того, природа моделей UML такова, что возможен и обратный процесс: автоматическое построение модели по коду готового приложения.

По-английски автоматическое построение модели по коду готового приложения называется reverse engineering и обычно переводится на русский как "обратное проектирование". Нам этот перевод категорически не нравится: какое же это проектирование и почему оно обратное? Есть неплохой альтернативный вариант: "инженерный анализ программ", но он не получил пока распространения.

Сказанное в предыдущем абзаце требует оговорок "до некоторой степени", "в известной мере" буквально после каждого утверждения. Самое досадное, что в данный момент точно указать "степень" и "меру" не представляется возможным. Причина не в том, что никто не удосужился этим заняться, а в том, что это очень трудная задача, но не безнадежная. Инструменты, поддерживающие UML, все время совершенствуются, так что в перспективе третье предназначение UML может выйти и на первое место.

Некоторым уставшим от бесконечной отладки разработчикам может показаться, что стоит изучить UML, и все проблемы программирования будут решены. К сожалению, это не так.

1.2.4. Документирование

Модели UML являются артефактами, которые можно хранить и использовать как в форме электронных документов, так и в виде твердой копии. В последних версиях UML с целью достижения более полного соответствия этому назначению сделано довольно много. В частности, специфицировано представление моделей UML в форме документов в формате XMI, что обеспечивает практическую интероперабельность при работе с моделями. Другими словами, модели UML не являются вещью в себе, которой можно только любоваться ‒ это документы, которые можно использовать самыми разными способами, начиная с печати картинок и заканчивая автоматической генерацией человекочитаемых текстовых описаний.

XMI (XML Metadata Interchange) ‒ внешний формат данных, основанный на языке XML (схема и набор правил использования тэгов), предназначенное для сериализации моделей и обмена ими.

Поясним последнюю фразу предыдущего абзаца. Стандарт требует, чтобы во внутреннем представлении модели для каждого элемента моделирования было отведено место, где можно хранить неформальное текстовое описание этого элемента. Большинство инструментов это требование выполняют: буквально для каждой линии или фигуры на диаграмме можно ввести текст, который поясняет смысл и назначение именно этой линии или фигуры. Более того, многие инструменты умеют из этих текстовых описаний собирать цельные, вполне осмысленные и хорошо отформатированные текстовые документы, которые можно использовать именно как привычные текстовые описания моделируемой системы. К сожалению, это замечательная возможность на практике используется меньше, чем она того заслуживает. Дело в том, что так же, как программисты не любят и ленятся писать осмысленные комментарии к программному коду, так и архитекторы не любят и ленятся писать текстовые пояснения к своим диаграммам.

1.2.5. Чем НЕ является UML

Не следует думать, что UML ‒ это панацея от всех детских болезней программирования. Для ясного понимания назначения и области применения UML полезно сопоставить UML с другими родственными явлениями.

∇ Информационным технологиям от силы полвека ‒ это еще младенческий возраст для новой области человеческой деятельности.

Во-первых, UML не является языком программирования (хотя генерация кода не возбраняется, см. параграф 1.2.3). Дело не в том, что UML язык графический, а подавляющее большинство практических языков программирования являются текстовыми языками. Гораздо важнее то, что для моделей UML не определена операционная семантика , то есть, не определен способ выполнения моделей на компьютере. Это сделано вполне сознательно, в противном случае UML оказался бы зависимым от некоторой модели вычислимости, уровень абстрактности его концепций пришлось бы существенно снизить, и он не отвечал бы своему основному назначению: служить средством спецификации приложений и других систем на любом уровне абстракции и в различных предметных областях.

Во-вторых, UML не является спецификацией инструмента (хотя инструменты подразумеваются и имеются, например, Magic Draw , Rational Rose Enterprise , Visual Paradigm , Enterprise Architect , и др.). Сам язык никоим образом не навязывает то, как его нужно поддерживать инструментальными средствами. Решение всех вопросов, связанных с реализацией UML на компьютере полностью отдано на откуп разработчикам инструментов.

В-третьих, UML не является моделью процесса разработки приложений (хотя модель процесса разработки необходима и имеется множество различных моделей, предложенных разными авторами). Конечно, у авторов UML есть собственная модель процесса ‒ Rational Unified Process (RUP), которую они не могли не иметь в голове, разрабатывая язык, но, тем не менее, ими сделано все для того, чтобы устранить прямое влияние RUP на UML и сделать UML пригодным для использования в любой модели процесса или даже без оной.

У авторов этой книги тоже есть собственное мнение о взаимосвязи UML с моделью процесса разработки программного обеспечения (см. раздел 5.2), которое не может не сказываться на описании прагматики языка, но везде, где такое влияние замечено, сделаны соответствующие оговорки.

1.2.6. Способы использования UML

Из сказанного выше видно, что UML предназначен для решения различных задач, соответственно он может быть использован и практически используется по-разному. Далее мы перечисляем различные способы использования UML.

Рисование картинок . Графические средства UML можно и нужно использовать безотносительно ко всему остальному. Даже рисование диаграмм карандашом на бумаге позволяет упорядочить мысли и зафиксировать для себя существенную информацию о моделируемом приложении или иной системе.

Обмен информацией . Сообщество людей, применяющих и понимающих UML, стремительно растет. Если вы будете использовать UML, то вас будут понимать другие, и вы будете понимать других "с полувзгляда".

Спецификация систем . Это важнейший способ использования UML. И хотя не во всех случаях UML оказывается абсолютно адекватным средством спецификации, мы надеемся, что по мере развития языка все меньше будет оставаться таких исключений, где UML неприменим.

Повторное использование архитектурных решений . Повторное использование ранее разработанных решений ‒ ключ к повышению эффективности. Наше мнение по этому поводу изложено в разделе 5.2 . К сожалению, модели UML пока что повторно используются в весьма ограниченных масштабах.

Вариант использования drawing ("Рисование диаграмм") подразумевает изображение диаграмм UML с целью обдумывания, обмена идеями между людьми, документирования и тому подобного. Значимым для пользователя User результатом в этом случае является само изображение диаграмм. Вообще говоря, в этом варианте использования языка поддерживающий инструмент не очень нужен. Иногда рисование диаграмм от руки фломастером с последующим фотографированием цифровым аппаратом может оказаться практичнее.

Вариант использования modeling ("Моделирование систем") подразумевает создание и изменение модели системы в терминах тех элементов моделирования, которые предусматриваются метамоделью UML. Значимым результатом в этом случае является машинно-читаемый артефакт с описанием модели. Мы будем для краткости называть такой артефакт просто моделью, деятельность по составлению модели называть моделированием, а субъекта моделирования называть архитектором Architect .

Вариант использования development ("Разработка приложений") подразумевает детальное моделирование, реализацию и тестирование приложения в терминах UML. Значимым для пользователя Developer результатом в этом случае является работающее приложение, которое может быть скомпилировано в язык, поддерживаемый конкретной системой программирования Programming System или сразу интерпретировано средой выполнения инструмента. Этот вариант использования наиболее сложен в реализации.

Современные инструменты поддерживают указанные варианты использования далеко не в равной степени. Все инструменты умеют (плохо или хорошо) визуализировать все типы диаграмм UML, некоторые инструменты позволяют построить модель, допускающую какое-то дальнейшее использование, но только немногие инструменты могут генерировать исполняемый код и то, отнюдь, не для всех диаграмм. Имеется множество практических и организационных причин, по которым указанные выше варианты использования неравноправны и в разной степени поддержаны в современных инструментах. Некоторые из этих причин мы рассматриваем в последующих главах.

Унифицированный язык моделирования (UML) является стандартным инструментом для создания «чертежей» информационных систем (ИС). С помощью UML можно визуализировать, специфицировать, конструировать и документировать элементы этих систем.

UML пригоден для моделирования любых систем: от информационных систем масштаба предприятия до распределенных Web-приложений и даже встроенных систем реального времени. Это очень выразительный язык, позволяющий рассмотреть систему со всех точек зрения, имеющих отношение к ее разработке и последующему развертыванию. Несмотря на обилие выразительных возможностей, этот язык прост для понимания и использования. Изучение UML удобнее всего начинать с его концептуальной модели, которая включает в себя три основных элемента: базовые строительные блоки, правила, определяющие, как эти блоки могут сочетаться между собой, и некоторые общие механизмы языка.

UML является одной из составляющих процесса разработки ИС. Хотя UML не зависит от моделируемой реальности, лучше всего применять его, когда процесс моделирования основан на рассмотрении прецедентов использования, является итеративным и пошаговым, а сама система имеет четко выраженную архитектуру.

UML — это язык для визуализации, специфицирования, конструирования и документирования элементов программных систем. Язык состоит из словаря и правил, позволяющих комбинировать входящие в него слова и получать осмысленные конструкции. В языке моделированиясловарь и правила ориентированы на концептуальное и физическое представление системы. Язык моделирования, подобный UML, является стандартным средством для составления «чертежей» ИС.

При создании ИС любой сложности проводиться моделирование будущей системы, однако во многих случаях это делается неформально, без разработки какого-либо документа. Однако такой подход чреват неприятностями. Во-первых, обмен мнениями по поводу концептуальной модели возможен только тогда, когда все участники дискуссии говорят на одном языке. Во-вторых, нельзя получить представление об определенных аспектах информационных систем без модели, выходящей за границы текстового языка программирования. В-третьих, если автор кода никогда не воплощал в явной форме задуманные им модели, эта информация будет навсегда утрачена, если он сменит место работы. В лучшем случае ее можно будет лишь частично воссоздать исходя из реализации.

Использование UML позволяет решить третью проблему: явная модель облегчает общение.

Некоторые особенности системы лучше всего моделировать в виде текста, другие — графически. На самом деле во всех интересных системах существуют структуры, которые невозможно представить с помощью одного лишь языка программирования. UML — графический язык, что позволяет решить вторую из обозначенных проблем.

UML — это не просто набор графических символов. За каждым из них стоит хорошо определенная семантика. Это значит, что модель, написанная одним разработчиком, может быть однозначно интерпретирована другим — или даже инструментальной программой. Так решается первая из перечисленных выше проблем.

В данном контексте специфицирование означает построение точных, недвусмысленных и полных моделей. UML позволяет специфицировать все существенные решения, касающиеся анализа, проектирования и реализации, которые должны приниматься в процессе разработки и развертывания информационной системы.

UML является языком визуального проектирования, а модели, созданные с его помощью, могут быть непосредственно переведены на различные языки программирования ИС.

При разработке ИС, создаются и такие элементы, как:

  • требования к системе;
  • описание архитектуры;
  • проект;
  • исходный код;
  • проектные планы;
  • тесты;
  • прототипы;
  • версии, и др.

В зависимости от принятой методики разработки выполнение одних работ производится более формально, чем других. Упомянутые элементы — это не просто поставляемые составные части проекта; они необходимы для управления, для оценки результата, а также в качестве средства общения между членами коллектива во время разработки системы и после ее развертывания.

UML позволяет решить проблему документирования системной архитектуры и всех ее деталей, предлагает язык для формулирования требований к системе и определения тестов и, наконец, предоставляет средства для моделирования работ на этапе планирования проекта и управления версиями.

Где используется UML

Язык UML предназначен прежде всего для разработки информационных систем. Его использование особенно эффективно в следующих областях:

  • информационные системы масштаба предприятия;
  • банковские и финансовые услуги;
  • телекоммуникации;
  • транспорт;
  • оборонная промышленность, авиация и космонавтика;
  • розничная торговля;
  • медицинская электроника;
  • наука;
  • распределенные Web-системы.

Сфера применения UML не ограничивается моделированием программного обеспечения. Его выразительность позволяет моделировать, скажем, документооборот в юридических системах, структуру и функционирование системы обслуживания пациентов в больницах, осуществлять проектирование аппаратных средств.

Концептуальная модель UML

Для понимания UML необходимо усвоить его концептуальную модель, которая включает в себя три составные части: основные строительные блоки языка, правила их сочетания и некоторые общие для всего языка механизмы. Усвоив эти элементы, вы сумеете читать модели на UML и самостоятельно создавать их — начале, конечно, не очень сложные. По мере приобретения опыта в работе с языком вы научитесь пользоваться и более развитыми его возможностями.

Строительные блоки UML

Словарь языка UML включает три вида строительных блоков:

  • сущности;
  • отношения;
  • диаграммы.

Сущности — это абстракции, являющиеся основными элементами модели. Отношения связывают различные сущности; диаграммы группируют представляющие интерес совокупности сущностей.

В UML имеется четыре типа сущностей:

  • структурные;
  • поведенческие;
  • группирующие;
  • аннотационные.

Сущности являются основными объектно-ориентированными блоками языка. С их помощью можно создавать корректные модели. Существует семь разновидностей структурных сущностей:

  • Класс (Class)
  • Интерфейс (Interface)
  • Кооперация (Collaboration)
  • Прецедент (Use case)
  • Активным классом (Active class)
  • Компонент (Component)
  • Узел (Node)

Эти семь базовых элементов — классы, интерфейсы, кооперации, прецеденты, активные классы, компоненты и узлы — являются основными структурными сущностями, которые могут быть включены в модель UML. Существуют также разновидности этих сущностей: актеры, сигналы, утилиты (виды классов), процессы и нити (виды активных классов), приложения, документы, файлы, библиотеки, страницы и таблицы (виды компонентов).

Поведенческие сущности (Behavioral things) являются динамическими составляющими модели UML. Это глаголы языка: они описывают поведение модели во времени и пространстве. Существует всего два основных типа поведенческих сущностей:

  • Взаимодействие (Interaction)
  • Автомат (State machine)

Эти два элемента взаимодействия и автоматы являются основными поведенческими сущностями, входящими в модель UML. Семантически они часто бывают связаны с различными структурными элементами, в первую очередь — классами, кооперациями и объектами.

Группирующие сущности являются организующими частями модели UML. Это блоки, на которые можно разложить модель . Есть только одна первичная группирующая сущность, а именно пакет .

Пакеты — это основные группирующие сущности, с помощью которых можно организовать модель UML Существуют также вариации пакетов, например каркасы (Frameworks), модели и подсистемы.

Аннотационные сущности — пояснительные части модели UML. Это комментарии для дополнительного описания, разъяснения или замечания к любому элементу модели. Имеется только один базовый тип аннотационных элементов — примечание (Note). Примечание — это просто символ для изображения комментариев или ограничений, присоединенных к элементу или группе элементов. Графически примечание изображается в виде прямоугольника с загнутым краем, содержащим текстовый или графический комментарий.

В языке UML определены четыре типа отношений:

  • зависимость;
  • ассоциация;
  • обобщение;
  • реализация.

Эти отношения являются основными связующими строительными блоками в UML и применяются для создания корректных моделей.
Четыре описанных элемента являются основными типами отношений, которые можно включать в модели UML Существуют также их вариации, например уточнение (Refinement), трассировка (Trace), включение и расширение (для зависимостей).

Диаграмма в UML — это графическое представление набора элементов, изображаемое чаще всего в виде связанного графа с вершинами (сущностями) и ребрами (отношениями). Диаграммы рисуют для визуализации системы с разных точек зрения. Диаграмма в некотором смысле одна из проекций системы. Как правило, за исключением наиболее тривиальных случаев, диаграммы дают свернутое представление элементов, из которых составлена система. Один и тот же элемент может присутствовать во всех диаграммах, или только в нескольких (самый распространенный вариант), или не присутствовать ни в одной (очень редко). Теоретически диаграммы могут содержать любые комбинации сущностей и отношений. На практике, однако, применяется сравнительно небольшое количество типовых комбинаций, соответствующих пяти наиболее употребительным видам, которые составляют архитектуру информационной системы. Таким образом, в UML выделяют девять типов диаграмм:

  • диаграммы классов;
  • диаграммы объектов;
  • диаграммы прецедентов;
  • диаграммы последовательностей;
  • диаграммы кооперации;
  • диаграммы состояний;
  • диаграммы действий;
  • диаграммы компонентов;
  • диаграммы развертывания.

Здесь приведен неполный список диаграмм, применяемых в UML. Инструментальные средства позволяют генерировать и другие диаграммы, но девять перечисленных встречаются на практике чаще всего.

Правила языка UML

Строительные блоки UML нельзя произвольно объединять друг с другом. Как и любой другой язык, UML характеризуется набором правил, определяющих, как должна выглядеть хорошо оформленная модель, то есть семантически самосогласованная и находящаяся в гармонии со всеми моделями, которые с нею связаны.

В языке UML имеются семантические правила, позволяющие корректно и однозначно определять:

  • имена , которые можно давать сущностям, отношениям и диаграммам;
  • область действия (контекст, в котором имя имеет некоторое значение);
  • видимость (когда имена видимы и могут использоваться другими элементами);
  • целостность (как элементы должны правильно и согласованно соотноситься друг с другом);
  • выполнение {что значит выполнить или имитировать некоторую динамическую модель).

Модели, создаваемые в процессе разработки информационных систем, эволюционируют со временем и могут неоднозначно рассматриваться разными участниками проекта в разное время. По этой причине создаются не только хорошо оформленные модели, но и такие, которые:

  • содержат скрытые элементы (ряд элементов не показывают, чтобы упростить восприятие);
  • неполные (отдельные элементы пропущены);
  • несогласованные (целостность модели не гарантируется).

Появление не слишком хорошо оформленных моделей неизбежно в процессе разработки, пока не все детали системы прояснились в полной мере. Правила языка UML побуждают — хотя не требуют — в ходе работы над моделью решать наиболее важные вопросы анализа, проектирования и реализации, в результате чего модель со временем становится хорошо оформленной.

Общие механизмы языка UML

Строительство упрощается и ведется более эффективно, если придерживаться некоторых соглашений. Следуя определенным архитектурным образцам, можно оформить здание в викторианском или французском стиле. Тот же принцип применим и в отношении UML. Работу с этим языком существенно облегчает последовательное использование общих механизмов, перечисленных ниже:

  • спецификации (Specifications);
  • дополнения (Adornments);
  • принятые деления (Common divisions);
  • механизмы расширения (Extensibility mechanisms).

Архитектура

Для визуализации, специфицирования, конструирования и документирования информационных систем необходимо рассматривать их с различных точек зрения. Все, кто имеет отношение к проекту, — конечные пользователи, аналитики, разработчики, системные интеграторы, тестировщики, технические писатели и менеджеры проектов — преследуют собственные интересы, и каждый смотрит на создаваемую систему по-разному в различные моменты ее жизни. Системная архитектура является, пожалуй, наиболее важным элементом, который используется для управления всевозможными точками зрения и тем самым способствует итеративной и инкрементной разработке системы на всем протяжении ее жизненного цикла.

Архитектура — это совокупность существенных решений касательно:

  • организации программной системы;
  • выбора структурных элементов, составляющих систему, и их интерфейсов;
  • поведения этих элементов, специфицированного в кооперациях с другими элементами;
  • составления из этих структурных и поведенческих элементов все более и более крупных подсистем;
  • архитектурного стиля, направляющего и определяющего всю организацию системы: статические и динамические элементы, их интерфейсы, кооперации и способ их объединения.

Архитектура программной системы охватывает не только се структурные и поведенческие аспекты, по и использование, функциональность, производительность, гибкость, возможности повторного применения, полноту, экономические и технологические ограничения и компромиссы, а также эстетические вопросы.

Вид с точки зрения прецедентов (Use case view) охватывает прецеденты, которые описывают поведение системы, наблюдаемое конечными пользователями, аналитиками и тестировщиками. Этот вид специфицирует не истинную организацию программной системы, а те движущие силы, от которых зависит формирование системной архитектуры. В языке UML статические аспекты этого вида передаются диаграммами прецедентов, а динамические — диаграммами взаимодействия, состояний и действий.

Вид с точки зрения проектирования (Design view) охватывает классы, интерфейсы и кооперации, формирующие словарь задачи и се решения. Этот вид поддерживает прежде всего функциональные требования, предъявляемые к системе, то есть те услуги, которые она должна предоставлять конечным пользователям. С помощью языка UML статические аспекты этого вида можно передавать диаграммами классов и объектов, а динамические — диаграммами взаимодействия, состояний и действий.

Вид с точки зрения процессов (Process view) охватывает нити и процессы, формирующие механизмы параллелизма и синхронизации в системе. Этот вид описывает главным образом производительность, масштабируемость и пропускную способность системы. В UML его статические и динамические аспекты визуализируются теми же диаграммами, что и для вида с точки зрения проектирования, но особое внимание при этом уделяется активным классам, которые представляют соответствующие нити и процессы.

Вид с точки зрения реализации (Implementation view) охватывает компоненты и файлы, используемые для сборки и выпуска конечного программного продукта. Этот вид предназначен в первую очередь для управления конфигурацией версий системы, составляемых из независимых (до некоторой степени) компонентов и файлов, которые могут по-разному объединяться между собой. В языке UML статические аспекты этого вида передают с помощью диаграмм компонентов, а динамические — с помощью диаграмм взаимодействия, состояний и действий.

Вид с точки зрения развертывания (Deployment view) охватывает узлы, формирующие топологию аппаратных средств системы, на которой она выполняется. В первую очередь он связан с распределением, поставкой и установкой частей, составляющих физическую систему. Его статические аспекты описываются диаграммами развертывания, а динамические -диаграммами взаимодействия, состояний и действий.

Каждый из перечисленных видов может считаться вполне самостоятельным, так что лица, имеющие отношение к разработке системы, могут сосредоточиться на изучении только тех аспектов архитектуры, которые непосредственно их касаются. Но нельзя забывать о том, что эти виды взаимодействуют друг с другом. Например, узлы вида с точки зрения развертывания содержат компоненты, описанные для вида с точки зрения реализации, а те, в свою очередь, представляют собой физическое воплощение классов, интерфейсов, коопераций и активных классов из видов с точки зрения проектирования и процессов. UML позволяет отобразить каждый из пяти перечисленных видов и их взаимодействия.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то