Постановка задачи. Построение информационной модели. Модели: этапы

Как правило, практические задачи формулируются достаточно понятно с точки зрения пользователя, но такая формулировка не обладает достаточной четкостью и строгостью.

§ разработать наиболее эффективный (калорийный, разнообразный и дешевый) рацион питания в школьной столовой и т.д.

Чтобы такую задачу можно было решить с помощью компьютера, надо выполнить постановку задачи : выяснить, что известно и что явится результатом решения, а также как связаны исходные данные и результаты. Для этого важно определить существенные свойства объектов и явлений, о которых идет речь в задаче, и пренебречь несущественными .

Иногда об этом забывают. Например, если в задаче требуется определить площадь верхней поверхности стола (столешницы), не задумываясь говорят, что надо измерить длину и ширину. Однако существенным свойством стола может оказаться то, что он круглый, тогда затруднительно вести речь о длине и ширине. Кроме того, даже если определили, что столешница имеет прямоугольную форму, следует договориться, что небольшие неровности не оказывают существенного влияния на величину площади.

Важно также определить, в каких единицах и с какой точностью будут произведены измерения и вычисления. Кроме того, следует определить ограничения , налагаемые на возможные значения исходных данных и результатов. В примере с прямоугольным столом длина и ширина не могут быть отрицательными числами, а также иметь нереально большие или малые значения.

Все эти сведения образуют информационную модель задачи .

Главное свойство модели – упрощать изучаемое явление, сохраняя его существенные свойства. Информационной моделью задачи можно назвать информацию об объектах и явлениях, фигурирующих в задаче, значимую с точки зрения задачи и зафиксированную в текстовой, числовой или иной сигнальной форме.

Шаги построения информационной модели:

1. Определить существенные и несущественные свойства объектов и явлений, описываемых в задаче.

2. Выделить характеристики объектов и явлений, значимые с точки зрения задачи, и на этой основе определить исходные данные. Для исходных данных, выраженных в числовой форме, соотнести единицы измерения, определить точность и указать ограничения, налагаемые на их значения.

3. Определить, что является результатом решения задачи и в какой форме он должен быть получен. Указать ограничения.

4. Выявить связи между исходными данными и результатами. Если такие связи можно выразить на языке математики, то говорят о математической модели задачи как о частном случае информационной модели.


5. Определить метод достижения результата.

Формализация задачи

На этом этапе происходит фиксация информационной модели, выбирается форма представления данных, образующих информационную модель, наиболее удобная для компьютерной обработки. Часто первые два этапа не имеют четкой границы и могут рассматриваться как единое целое.

Рассмотрим пример.

Задача. Определить, успеют ли к поезду путешественники, которые отправились от места стоянки к станции на автомобиле.

Построение информационной модели. Существенными характеристиками являются: расстояние от места стоянки до станции; время, которое осталось до отхода поезда; характер движения автомобиля. Предположим, что автомобиль двигался с некоторой начальной скоростью и постоянным ускорением. Тогда время, которое автомобиль находился в пути, надо сравнить с имеющимся запасом времени и сделать соответствующий вывод. Время в пути можно определить из соотношения между расстоянием, начальной скоростью и ускорением, которые будут являться исходными данными. Все эти характеристики имеют числовые значения (вещественные числа) и должны быть положительны. Промежуточный результат – время в пути – также должен выражаться положительным числом. Кроме того, значения начальной скорости и ускорения должны быть в пределах разумного. Единицы измерения: км, час, км/час, км/час за час.

Формализация.

Исходные данные:

S - расстояние от места стоянки до станции

tz - запас времени до отхода поезда

V 0 - начальная скорость

а - ускорение

Результат: сообщение о том, успеют ли путешественники на поезд.

Правила построения информационных моделей.

Информационная модель есть организованная по определенным правилам совокупность информации о состоянии и функционировании объекта управления и внешней среды. Она является для оператора своеобразным имитатором существенно важных для управления свойств реальных объектов, т.е. тем источником информации, на основе которого он формирует образ реальной обстановки, производит анализ и оценку сложившейся ситуации, планирует управляющие воздействия, принимает решения, обеспечивающие эффективную работу системы, а также оценивает результаты их реализации. Другими словами, оператор имеет дело не с объектом как таковым, а с его знаковым представлением. При любых видах работы с информацией всегда идет речь о ее представлении в виде определенных символи­ческих структур. Формирование представления инфор­мации - это ее кодирование.

Концептуальная модель - это совокупность представлений оператора о рабочих задачах, состоянии и функционировании рабочей системы и собственных способах управляющих воздействий на них. Образы и представления, составляющие содержание концептуальной модели, не являются только отражением реальности. Они играют роль обобщенных схем деятельности, сформированных в процессе обучения и тренировок. Концептуальная модель характеризуется огромной информационной избыточностью, но актуализируются и осознаются в тот или иной момент лишь образы и схемы деятельности, связанные с непосредственно решаемой задачей. При создании информационных моделей, необходимо руководствоваться следующими эргономическими требованиями:

♦ по содержанию информационные модели должны адекватно отображать объекты управления, внешнюю среду и состояние самой системы управления;

♦ по количеству информации они должны обеспечивать оптимальный информационный баланс и не приводить к таким нежелательным явлениям, как дефицит или избыток информации;

♦ по форме и композиции они должны соответствовать задачам трудового процесса и возможностям человека по приему, анализу, оценке информации и осуществлению управляющих воздействий.

Учет этих требований в процессе проектирования информационных моделей позволяет оператору выполнять возложенные на него функции с необходимой оперативностью и точностью, предотвращает появление ошибочных действий, обеспечивает эффективное функционирование системы "человек-машина". Опыт разработки и использования информационных моделей, а также анализ деятельности операторов с ними позволяют сформулировать ряд важнейших характеристик информационных моделей.

Отображение существенной информации и проблемной ситуации. В информационной модели должны быть пред­ставлены лишь основные свойства, отношения, связи управляемых объектов. В этом смысле модель воспроиз­водит действительность в упрощенном виде и всегда является некоторой ее схематизацией. Степень и характер упрощения и схематизации могут быть определены на основе анализа задач систем "человек - машина". При возникновении проблемной ситуации в управ­лении ее восприятие облегчается, если в информацион­ной модели предусмотрено отображение:

♦ изменений свойств элементов ситуации, которые происходят при их взаимодействии. В этом случае измене

ния свойств отдельных элементов воспринимаются не изолированно, а в контексте ситуации в целом;

♦ динамических отношений управляемых объектов, при этом связи и взаимодействия информационной модели должны отображаться в развитии. Допустимо и даже полезно утрирование или усиление отображения тенденций развития элементов ситуации, их связей или ситуации в целом;

♦ конфликтных отношений, в которые вступают элементы ситуации.

  1. Этапы построения информационной модели.

Порядок построения информационной модели, как правило, следующий:

1) определение задач системы и очередности их решения;

2) определение источников информации, методов решения задач, времени, необходимого на их решение, а также требуемой точности;

3) составление перечня типов объектов управления, определение их количества и параметров работы системы;

4) составление перечня признаков объектов управления разных типов;

5) распределение объектов и признаков по степени важности, выбор критичных объектов и признаков, учет которых необходим в первую очередь;

6) выбор системы и способов кодирования объектов управления, их состояний и признаков;

7) разработка общей композиции информационных моделей;

8) определение перечня исполнительных действий операторов, осуществляемых в процессе решения задачи и после принятия решения;

9) создание макета, моделирующего возможную ситуацию, проверка эффективности избранных вариантов информационных моделей и систем кодирования информации. Критерием эффективности служат время, точность и напряженность работы оператора;

10) определение изменений по результатам экспериментов с композицией информационных моделей и систем ко­дирования, проверка эффективности каждого нового варианта на макете;

11) определение на макете уровня профессиональной подготовки операторов и его соответствия заданному;

12) составление инструкций работы операторов в системе управления.

Предложенный порядок построения информационных моделей намечен лишь в общем виде. Он может меняться в зависимости от специфики тех или иных систем управления и функций операторов.

В данной работе мы предлагаем как можно подробно разобрать тему моделирования в информатике. Этот раздел имеет большое значение для подготовки будущих специалистов в сфере информационных технологий.

Для решения любой задачи (производственной или научной) информатика использует следующую цепочку:

В ней стоит уделить особое внимание понятию «модель». Без наличия данного звена решение задачи не будет возможным. Зачем же используется модель и что под данным термином понимается? Об этом мы и поговорим в следующем разделе.

Модель

Моделирование в информатике - это составление образа какого-либо реально существующего объекта, который отражает все существенные признаки и свойства. Модель для решения задачи необходима, так как она, собственно, и используется в процессе решения.

В школьном курсе информатики тема моделирования начинает изучаться еще в шестом классе. В самом начале детей необходимо познакомить с понятием модели. Что это такое?

  • Упрощенное подобие объекта;
  • Уменьшенная копия реального объекта;
  • Схема явления или процесса;
  • Изображение явления или процесса;
  • Описание явления или процесса;
  • Физический аналог объекта;
  • Информационный аналог;
  • Объект-заменитель, отражающий свойства реального объекта и так далее.

Модель - это очень широкое понятие, как это уже стало ясно из вышеперечисленного. Важно отметить, что все модели принято делить на группы:

  • материальные;
  • идеальные.

Под материальной моделью понимают предмет, основанный на реально существующем объекте. Это может быть какое-либо тело или процесс. Данную группу принято подразделять еще на два вида:

  • физические;
  • аналоговые.

Такая классификация носит условный характер, ведь четкую границу между двумя этими подвидами провести очень трудно.

Идеальную модель охарактеризовать еще труднее. Она связаны с:

  • мышлением;
  • воображением;
  • восприятием.

К ней можно отнести произведения искусства (театр, живопись, литература и так далее).

Цели моделирования

Моделирование в информатике - это очень важный этап, так как он преследует массу целей. Сейчас предлагаем с ними познакомиться.

В первую очередь моделирование помогает познать окружающий нас мир. Испокон веков люди накапливали полученные знания и передавали их своим потомкам. Таким образом появилась модель нашей планеты (глобус).

В прошлые века осуществлялось моделирование несуществующих объектов, которые сейчас прочно закрепились в нашей жизни (зонт, мельница и так далее). В настоящее время можелирование направлено на:

  • выявление последствий какого-либо процесса (увеличения стоимости проезда или утилизации химических отходов под землей);
  • обеспечение эффективности принимаемых решений.

Задачи моделирования

Информационная модель

Теперь поговорим еще об одном виде моделей, изучаемых в школьном курсе информатики. Компьютерное моделирование, которое необходимо освоить каждому будущему IT-специалисту, включает в себя процесс реализации информационной модели при помощи компьютерных средств. Но что это такое, информационная модель?

Она представляет собой целый перечень информации о каком-либо объекте. Что данная модель описывает, и какую полезную информацию несет:

  • свойства моделируемого объекта;
  • его состояние;
  • связи с окружающим миром;
  • отношения с внешними объектами.

Что может служить информационной моделью:

  • словесное описание;
  • текст;
  • рисунок;
  • таблица;
  • схема;
  • чертеж;
  • формула и так далее.

Отличительная особенность информационной модели заключается в том, что ее нельзя потрогать, попробовать на вкус и так далее. Она не несет материального воплощения, так как представлена в виде информации.

Системный подход к созданию модели

В каком классе школьной программы изучается моделирование? Информатика 9 класса знакомит учеников с данной темой более подробно. Именно в этом классе ребенок узнает о системном подходе моделирования. Предлагаем об этом поговорить немного подробнее.

Начнем с понятия «система». Это группа взаимосвязанных между собой элементов, которые действуют совместно для выполнения поставленной задачи. Для построения модели часто пользуются системным подходом, так как объект рассматривается как система, функционирующая в некоторой среде. Если моделируется какой-либо сложный объект, то систему принято разбивать на более мелкие части - подсистемы.

Цель использования

Сейчас мы рассмотрим цели моделирования (информатика 11 класс). Ранее говорилось, что все модели делятся на некоторые виды и классы, но границы между ними условны. Есть несколько признаков, по которым принято классифицировать модели: цель, область знаний, фактор времени, способ представления.

Что касается целей, то принято выделять следующие виды:

  • учебные;
  • опытные;
  • имитационные;
  • игровые;
  • научно-технические.

К первому виду относятся учебные материалы. Ко второму уменьшенные или увеличенные копии реальных объектов (модель сооружения, крыла самолета и так далее). позволяет предугадать исход какого-либо события. Имитационное моделирование часто применяется в медицине и социальной сфере. Наример, модель помогает понять, как люди отреагируют на ту или иную реформу? Прежде чем сделать серьезную операцию человеку по пересадке органа, было проведено множество опытов. Другими словами, имитационная модель позволяет решить проблему методом «проб и ошибок». Игровая модель - это своего рода экономическая, деловая или военная игра. С помощью данной модели можно предугадать поведение объекта в разных ситуациях. Научно-техническую модель используют для изучения какого-либо процесса или явления (прибор имитирующий грозовой разряд, модель движения планет Солнечной системы и так далее).

Область знаний

В каком классе учеников более подробно знакомят с моделированием? Информатика 9 класса делает упор на подготовку своих учеников к экзаменам для поступления в высшие учебные заведения. Так как в билетах ЕГЭ и ГИА встречаются вопросы по моделированию, то сейчас необходимо как можно подробнее рассмотреть эту тему. И так, как происходит классификация по области знаний? По данному признаку выделяют следующие виды:

  • биологические (например, искусственно вызванные у животных болезни, генетические нарушения, злокачественные новообразования);
  • поведения фирмы, модель формирования рыночной цены и так далее);
  • исторические (генеалогическое дерево, модели исторических событий, модель римского войска и тому подобное);
  • социологические (модель личного интереса, поведение банкиров при адаптации к новым экономическим условиям) и так далее.

Фактор времени

По данной характеристике различают два вида моделей:

  • динамические;
  • статические.

Уже, судя по одному названию, не трудно догадаться, что первый вид отражает функционирование, развитие и изменение какого-либо объекта во времени. Статическая наоборот способна описать объект в какой-то конкретный момент времени. Этот вид иногда называют структурным, так как модель отражает строение и параметры объекта, то есть дает срез информации о нем.

Примерами являются:

  • набор формул, отражающих движение планет Солнечной системы;
  • график изменения температуры воздуха;
  • видеозапись извержения вулкана и так далее.

Примерами статистической модели служат:

  • перечень планет Солнечной системы;
  • карта местности и так далее.

Способ представления

Для начала очень важно сказать, что все модели имеют вид и форму, они всегда из чего-то делаются, как-то представляются или описываются. По данному признаку принято таким образом:

  • материальные;
  • нематериальные.

К первому виду относятся материальные копии существующих объектов. Их можно потрогать, понюхать и так далее. Они отражают внешние или внутренние свойства, действия какого-либо объекта. Для чего нужны материальные модели? Они используются для экспериментального метода познания (опытного метода).

К нематериальным моделям мы уже тоже обращались ранее. Они используют теоретический метод познания. Такие модели принято называть идеальными либо абстрактными. Эта категория делится еще на несколько подвидов: воображаемые модели и информационные.

Информационные модели приводят перечень различной информации об объекте. В качестве информационной модели могут выступать таблицы, рисунки, словесные описания, схемы и так далее. Почему данную модель называют нематериальной? Все дело в том, что ее нельзя потрогать, так как она не имеет материального воплощения. Среди информационных моделей различают знаковые и наглядные.

Воображаемая модель - это один из Это творческий процесс, проходящий в воображении человека, который предшествует созданию материального объекта.

Этапы моделирования

Тема по информатике 9 класса «Моделирование и формализация» имеет большой вес. Она обязательна к изучению. В 9-11 классе преподаватель обязан познакомить учеников с этапами создания моделей. Этим мы сейчас и займемся. Итак, выделяют следующие этапы моделирования:

  • содержательная постановка задачи;
  • математическая постановка задачи;
  • разработки с использованием ЭВМ;
  • эксплуатация модели;
  • получение результата.

Важно отметить, что при изучении всего, что окружает нас, используется процессы моделирования, формализации. Информатика - это предмет, посвященный современным методам изучения и решения каких-либо проблем. Следовательно, упор делается на модели, которые можно реализовать при помощи ЭВМ. Особое внимание в этой теме следует уделить пункту разработки алгоритма решения при помощи электронно-вычислительных машин.

Связи между объектами

Теперь поговорим немного о связях между объектами. Всего выделяют три вида:

  • один к одному (обозначается такая связь односторонней стрелкой в одну или в другую сторону);
  • один ко многим (множественная связь обозначается двойной стрелкой);
  • многие ко многим (такая связь обозначается двойной стрелкой).

Важно отметить, что связи могут быть условными и безусловными. Безусловная связь предполагает использование каждого экземпляра объекта. А в условной задействованы только отдельные элементы.

1) Первым этапом любого исследования является постановка задачи, которая определяется заданной целью.

Задача формулируется на обычном языке. По характеру постановки все задачи можно разделить на две основные группы. К первой группе можно отнести задачи, в которых требуется исследовать, как изменятся характеристики объекта при некотором воздействии на него, "что будет, если?…". Вторая группа задач: какое надо произвести воздействие на объект, чтобы его параметры удовлетворяли некоторому заданному условию, "как сделать, чтобы?..".

2) Второй этап - анализ объекта. Результат анализа объекта - выявление его составляющих (элементарных объектов) и определения связей между ними.

3) Третий этап - разработка информационной модели объекта. Построение модели должно быть связано с целью моделирования. Каждый объект имеет большое количество различных свойств. В процессе построения модели выделяются главные, наиболее существенные, свойства, которые соответствуют цели.

Все то, о чем говорилось выше - это формализация.

Формализация - это процесс выделения и перевода внутренней структуры объекта в определенную информационную структуру - форму.

Построив информационную модель, человек использует ее вместо объекта-оригинала для изучения свойств этого объекта, прогнозирования его поведения и пр. Прежде чем строить какое-то сложное сооружение, например мост, конструкторы делают его чертежи, проводят расчеты прочности, допустимых нагрузок. Таким образом, вместо реального моста они имеют дело с его модельным описанием в виде чертежей, математических формул.

Моделирование любой системы невозможно без предварительной формализации. По сути, формализация - это первый и очень важный этап процесса моделирования.

Построение и использование компьютерных моделей

В наиболее общем виде процесс построения и использования компьютерных моделей можно представить как последовательность этапов:

1) Постановка задачи

a) Описание задачи

b) Цель моделирования

c) Анализ объекта

2) Разработка модели

a) Информационная модель

b) Знаковая модель

c) Компьютерная модель

3) Компьютерный эксперимент

4) Анализ результатов моделирования (результат соответствует цели/результат не соответствует цели).

Каждый раз при решении конкретной задачи такая схема может подвергаться некоторым изменениям: какой-то блок может быть убран или усовершенствован. Все этапы определяются поставленной задачей и целями моделирования.

3D Моделирование

Трехмерная модель - это воссозданная на базе рабочей проектной документации точная геометрическая копия объекта

3D графика - это создание объемной модели при помощи специальных компьютерных программ. На основе чертежей, рисунков, подробных описаний или любой другой графический или текстовой информации, 3D дизайнер создает объемное изображение. В специальной программе модель можно посмотреть со всех сторон (сверху, снизу, сбоку), встроить на любую плоскость и в любое окружение.

Трехмерная графика может быть любой сложности. Вы можете создать простую трехмерную модель, с низкой детализацией и упрощенной формы. Или же это может быть более сложная модель, в которой присутствует проработка самых мелких деталей, фактуры, использованы профессиональные приемы (тени, отражения, преломление света и так далее). Конечно, это всерьез влияет на стоимость готовой трехмерной модели, однако позволяет расширить применение трехмерной модели.

Преимуществ у трехмерного моделирования перед другими способами визуализации довольно много. Трехмерное моделирование дает очень точную модель, максимально приближенную к реальности. Современные программы помогают достичь высокой детализации. При этом значительно увеличивается наглядность проекта. Выразить трехмерный объект в двухмерной плоскости не просто, тогда как 3D визуализации дает возможность тщательно проработать и что самое главное, просмотреть все детали. Это более естественный способ визуализации.

В трехмерную модель очень легко вносить практически любые изменения. Вы можете изменять проект, убирать одни детали и добавлять новые. Ваша фантазия практически ни чем не ограничена, и вы сможете быстро выбрать именно тот вариант, который подойдет вам наилучшим образом. моделирование вербальный компьютерный формализация

Однако трехмерное моделирование удобно не только для клиента. Профессиональные программы дают множество преимуществ и изготовителю. Из трехмерной модели легко можно выделить чертеж каких-либо компонентов или конструкции целиком. Несмотря на то, что создание трехмерной модели довольно трудоемкий процесс, работать с ним в дальнейшем гораздо проще и удобнее чем с традиционными чертежами. В результате значительно сокращаются временные затраты на проектирование, снижаются издержки.

Специальные программы дают возможность интеграции с любым другим профессиональным программным обеспечением, например, с приложениями для инженерных расчетов, программами для станков или бухгалтерскими программами. Внедрение подобных решений на производстве дает существенную экономию ресурсов, значительно расширяет возможности предприятия, упрощает работу и повышает ее качество.

Программы для трехмерного моделирования:

Существует довольно большое количество самых разных программ для 3D моделирования. Так, одной из популярных программ, которые специально разработаны для создания трехмерной графики и дизайна интерьеров, является программа 3D Studio MAX. Она позволяет реалистично визуализировать объекты самой разной сложности. Кроме того, "3D Studio MAX" дает возможность компоновать их, задавать траектории перемещений и в конечном итоге даже создавать полноценное видео с участием трехмерных моделей. Хотя такая работа, конечно же, требует у специалиста серьезных навыков, а также больших компьютерных ресурсов, в первую очередь объемов памяти и быстродействие процессора.

Другой широко используемой программой является AutoCAD. Она также используется для трехмерного моделирования и визуализации, профессионального архитектурно-строительного проектирования, постоянно дополняется новыми возможностями. Довольно большое количество программ могут быть интегрированы с базовым ядром "AutoCAD". Например, приложение для визуализации в таких областях, как вентиляция, трубопроводы, электрика и так далее. Если программу "3D Studio MAX" больше предпочитают дизайнеры и аниматоры, то программой "AutoCAD" в основном пользуются профессиональные архитекторы для реализации сложных проектов.

Рисунок 3.Модель кабинета, выполненная в программе 3D Studio MAX

Основные этапы информационного моделирования

Информационное моделирование – это творческий процесс. Не существует универсального рецепта построения моделей, пригодного на все случаи жизни, но можно выделить основные этапы и закономерности, характерные для создания самых разных моделей.

Первый этап – постановка задачи. Прежде всего следует уяснить цель моделирования. Исходя из цели моделирования, определяется вид и форма представления информационной модели, а также степень детализации и формализации модели. В соответствии с целью моделирования заранее определяются границы применимости создаваемой модели. На этом этапе также необходимо выбрать инструментарий, который будет использоваться при моделировании (например, компьютерную программу).

Второй этап – собственно моделирование, построение модели. На этом этапе важно правильно выявить составляющие систему объекты, их свойства и взаимоотношения и представить всю эту информацию в уже выбранной форме. Создаваемую модель необходимо периодически подвергать критическому анализу, чтобы своевременно выявлять избыточность, противоречивость и несоответствие целям моделирования.

Третий этап – оценка качества модели, заключающаяся в проверке соответствия модели целям моделирования. Такая проверка может производиться путем логических рассуждений, а также экспериментов, в том числе и компьютерных. При этом могут быть уточнены границы применимости модели. В случае выявления несоответствия модели целям моделирования она подлежит частичной или полной переделке.

Четвертый этап – эксплуатация модели, ее применение для решения практических задач в соответствии с целями моделирования.

Пятый этап – анализ полученных результатов и корректировка исследуемой модели.

    Практическая работа в 3dsMax

    Первое знакомство. Управление объектами

    Работа со стандартными примитивами

    Создание конструкций из примитивов, управление видами, рендеринг

    Единицы измерения, сетка, привязка к сетке, массивы

    Сплайны, типы вершин сплайнов, тела вращения

    Выдавливание (Extrude), фаска или скос (bevel), лофтинг (loft), простые ландшафты

    Работа с материалами

    Составные материалы

    Освещение

    Вычитание. Создание системы стен. Организация проемов вычитанием

АЛГОРИТМИЗАЦИЯ И ПРОГРАММИРОВАНИЕ

Алгоритмы

Появление алгоритмов связывают с зарождением математики. Более 1000 лет назад (в 825 году) ученый из города Хорезма Абдулла (или Абу Джафар) Мухаммед бен Муса аль-Хорезми создал книгу по математике, в которой описал способы выполнения арифметических действий над многозначными числами. Само слово алгоритм возникло в Европе после перевода на латынь книги этого математика.

Алгоритм – описание последовательности действий (план), строгое исполнение которых приводит к решению поставленной задачи за конечное число шагов.

За время своего существования человечество выработало правила поведения в определенных ситуациях для достижения поставленных целей. Часто эти правила можно представить в виде инструкций, состоящих из последовательно выполняемых пунктов (шагов). Так, например, в первобытном обществе инструкция охотникам по восполнению продовольственных запасов племени могла бы выглядеть следующим образом:

    Найти тропу, по которой часто ходят мамонты.

    Вырыть на ней большую глубокую яму и замаскировать ветками.

    Спрятаться и ждать, пока в яму не провалится мамонт.

    Закидать провалившегося мамонта копьями и камнями.

    Разделать тушу и доставить ее к хижинам племени.

Возможно, что некоторые наскальные рисунки, сделанные до возникновения письменности, представляли собой своеобразную запись таких инструкций.

Перечни поочередно выполняемых действий используются в самых различных сферах человеческой деятельности. В качестве примеров можно привести правила выполнения умножения и деления чисел “столбиком” в арифметике, пошаговые инструкции по выполнению физических или химических опытов, сборке мебели, подготовки к работе фотоаппарата.

Свойства алгоритмов:
1. Дискретность (алгоритм должен состоять из конкретных действий, следующих в определенном порядке);
2. Детерминированность (любое действие должно быть строго и недвусмысленно определено в каждом случае);
3. Конечность (каждое действие и алгоритм в целом должны иметь возможность завершения);
4. Массовость (один и тот же алгоритм можно использовать с разными исходными данными);
5. Результативность (отсутствие ошибок, алгоритм должен приводить к правильному результату для всех допустимых входных значениях).

Виды алгоритмов:
1. Линейный алгоритм (описание действий, которые выполняются однократно в заданном порядке);
2. Циклический алгоритм (описание действий, которые должны повторятся указанное число раз или пока не выполнено задание);
3. Разветвляющий алгоритм (алгоритм, в котором в зависимости от условия выполняется либо одна, либо другая последовательность действий)
4. Вспомогательный алгоритм (алгоритм, который можно использовать в других алгоритмах, указав только его имя).

Для более наглядного представления алгоритма широко используется графическая форма - блок-схема , которая составляется из стандартных графических объектов.

Вид стандартного графического объекта

Назначение

Начало алгоритма

Конец алгоритма

Выполняемое действие записывается внутри прямоугольника

Условие выполнения действий записывается внутри ромба

Счетчик кол-во повторов

Последовательность выполнения действий.

Стадии создания алгоритма:
1. Алгоритм должен быть представлен в форме, понятной человеку, который его разрабатывает.
2. Алгоритм должен быть представлен в форме, понятной тому объекту (в том числе и человеку), который будет выполнять описанные в алгоритме действия.

Исполнитель - объект, который выполняет алгоритм.

Идеальными исполнителями являются машины, роботы, компьютеры...

Исполнитель способен выполнить только ограниченное количество команд. Поэтому алгоритм разрабатывается и детализируется так, чтобы в нем присутствовали только те команды и конструкции, которые может выполнить исполнитель.

Исполнитель, как и любой объект, находится в определенной среде и может выполнять только допустимые в нем действия. Если исполнитель встретит в алгоритме неизвестную ему команду, то выполнение алгоритма прекратится.

Компьютер – автоматический исполнитель алгоритмов.

Алгоритм, записанный на «понятном» компьютеру языке программирования, называется программой .

Программирование - процесс составления программы для компьютера. Для первых ЭВМ программы записывались в виде последовательности элементарных операций. Это была очень трудоемкая и неэффективная работа. Поэтому в последствии были разработанные специальные языки программирования. В настоящее время существует множество искусственных языков для составления программ. Однако, так и не удалось создать идеальный язык, который бы устроил бы всех.

Линейный алгоритм

Существует большое количество алгоритмов, в которых команды должны быть выполнены одна за другой. Такие алгоритмы называются линейными .

Программа имеет линейную структуру, если все операторы (команды) выполняются последовательно друг за другом.

Разветвляющийся алгоритм

Разветвляющий алгоритм – это алгоритм, в котором в зависимости от условия выполняется либо одна, либо другая последовательность действий.

Во многих случаях требуется, чтобы при одних условиях выполнялась одна последовательность действий, а при других - другая.

Вся программа состоит из команд (операторов). Команды бывают простые и составные (команды, внутри которых встречаются другие команды). Составные команды часто называют управляющими конструкциями. Этим подчеркивается то, что эти операторы управляют дальнейшим ходом программы.

Алгоритмическая структура «цикл». Циклы со счетчиком и циклы по условию

Лучшее качества компьютеров проявляются не тогда, когда они рассчитывают значения сложных выражений, а когда многократно, с незначительными изменениями, повторяют сравнительно простые операции. Даже очень простые расчеты могут поставить человека в тупик, если их надо повторить тысячи раз, а повторять операции миллионы раз человек совершенно не способен.

С необходимостью повторяющихся вычислений программисты сталкиваются постоянно. Например, если надо подсчитать, сколько раз буква "о" встречается в тексте необходимо перебрать все буквы. При всей простоте этой программы исполнить ее человеку очень трудно, а для компьютера это задача на несколько секунд.

Циклический алгоритм - описание действий, которые должны повторяться указанное число раз или пока не выполнено заданное условие.

Перечень повторяющихся действий называют телом цикла .

Например, на уроке физкультуры вы должны пробежать некоторое количество кругов вокруг стадиона.

Такие циклы называются - циклы со счетчиком.

В субботу вечером вы смотрите телевизор. Время от времени поглядываете на часы и если время меньше полуночи, то продолжаете смотреть телевизор, если это не так, то вы прекращаете просмотр телепередач.

Циклы такого вида называют - циклы с предусловием.

Вам надо поточить все карандаши в коробке. Вы точите один карандаш и откладываете его в сторону. Затем проверяете, остались ли карандаши в коробке. Если условие ложно, то снова выполняется действие "заточить карандаш". Как только условие становится истинным, то цикл прекращается.

Циклы такого вида называют - циклы с постусловием .

Программирование

Объектно-ориентированное является в настоящее время наиболее популярной технологией программирования. Объектно-ориентированными языками программирования являются Visual Basic, Pascal, Visual Basic for Application (VBA), Delphi и др.

Основной единицей в объектно-ориентированном программировании является объект , который заключает в себе (инкапсулирует) как описывающие его данные (свойства ), так и средства обработки этих данных (методы ).

Объекты, заключающие одинаковый перечень свойств и методов, объединяются в классы . Каждый отдельный объект является экземпляром класса . Экземпляры класса могут иметь отличающиеся значения свойств.
Например, в среде Windows&Office в приложении Word существует класс объектов документ, который обозначается следующим образом: Documents ()
Класс объектов может содержать множество различных документов (экземпляров класса), каждый из которых имеет свое имя. Например, один из документов может иметь имя flpo6a.doc: Documents ("npo6a.doc")
Объекты в приложениях образуют некоторую иерархию. На вершине иерархии объектов находится приложение. Так, иерархия объектов приложения Word включает в себя следующие объекты: приложение (Aplication), документ (Documents), фрагмент документа (Selection), символ (Character) и др.
Полная ссылка на объект состоит из ряда имен вложенных последовательно друг в друга объектов. Разделителями имен объектов в этом ряду являются точки, ряд начинается с объекта наиболее высокого уровня и заканчивается именем интересующего нас объекта.
Например, ссылка на документ flpo6a.doc в приложении Word будет выглядеть следующим образом: Application . Documents ("Проба. doc")
Чтобы объект выполнил какую-либо операцию, необходимо задать метод. Многие методы имеют аргументы, которые позволяют установить параметры выполняемых действий. Для присваивания аргументам конкретных значений применяется двоеточие и знак равенства, а между собой аргументы отделяются запятой. Синтаксис команды применения метода объекта следующий: Объект.Метод:=значение, арг2:=значение
Например, операция открытия в приложении Word документа flpo6a.doc должна содержать не только название метода Open, но и указание пути к открываемому файлу (аргументу метода FileName необходимо присвоить конкретное значение): Documents () .Open FileName: ="С: ДокументыПроба. doc"
Чтобы изменить состояние объекта, необходимо определить новые значения его свойств. Для присваивания свойству конкретного значения используется знак равенства. Синтаксис установки значения свойства объекта следующий: Объект.Свойство = ЗначениеСвойства
Одним из классов объектов является класс символов Characters (). Экземпляры класса нумеруются: Characters (I), Characters (2) и т. д. Установим во фрагменте текста (объект Selection) для первого символа (объект Characters (1)) начертание полужирный (свойство Bold).
Свойство Bold имеет два значения и может быть установлено (значение True) или не установлено (значение False). Значения True и False являются ключевыми словами языка.Присвоим свойству Bold значение True: Selection.Characters(1).Bold = True
Объектно-ориентированное программирование по своей сути - это создание приложений из объектов, подобно тому как из блоков и различных деталей строятся дома. Одни объекты приходится полностью создавать самостоятельно, тогда как другие можно позаимствовать в готовом виде из разнообразных программных библиотек.

    Практическая работа в QBasic

    Знакомство с QBasic. Вывод текста.

    Вывод текста и символов

    Управление цветом в текстовом режиме

    Решение математических задач

    Ввод данных с клавиатуры. Оператор INPUT

    Операторы условия

    Операторы цикла

    Текстовый и графический режимы мониторов

    Графические примитивы

    Массивы

    Практическая работа в Pascal

    Структура языка, основные операторы

    Расположение символов

    Арифметические операции и выражения

    Введение понятия переменной

    Типы переменных

    Операторы деления

    Оператор чтения read

    Оператор условия if…then

    Массивы

    Графика

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ

ТЕХНОЛОГИЯ ОБРАБОТКИ ТЕКСТОВОЙ ИНФОРМАЦИИ

Текстом называется любая последовательность сим-волов, к которым относятся буквы, пробел, знаки препина-ния, цифры, знаки арифметических операций и операций отношения и т. п.

К аппаратным средствам ввода текста относятся клавиа-тура, сканер, световой карандаш и др.

Текстовый редактор - программное средство, предназна-ченное для создания (ввода, набора), редактирования и оформления текстов.

Основные функции текстового редактора:

    обеспечение ввода текста с клавиатуры или из существующего файла;

    редактирование текста (добавление, изменение, удале-ние или копирование фрагментов текста, символов, слов и т. д.);

    оформление текста (выбор шрифтов, способа выравни-вания, установление межстрочного интервала, интерва-ла между абзацами и т. п.);

    размещение текста на странице (установка размера страницы, полей, отступов; разбиение на колонки; расстановка номеров страниц, колонтитулов и пр.);

    сохранение текста в файле на внешнем носителе или получение твердой копии (печать текста);

    проверка орфографии, подбор синонимов, контекстный поиск и замена;

    выдача подсказок и прочее.

Если рассматривать текст как систему, то элементами его будут отдельные символы, слова, строки, предложения, аб-зацы.

Абзацем в обычном тексте называют часть текста от од-ной красной строки до другой.

В текстовом редакторе абзац - это часть текста от одного признака конца строки до другого (чаще всего признак кон-ца строки вставляется в текст автоматически при нажатии клавиши ввода).

Над абзацами в текстовых редакторах выполняются та-кие операции, как выравнивание, установка межстрочного интервала, установка отступа красной строки.

В текстовых редакторах допустимы операции над отдель-ными элементами текста, даже если они не выделены, на-пример, операции над символами (удаление, вставка, заме-на), абзацами (выравнивание, отступы), но основной принцип оформления текста в текстовом редакторе «вы- дели и преобразуй».

В текстовых редакторах большинство операций по преоб-разованию текста осуществляется над выделенными фраг-ментами текста, например, такие операции, как копирова-ние и перенос.

Наиболее распространенные текстовые редакторы: «Лек-сикон», Edit, «Слово и дело», Ched, NotePad, Write.

Текстовый процессор отличается от текстового редактора более широкими функциональными возможностями, таки-ми как:

    настраиваемое пользователем меню;

    использование контекстного меню;

    сопровождение текста таблицами и проведение в них простейших расчетов;

    вставка графических объектов (рисунков, диаграмм, заголовков и пр.) или создание рисунков с помощью встроенных инструментов;

    вставка формул, графиков, диаграмм;

    оформление текста списками, буквицами;

    использование инструмента автокоррекции текста и его автореферирования;

    создание и использование макросов;

    фоновая проверка орфографии, синтаксиса и многое другое.

Наиболее распространенные текстовые процессоры: Word (Microsoft Office), Word Pro (Lotus SmartSuite), WordPerfect (Perfect Office), WordExpress, Accent.

    Практическая работа в текстовом редакторе WordPad

    Знакомство с WordPad. Ввод текста

    Форматирование текста

    Списки

    Вставка рисунка

    Практическая работа в текстовом процессоре MS Word

    Знакомство с MSWord. Ввод текста

    Выделение фрагментов текста. Отступ.

    Форматирование текста

    Списки

    Вставка рисунка

    Работа с таблицами

    Рисование в Word

    Колонтитулы. Нумерация страниц

    Вставка формул

ТЕХНОЛОГИЯ ОБРАБОТКИ ГРАФИЧЕСКОЙ ИНФОРМАЦИИ

Для обработки изображений на компьютере используют-ся специальные программы - графические редакторы. Гра-фические редакторы также можно разделить на две катего-рии: растровые и векторные.

Растровые графические редакторы являются наилучшим средством обработки фотографий и рисунков, поскольку растровые изображения обеспечивают высокую точность пе-редачи градаций цветов и полутонов.

Среди растровых графических редакторов есть простые, на-пример стандартное приложение Paint, и мощные профессио-нальные графические системы, например Adobe Photoshop.

К векторным графическим редакторам относятся графи-ческий редактор, встроенный в текстовый редактор Word. Среди профессиональных векторных графических систем наиболее распространена CorelDRAW.

Графический редактор - это программа создания, редак-тирования и просмотра графических изображений.

Для создания рисунка традиционными методами необхо-димо выбрать инструмент рисования (это могут быть фло-мастеры, кисть с красками, карандаши, пастель и многое другое). Графические редакторы также предоставляют воз-можность выбора инструментов для создания и редактиро-вания графических изображений, объединяя их в панели инструментов.

    Практическая работа в графическом редакторе Paint

    Изучение возможностей редактора Paint

    Создание простейших рисунков.

    Повторяющиеся элементы. Симметрия.

    Практическая работа в графическом редакторе Photoshop

              Звезда

              Цветок

              Золотая цепь

              Золотой текст

              Текстура дерева Документ

              Информатика и Информационные технологии ОГЛАВЛЕНИЕ Информация 4 Информационные процессы 4 Информатизация 5 Информатика 5 ПРЕДСТАВЛЕНИЕ ИНФОРМАЦИИ 6 Язык, как способ...

            1. Информатика и информационные технологии

              Документ

              А именно: автоматическое формирование оглавления документа, автоматическая нумерация различных... знаний, 2006. – 511 с. Содержание 1.Информатика и информационные технологии . 1 1.1.Основные задачи информатики . 1 1.2.Сигналы, данные, информация. ...

            2. Информатика и информационные технологии в экономике методические указания для подготовки отчета по учебной практике красноярск 2007

              Методические указания

              В.А. Филиппов К.А. Ширяева Т.А. Шлепкин А.К. Информатика и информационные технологии в экономике: методические указания для подготовки... количество уровней – 2. Измените стили оглавления (Оглавление 1 и Оглавление 2): Шрифт 14, Межстрочный интервал...

            3. ИНФОРМАТИКА И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В ВУЗЕ

              Научно-методический журнал
            4. Информационные технологии теория и практика

              Сборник научно-методических статей

              А. В. Авторская программа профильного курса по информатике и информационным технологиям / А. В. Могилев // Информатика и образование. – 2006. – № 8. – С. ... HTML(PDF) файлов. Создаётся оглавление . Происходит иерархическое структурирование файлов. ...

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то