Приборы для измерения постоянных токов. Бесконтактный TrueRMS измеритель тока

В ходе эксплуатации электросети или какого-либо прибора приходится выполнять измерение силы тока.

Из данной статьи вы узнаете, что понимается под этим термином и какие инструменты используются для этой цели.

Заодно поговорим о мерах безопасности при проведении подобных работ.

Единица измерения силы тока

Силой тока в физике принято называть величину заряда, пересекающего поперечное сечение проводника за единицу времени. Единица измерения - ампер (А). Силу в 1 А имеет такой ток, при котором за 1-у секунду через сечение проводника проходит заряд в 1 кулон (Кл).

Силу тока можно сравнить с напором воды. Как известно, в старину небольшие речки перегораживали плотинами, чтобы создать напор, способный вращать колесо мельницы.

Чем более сильным был напор, тем более производительную мельницу можно было привести с его помощью в движение.

Точно так же и сила тока характеризует работу, которую может выполнить электричество. Простой пример: лампочка при увеличении силы тока в цепи будет гореть ярче.

Зачем нужно знать, какой силы ток протекает в проводнике? От силы тока зависит то, как он будет действовать на человека при случайном контакте с токоведущими частями. Производимый электричеством эффект отобразим в таблице:

Сила тока, А (переменный с частотой 50 Гц) Эффект
Менее 0,5 мА является незаметным для человека
От 0,5 до 2 мА Появляется нечувствительность к различным раздражителям
От 2 до 10 мА Болевые ощущения, спазм мышц
От 10 мА до 20 мА Усиленные спазмы, некоторые ткани повреждаются. При силе тока от 16 мА человек теряет способность разжать или отдернуть руку, чтобы разомкнуть контакт с токоведущей частью
От 20 мА до 100 мА Дыхательный паралич
От 100 мА до 3 А Фибрилляция сердца, нужны безотлагательные меры по реанимированию пострадавшего
Свыше 3 А Сильные ожоги, остановка сердца (при кратковременном воздействии возможность реанимирования сохраняется)

А вот еще несколько причин:

  1. Сила тока характеризует нагрузку на проводник. Максимальная пропускная способность последнего зависит от материала и площади поперечного сечения. Если сила тока окажется слишком большой, провод или кабель будет сильно греться. Это может привести к расплавлению изоляции с последующим коротким замыканием. Вот почему проводку всегда защищают от перегрузок автоматическими выключателями или предохранителями. С особым вниманием к протекающей в проводах силе тока следует отнестись владельцам квартир и домов со старой проводкой: ввиду применения все большего количества электроприборов она часто оказывается в перегруженном состоянии.
  2. По соотношению значений силы тока в различных цепях электроприбора можно сделать вывод о его исправности. Например, в фазах электродвигателя должны протекать токи равной силы. Если наблюдаются расхождения, значит двигатель неисправен либо работает с перегрузкой. Таким же способом определяется состояние нагревательного прибора или электрического «теплого пола»: замеряется сила тока во всех составляющих устройства.

Работа электричества, точнее говоря его мощность (количество работы за единицу времени), зависит не только от силы тока, но и от напряжения. Собственно говоря, произведение этих величин и определяет мощность:

W = U * I,

  • W – мощность, Вт;
  • U – напряжение, В;
  • I – сила тока, А.

Таким образом, зная напряжение в сети и мощность прибора, можно рассчитать, какая сила тока будет через него протекать при условии исправного состояния: I = W/U. К примеру, если известно, что мощность обогревателя составляет 1,1 кВт и работает он от обычной сети напряжением 220 В, то сила тока в нем составит: I = 1100 / 220 = 5 А.

Формула измерения силы тока

При этом нужно учитывать, что согласно законам Кирхгофа сила тока в проводе до разветвления представляет собой сумму токов в ветвях. Поскольку в квартире или доме все приборы подключаются по параллельной схеме, то если, допустим, одновременно работают два прибора с током в 5 А, то в подводящем проводе и в общем нулевом будет протекать ток силой в 10 А.

Обратная операция, то есть расчёт мощности потребителя путем перемножения измеренной силы тока на напряжение, не всегда дает правильный результат. Если в устройстве-потребителе имеются обмотки, как например в электродвигателях, которым присуще индуктивное сопротивление, часть мощности будет расходоваться на преодоление этого сопротивления (реактивная мощность).

Чтобы определить активную мощность (полезная работа электричества), нужно знать фактический коэффициент мощности для данного прибора, представляющий собой соотношение активной и реактивной мощностей.

Приборы для измерения силы тока и напряжения

Вот какие измерительные инструменты помогут электрику в данном вопросе:

Амперметр

Существует несколько разновидностей данного прибора, которые различаются принципом действия:

  1. Электромагнитный: внутри имеется катушка, протекаю по которой ток создает электромагнитное поле. Это поле втягивает в катушку железный сердечник, связанный со стрелкой. Чем большей будет сила тока, тем сильнее будет втягиваться сердечник и тем более будет отклоняться стрелка.
  2. Тепловой: в приборе установлена натянутая металлическая нить, связанная со стрелкой. Протекающий ток вызывает нагрев нити, степень которого зависит от силы тока. А чем сильнее нагреется нить, тем сильнее она удлинится и провиснет, соответственно, тем сильнее отклонится стрелка.
  3. Магнитоэлектрический: в приборе имеется постоянный магнит, в поле которого находится связанная со стрелкой алюминиевая рамка с намотанной на нее проволокой. При протекании через проволоку электрического тока рамка в магнитном поле стремится повернуться на некоторый угол, который зависит от силы протекающего тока. А от угла поворота зависит положение стрелки, отмечающей на шкале значение силы тока.
  4. Электродинамический: внутри прибора имеются две последовательно соединенные катушки, одна из которых является подвижной. При протекании по катушкам тока в результате взаимодействия возникающих при этом электромагнитных полей подвижная катушка стремится повернуться относительно неподвижной и при этом тянет за собой стрелку. Угол поворота будет зависеть от силы протекающего тока.
  5. Индукционный: ток пропускается через обмотки неподвижных катушек, соединенных магнитной системой. В результате образуется вращающееся или бегущее электромагнитное поле, воздействующее с некоторой силой (зависит от силы тока) на подвижный металлический цилиндр или диск. Тот связан со стрелкой.
  6. Электронный: такие приборы еще называют цифровыми. Внутри имеется электрическая схема, информация выводится на жидкокристаллический дисплей.

Мультиметр для измерения силы тока

Так принято называть универсальный электронный измеритель параметров тока. Он может переключаться как в режим амперметра, так и в режим вольтметра, омметра и мегомметра (измеряются сопротивления большой величины, обычно изоляции).

Измерение силы тока мультиметром

Результаты измерений отображаются на жидко-кристаллическом дисплее. Для работы прибору необходимо питание от батареек.

Тестер

По функциональности это тот же мультиметр, но аналоговый. Результаты измерений обозначаются на шкале при помощи стрелки, батарейки требуются только при наличии омметра.

Измерительные клещи

Измерительные клещи более практичны. Ими нужно просто зажать участок тестируемого провода, после чего прибор покажет силу протекающего в нем тока.

При этом нужно учитывать, что в клещах должен оказаться только проверяемый проводник. Если зажать несколько проводников, прибор покажет геометрическую сумму токов в них.

Измерительные клещи

Таким образом, при помещении в токоизмерительные клещи 1-фазного провода целиком прибор покажет «нуль», так как в фазном и нулевом проводниках протекают разнонаправленные токи одинаковой величины.

Методы измерения

Первые три прибора для проведения измерений должны быть включены в цепь нагрузки последовательно с ней, то есть в разрыв провода. Для 1-фазной сети это может быть как фазный, так и нулевой провод. Для 3-фазной - только фазный, так как в нулевом протекает геометрическая сумма токов во всех фазах (при одинаковой нагрузке равна нулю).

Отметим два важных обстоятельства:

  1. В отличие от вольтметра (измеритель напряжения), амперметр нельзя использовать без нагрузки, иначе получится короткое замыкание.
  2. Щупами прибора можно касаться проводов или контактов только при отсутствии напряжения, то есть тестируемая линия должна быть обесточена. В противном случае между близко расположенными щупом и проводом может возникнуть дуга с выделением тепла, достаточного для расплавления металла.

Все измерительные приборы имеют переключатель диапазона, которым регулируется чувствительность.

Заземление необходимо для безопасной эксплуатации электричества. – наиболее важный компонент электрической сети.

Трансформатор 220 на 12 Вольт – назначение и рекомендации по изготовлению вы найдете .

Заметим, что ток, потребляемый некоторыми приборами, такими как телевизионная и компьютерная техника, энергосберегающие и светодиодные лампы, не является синусоидальным.

Поэтому некоторые измерительные приборы, принцип действия которых ориентирован на переменное напряжение, могут определять значение силы такого тока с ошибкой.

Видео на тему

  • Tutorial

Введение

Всем привет! После завершения цикла по датчикам были вопросы различного плана по измерению параметров потребления бытовых и не очень электроприборов. Кто сколько потребляет, как что подключать чтобы измерить, какие бывают тонкости и так далее. Пришло время раскрыть все карты в этой области.
В этом цикле статей мы рассмотрим тему измерения параметров электроэнергии. Этих параметров на самом деле очень даже большое количество, о которых я постараюсь постепенно рассказать небольшими сериями.
Пока в планах три серии:
  • Измерение электроэнергии.
  • Качество электроэнергии.
  • Устройства измерения параметров электроэнергии.
В процессе разбора будем решать те или иные практические задачи на микроконтроллерах до достижения результата. Разумеется, большая часть данного цикла будет посвящена измерению переменного напряжения и может пригодиться всем любителям контролировать электроприборы своего умного дома.
По итогам всего цикла мы изготовим некий умный электросчетчик с выходом в интернет. Совсем отъявленные любители контролировать электроприборы своего умного дома могут оказать посильную помощь в реализации коммуникационной части на базе, например MajorDomo. Сделаем OpenSource умный дом лучше, так сказать.
В этой серии в двух частях мы разберем следующие вопросы:
  • Подключение датчиков тока и напряжения в устройствах постоянного тока, а также однофазных и трехфазных цепей переменного тока;
  • Измерение действующих значений тока и напряжения;
  • Измерение коэффициента мощности;
  • Полная, активная и реактивная мощность;
  • Потребление электроэнергии;
Подкатом вы найдете ответы на первые два вопроса данного списка. Я намеренно не затрагиваю вопросы точности измерения показателей и с данной серии лишь радуюсь полученным результатам с точностью плюс-минус лапоть. Этому вопросу я обязательно посвящу отдельную статью в третьей серии.

1. Подключение датчиков


В прошлом цикле про датчики напряжения и тока я рассказал о видах датчиков, но не рассказал о том как ими пользоваться и куда их ставить. Пришло время это исправить
Подключение датчиков постоянного тока
Понятно что весь цикл будет посвящён системам переменного тока, но быстро пробежимся и по цепям постоянного тока, так как это может нам пригодиться при разработке источников питания постоянного тока. Возьмем к примеру классический понижающий преобразователь с ШИМ :


Рис 1. Понижающий преобразователь с ШИМ
Нашей задачей является обеспечение стабилизированного выходного напряжения. Кроме того, на основании информации с датчика тока возможно контролировать режим работы дросселя L1, не допуская его насыщения, а также реализовывать токовую защиту преобразователя. И честно говоря, вариантов установки датчиков особо и нет.
Датчик напряжения в виде резистивного делителя R1-R2, который единственный способен работать на постоянном токе, устанавливается на выходе преобразователя. Как правило специализированная микросхема преобразователя имеет вход обратной связи, и прилагает все усилия для того, чтобы на этом входе (3) оказался определённый уровень напряжения, прописанный в документации на микросхему. Например 1,25В. Если наше выходное напряжение с этим уровнем совпадает - все хорошо - мы напрямую подаем выходное напряжение на этот вход. Если нет, то устанавливаем делитель. Если нам надо обеспечить выходное напряжение в 5В, то делитель должен обеспечивать коэффициент деления 4, т. е. Например R1 = 30к, R2 = 10к.
Датчик тока обычно устанавливается между источником питания и преобразователем и на микросхему. По разности потенциалов между точками 1 и 2, и при известном сопротивлении резисторы Rs возможно определить текущее значение тока нашего дросселя. Устанавливать датчик тока между источников и нагрузкой не самая хорошая идея, так как конденсатор фильтра будет отрезан резистором от потребителей импульсных токов. Установка резистора в разрыв общего провода тоже нге сулит ничего хорошего - будет два земляных уровня с которыми возиться то еще удовольствие.
Проблемы падения напряжения можно избежать путем использования бесконтактных датчиков тока - например датчиков холла:


Рис 2. Бесконтактный датчик тока
Однако есть более хитрый способ измерения тока. Ведь на транзисторе точно также падает напряжение и через него течет тот же самый ток что и индуктивность. Следовательно, по падению напряжения на нем можно также определить текущее значение тока. Честно говоря, если посмотреть на внутреннюю структуру микросхем преобразователей, например, от Texas Instruments - то такой способ встречается так же часто как и предыдущие. Точность такого способа конечно не самая высокая, но для работы токовой отсечки этого вполне достаточно.


Рис 3. Транзистор в качестве датчика тока
Аналогично поступаем в других схемах подобных преобразователей, будь то повышающий или инвертирующий.
Однако необходимо отдельно упомянуть о трансформаторных прямоходовом и обратноходовом преобразователях.


Рис 4. Подключение датчиков тока в обратноходовых преобразователях
В них точно также может использоваться либо внешнее сопротивление, либо транзистор в его роли.
На этом с подключением датчиков в преобразователи постоянного тока мы закончили. Если у вас есть предложения по другим вариантам - с удовольствием дополню ими статью.
1.2 Подключение датчиков в однофазные цепи переменного тока
В цепях переменного тока у нас гораздо больший выбор возможных датчиков. Рассмотрим несколько вариантов.
Самый простой - использование резистивного делителя напряжения и токового шунта.


Рис 5.Подключение резисторных датчиков
Однако, у нее усть пара существенных недостатков:
Во-первых, либо мы обеспечим значительную амплитуду сигнала с токового шунта, выделив большое количество мощности на нем, либо будем довольствоваться малой амплитудой сигнала и впоследствии усиливать его. А во-вторых, резистор создает разность потенциалов между нейтралью сети и нейтралью прибора. Если прибор изолирован - то это не имеет значения, если же у прибора есть вывод заземления, то мы рискуем остаться без сигнала с датчика тока, так как закоротим его. Пожалуй стоит попробовать датчики, работающие на других принципах.
Например, воспользуемся трансформаторами тока и напряжения, либо датчиком тока на эффекте холла и трансформатором напряжения. Здесь гораздо больше возможностей по работе с оборудованием, так как нулевой провод не имеет потерь, а главное - в обоих случаях присутствует гальваническая развязка измерительного оборудования, что часто может пригодиться. Однако, необходимо учитывать, что трансформаторные датчики тока и напряжения имеют ограниченную частотную характеристику и если мы захотим измерить гармонический состав искажений, то у нас это не факт что выйдет.


Рис 6.Подключение трансформаторных и бесконтактных датчиков тока и напряжения
1.3 Подключение датчиков в многофазные цепи сетей переменного тока
В многофазных сетях наши возможности по подключению датчиков тока немного меньше. Связано это с тем, что токовый шунт использовать совсем не получится, так как разность потенциалов между шунтами фаз будет колебаться в пределах сотен вольт и мне не известен ни один контроллер общего применения, аналоговые входы которого способны выдержать такое издевательство.
Один способ использовать токовые шунты конечно есть - для каждого канала необходимо сделать гальванически развязанный аналоговый вход. Но гораздо проще и надежнее использовать другие датчики.
В своем анализаторе качества я использую резистивные делители напряжения и выносные датчики тока на эффекте холла.

Рис 7.Датчики тока в трехфазной сети
Как видно из рисунка, мы используем четырехпроводное подключение. Разумеется вместо датчиков тока на эффекте холла можно взять трансформаторы тока или петли Роговского.
Вместо резистивных делителей можно использовать трансформаторы напряжения, причем как для четырехпроводной так и для трехпроводной системы.
В последнем случае первичные обмотки трансформаторов напряжения подключаются треугольником, а вторичные звездой, общая точка которых является общей точкой измерительной цепи


Рис 8.Использование трансформаторов напряжения в трехфазной сети

2 Действующее значение тока и напряжения


Пришло время решить задачу измерения наших сигналов. Практическую значимость для нас представляет в первую очередь действующее значение тока и напряжения.
Напомню матчасть из цикла по датчикам. С помощью АЦП нашего микроконтроллера через равные промежутки времени мы будем фиксировать мгновенное значение напряжения. Таким образом, за период измерения у нас будет массив данных уровня мгновенного значения напряжения (для тока все аналогично).


Рис 9. Серия мгновенных значений напряжения
Наша задача - произвести подсчет действующего значения. Для начала воспользуемся формулой интеграла:
(1)
В цифровой системе приходится ограничиваться неким квантом времени, так что мы переходим к сумме:
(2)
Где - период дискретизации нашего сигнала, а - число отсчетов за период измерения. Где-то здесь я в видео начинаю втирать дичь про равенство площадей. Надо было выспаться в тот день. =)
В микроконтроллерах MSP430FE4252, которые применяются в однофазных электросчетчиках Меркурий, за период измерения равный 1, 2 или 4 секунд производится 4096 отсчетов. На T=1с и N=4096 мы и будем опираться в дальшейнем. Более того, 4096 точек в секунду позволят нам использовать алгоритмы быстрого преобразования фурье для определения гармонического спектра вплоть до 40 гармоники, как того требует ГОСТ. Но об этом в следующей серии.
Набросаем алгоритм для нашей программы. Нам требуется обеспечить стабильный запуск АЦП каждую 1/8192 секунды, так как у нас два канал и измерять мы будем эти данные попеременно. Для этого настроим таймер и сигнал прерывания будет автоматически перезапускать АЦП. Все АЦП так умеют.
Писать будущую программу будем на arduino, так как она у многих под рукой. У нас пока чисто академический интерес.
Имея частоту системного кварца 16МГц и 8-разрядный таймер (чтобы жизнь медом не казалась) нам необходимо обеспечить частоту срабатывания хоть какого прерывания таймера с частотой 8192Гц.
Печалимся по поводу того что 16МГц цело не делится как нам надо и итоговая частота работы таймера 8198Гц. Закрываем глаза на погрешность в 0,04% и все равно считываем по 4096 выборок на канал.
Печалимся по поводу того, что прерывание по переполнению в arduino занято расчетом времени (отвечает за millis и delay, так что это работать нормально перестанет), так что пользуемся прерыванием по сравнению.
А еще внезапно понимаем, что сигнал к нам приходит биполярный, и что msp430fe4252 с ним прекрасно справляется. Мы же довольствуемся униполярным АЦП, поэтому на операционном усилителе собираем простой преобразователь биполярного сигнала в униполярный:


Рис 10.Преобразователь биполярного сигнала в униполярный
Причем наша задача обеспечить колебание нашей синусоиды относительно половины опорного напряжения - тогда мы либо отнимем половину диапазона либо активируем опцию в настройках АЦП и получим знаковые значения.
В Arduino 10-разрядный АЦП, поэтому из беззнакового результата в пределах 0-1023 будем вычитать половину и получим -512- 511.
Проверяем модель, собранную в LTSpiceIV и убеждаемся, что все работает как надо. В видеоматериале дополнительно убеждаемся экспериментально.


Рис 11.результат моделирования. Зеленым исходный сигнал, синим - выходной

Скетч для Arduino для одного канала

void setup() { autoadcsetup(); DDRD |=(1<

Программа написана в среде Arduino IDE для микроконтроллера ATmega1280. На моей отладочной плате первые 8 каналов разведены для внутренних нужд платы поэтому используется канал ADC8. Возможно использовать данный скетч и для платы с ATmega168, однако необходимо выбрать правильный канал.
Внутри прерываний передергиваем пару служебных пинов чтобы наглядно видеть рабочую частоту оцифровки.
Пару слов о том, откуда взялся коэффициент 102. При первом запуске с генератора подавался сигнал различной амплитуды, с осциллографа считывалось показание действующего значения напряжения, а из консоли забиралось рассчитанное значение в абсолютных единицах АЦП.

Umax, В Urms, В Counted
3 2,08 212
2,5 1,73 176
2 1,38 141
1,5 1,03 106
1 0,684 71
0,5 0,358 36
0,25 0,179 19

Разделив значения третьего столбца на значения второго получаем в среднем 102. Это и будет наш «калибровочный» коэффициент. Однако можно заметить, что при снижении напряжения точность резко падает. Это происходит из-за низкой чувствительности нашего АЦП. Фактически 10 разрядов для точных расчётов катастрофически мало и если напряжение в розетке измерить таким образом вполне получится, то поставить 10-разрядный АЦП на измерение потребляемого нагрузкой тока будет преступлением против метрологии.

На данном моменте мы прервемся. В следующей части рассмотрим другие три вопроса данной серии и будем плавно переходить к созданию непосредственно самого устройства.

Представленную прошивку, а также другие прошивки для данной серии (так как видеоматериалы я снимаю быстрее чем подготавливаю статьи) вы найдете в репозитории на GitHub.

Предлагаемое устройство предназначено для установки в различные регулируемые блоки питания. Оно отображает на своих светодиодных индикаторах выходное напряжение блока и ток его нагрузки. Когда появилась необходимость постоянно контролировать выходное напряжение и ток нагрузки лабораторного блока питания, сразу было решено выводить их значения на семиэлементные светодиодные индикаторы. Возможная альтернатива — символьные ЖКИ с двумя строками по 8 или 16 символов, но они дороги и плохо читаемы. Ещё одним требованием был одновременный вывод на индикаторы значений напряжения и тока без каких-либо переключений. По разным причинам готовые решения, найденные в литературе и Интернете, автора не устроили, и он решил сконструировать устройство самостоятельно.

Внешний вид предлагаемого измерителя показан на рис. 1. Он позволяет измерять напряжение от 0 до 99,9 В с дискретностью 0,1 В и ток от 0 до 9,99 А с дискретностью 0,01 А. Устройство собрано на плате размерами 57x62 мм и может быть встроено внутрь практически любого лабораторного блока питания или другого прибора, где требуется постоянный контроль напряжения и тока. Схема измерителя изображена на рис. 2. Он содержит ОУ , два интегральных стабилизатора напряжения , микроконтроллер (самый недорогой из имеющих десятиразрядный АЦП), два регистра и два семиэлементных светодиодных индикатора. Они могут быть четырёх- или трёхразрядными.

Измеренное значение напряжения выводится на индикатор HG1, а тока — на индикатор HG2. Одноименные выводы элементов индикаторов попарно объединены и подключены через ограничивающие ток резисторы R13—R20 к выходам регистра DD2. Общие выводы разрядов индикаторов подключены к регистру DD3. Регистры соединены последовательно и образуют 16-разряд-ный сдвиговый регистр, управляемый сигналами с трёх выходов микроконтроллера DD1: GP2 (тактовые импульсы), GP4 (загружаемый последовательный код), GP5 (импульс вывода загруженного кода на параллельные выходы регистров). Индикация — обычная динамическая, при которой разряды индикаторов включаются поочерёдно импульсами на выходах регистра DD3, формируемыми одновременно с появлением на выходах регистра DD2 кодов для отображения во включённом разряде нужной цифры.

Индикаторы HG1 и HG2 могут быть как с общими анодами, так и с общими катодами элементов каждого разряда, но обязательно оба одинаковые. В зависимости от этого должен быть выбран соответствующий вариант программы микроконтроллера — AV-meter_ common_anocle.HEX для общих анодов или AV-meter_common_cathode. HEX для общих катодов. Микроконтроллер управляет индикаторами по прерываниям от таймера TMR0, следующим с периодом 2 мс.
Входы GP0 и GP1 работают в режиме аналоговых входов АЦП микроконтроллера. GP0 используются для измерения напряжения, a GP1 — тока. В трёх старших разрядах индикаторов выводятся измеренные значения. В младшем разряде индикатора HG1 постоянно выведена буква U (признак измерения напряжения), а в том же разряде индикатора HG2 — буква А (признак измерения тока). В случае применения трёхразрядных индикаторов никаких изменений программы не требуется, но эти буквы отсутствуют.

Измеряемое напряжение поступает на микроконтроллер через делитель R2-R4, а пропорциональное измеряемому току напряжение - с выхода ОУ DA1.1. Резистор R12 вместе с внутренним защитным диодом микроконтроллера предохраняет его вход от возможной перегрузки (ОУ питается напряжением 7...15 В). Коэффициент усиления снимаемого с датчика тока (резистора R1) напряжения около 50 задан резисторами R6, R8, R11. Его точное значение устанавливают подстроечным резистором R8.

ФНЧ R7C3 сглаживает пульсации напряжения на неинвертирующем входе ОУ. Без этого фильтра показания прибора "прыгают". Аналогичную функцию выполняет конденсатор С2 в цепи измерения напряжения. Стабилитрон VD1 защищает вход ОУ от перенапряжения в случае обрыва резистора R1. В крайнем случае стабилитрон можно не устанавливать.
Особо следует остановиться на цепи R5R10. В отсутствие измеряемого тока она создаёт на входе ОУ начальное смещение около +0,25 мВ. Без этого наблюдалась существенная нелинейность при измерении тока менее 0,3 А. У разных экземпляров микросхем LM358N этот эффект проявляется в разной степени, но в любом случае погрешность при малых значениях измеряемого тока слишком высока. При установке R5 и R10 указанных на схеме номиналов (они могут быть пропорционально изменены при сохранении того же соотношения, например, 15 Ом и 300 кОм) погрешность измерения тока, обусловленная этим эффектом, не превышает единицы младшего разряда.

Со всеми имеющимися у меня экземплярами микросхемы LM358N, а они приобретались в течение последних десяти лет в разных местах, никакой подборки указанных резисторов не потребовалось. Но при необходимости следует определить минимальное сопротивление резистора R10, при котором на индикаторе HG1 в отсутствие измеряемого тока ещё светятся нули, а затем увеличить его в 1,5...2 раза. Я не рекомендую в целях упрощения конструкции исключать обычно отсутствующие в подобных устройствах элементы С2, С3, R4, R5, R10.

Хорошая точность и стабильность показаний обеспечена также полным отделением от микроконтроллера относительно мощных импульсных узлов управления индикаторами путём их питания от отдельного интегрального стабилизатора напряжения DA3. Помехи от работы процессора самого микроконтроллера мало влияют на результаты измерений, так как каждое из них выполняется с предварительным переводом микроконтроллера в спящий режим с выключенным тактовым генератором.

Микроконтроллер тактируется от внутреннего генератора. R9C5 — цепь установки микроконтроллера в исходное состояние. Для устранения последствий возможных сбоев микроконтроллера в нём включён сторожевой таймер (WDT).

На рис. 3 изображён чертёж проводников печатной платы устройства, а на рис. 4 — расположение деталей на ней. Большая часть резисторов и конденсаторов — типоразмера 0805 для поверхностного монтажа. Исключения — резисторы R2 (из-за рассеиваемой мощности), R13 (для упрощения разводки печатных проводников), подстроечные резисторы R3, R8, оксидные конденсаторы С1, С6, С8. Конденсаторы С2 и С3 — керамические, но их можно заменить оксидными танталовыми.

Хочу представить вашему вниманию модернизированную версию для лабораторного блока питания. Добавилась возможность отключать нагрузку при превышении определенного установленного заранее тока. Прошивку улучшенного вольтамперметра можно .

Схема цифрового измерителя тока и напряжения

В схему так же добавилось несколько деталей. С органов управления - одна кнопка и переменный резистор номиналом от 10 килоом до 47 килоом. Его сопротивление не критично для схемы, и как видно может варьироваться в довольно широких пределах. Немножко изменился и внешний вид на экране. Добавил отображение мощности и ампер*часов.

Переменная тока отключения сохраняется в EEPROM. По этому после выключения не нужно будет все настраивать заново. Для того, чтоб зайти в меню установки тока нужно нажать на кнопку. Поворачивая ручкой переменного резистора надо установить ток, при котором произойдет отключение реле. Оно подключено через ключ на транзисторе к выводу PB5 микроконтроллера Atmega8 .

В момент отключения на дисплее высветиться надпись о том, что максимальный установленный ток был превышен. После нажатия на кнопку мы перейдем снова в меню установки максимального тока. Нужно еще раз нажать на кнопку, чтоб перейти в режим измерения. На выход PB5 микроконтроллера подастся лог 1 и при этом включится реле. Такое слежение за током имеет и свои минусы. Защита не сможет сработать мгновенно. Срабатывание может занять несколько десятков миллисекунд. Для большинства подопытных устройств данный недостаток не критичен. Для человека эта задержка не видна. Все происходит сразу. Новая печатная плата не разрабатывалась. Кто захочет повторить устройство может немного подредактировать печатную плату от предыдущего варианта. Изменения будут не значительны.

. Ток или силу тока определяют количеством электронов, проходящих через точку или элемент схемы в течение одной секунды. Так, например, через нить накала горящей лампы накаливания карманного фонаря ежесекундно проходит около 2 000 000 000 000 000 000 (два триллиона) электронов. Однако на практике измеряется не количество электронов, а их движение, выраженное в амперах (А).

Ампер – это единица электрического тока, которую так назвали в честь французского физика и математика А. Ампера изучавшего взаимодействие проводников с током. Экспериментально установлено, что при токе в 1А через точку или элемент схемы проходит около 6 250 000 000 000 000 000 электронов.

Помимо ампера применяют и более мелкие единицы силы тока: миллиампер (мA), равный 0,001 А, и микроампер (мкA), равный 0,000001 А или 0,001 мА. Следовательно: 1 А = 1000 мА = 1 000 000 мкА .

1. Прибор для измерения силы тока.

Как и напряжение, ток бывает постоянный и переменный . Приборы, служащие для измерения тока, называют амперметрами , миллиамперметрами и микроамперметрами . Так же, как и вольтметры, амперметры бывают стрелочными и цифровыми .

На электрических схемах приборы обозначаются кружком и буквой внутри: А (амперметр), мА (миллиамперметр) и мкА (микроамперметр). Рядом с условным обозначением амперметра указывается его буквенное обозначение «» и порядковый номер в схеме. Например. Если амперметров в схеме будет два, то около первого пишут «PА1 », а около второго «PА2 ».

Для измерения тока амперметр включается непосредственно в цепь последовательно с нагрузкой , то есть в разрыв цепи питания нагрузки. Таким образом, на время измерения амперметр становится как бы еще одним элементом электрической цепи, через который протекает ток, но при этом в схему амперметр никаких изменений не вносит. На рисунке ниже изображена схема включения миллиамперметра в цепь питания лампы накаливания.

Также надо помнить, что амперметры выпускаются на разные диапазоны (шкалы), и если при измерении использовать прибор с меньшим диапазоном по отношению к измеряемой величине, то прибор можно повредить. Например. Диапазон измерения миллиамперметра составляет 0…300 мА, значит, силу тока измеряют только в этих пределах, так как при измерении тока свыше 300 мА прибор выйдет из строя.

2. Измерение силы тока мультиметром.

Измерение силы тока мультиметром практически ни чем не отличается от измерения обыкновенным амперметром или миллиамперметром. Разница состоит лишь в том, что у обычного прибора всего один диапазон измерения, рассчитанный на определенную максимальную величину тока, тогда как у мультиметра диапазонов несколько, и перед измерением приходится определять каким из диапазон пользоваться в данный момент.

Обычные мультиметры, не профессиональные, рассчитаны на измерение постоянного тока и имеют четыре поддиапазона, что на бытовом уровне вполне достаточно. У каждого поддиапазона есть свой максимальный предел измерения, который обозначен цифровым значением: 2m , 20m , 200m , 10А . Например. На пределе «20m » можно измерять постоянный ток в диапазоне 0…20 мА.

Для примера измерим ток, потребляемый обычным светодиодом. Для этого соберем схему, состоящую из источника напряжения (пальчиковой батарейки) GB1 и светодиода VD1 , а в разрыв цепи включим мультиметр РА1 . Но перед включением мультиметра в схему подготовим его к проведению измерений.

Измерительные щупы вставляем в гнезда мультиметра, как показано на рисунке:

красный щуп называют плюсовым , и вставляется он в гнездо, напротив которого изображены значки измеряемых параметров: «VΩmA »;
черный щуп является минусовым или общим и вставляется он в гнездо, напротив которого написано «СОМ ». Относительно этого щупа производятся все измерения.

В секторе измерения постоянного тока выбираем предел «2m », диапазон измерения которого составляет 0…2 мА. Подключаем щупы мультиметра согласно схеме и затем подаем питание. Светодиод загорелся, и его потребление тока составило 1,74 мА. Вот, в принципе, и весь процесс измерения.

Однако этот вариант измерения подходит тогда, когда величина потребления тока известна. На практике же часто возникает ситуация, когда необходимо измерить ток на каком-либо участке цепи, величина которого неизвестна или известна приблизительно. В таком случае измерение начинают с самого высокого предела.

Предположим, что потребление тока светодиодом неизвестно. Тогда переключатель переводим на предел «200m », который соответствует диапазону 0…200 мА, и после этого щупы мультиметра включаем в цепь.

Затем подаем напряжение и смотрим на показания мультиметра. В данном случае показания тока составили «01,8 », что означает 1,8 мА. Однако нолик впереди указывает на то, что можно снизиться на предел «20m ».

Отключаем питание. Переводим переключатель на предел «20m ». Включаем питание и опять производим измерение. Показания составили 1,89 мА.

Часто бывает ситуация, когда при измерении тока или напряжения на индикаторе появляется единица . Единица говорит о том, что выбран низкий предел измерения и он меньше величины измеряемого параметра. В этом случае необходимо перейти на предел выше.

Также может возникнуть момент, когда измеряемый ток выше 200 мА и необходимо перейти на предел измерения «10А ». Однако здесь есть нюанс, который надо запомнить. Помимо того, что переключатель переводится на предел «10А », еще также необходимо переставить плюсовой (красный) щуп в крайнее левое гнездо, напротив которого стоит цифро-буквенное значение «10А», указывающее, что это гнездо предназначено для измерения больших токов.

И еще совет. Возьмите за правило: когда закончите все измерения на пределе «10А » сразу же переставляйте плюсовой (красный) щуп на свое штатное место . Этим Вы сбережете себе нервы, щупы и мультиметр.

Ну вот, в принципе и все, что хотел сказать об измерении тока мультиметром. Главное понимать, что при вольтметр подключается параллельно нагрузке или источнику напряжения, тогда как при измерении силы тока амперметр включается непосредственно в цепь и через него протекает ток, которым питаются элементы схемы.

Ну и в качестве закрепления прочитанного предлагаю посмотреть видеоролик, в котором на примере схем рассказывается об измерениях напряжения и силы тока мультиметром.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то