Принцип функционирования импульсных источников питания. Эффективный импульсный стабилизатор низкого уровня сложности. К недостаткам импульсной технологии следует отнести

Всегда являлись важными элементами любых электронных приборов. Задействованы данные устройства в усилителях, а также приемниках. Основной функцией блоков питания принято считать снижение предельного напряжения, которое исходит от сети. Появились первые модели только после того, как была изобретена катушка переменного тока.

Дополнительно на развитие блоков питания повлияло внедрение трансформаторов в схему устройства. Особенность импульсных моделей заключается в том, что в них применяются выпрямители. Таким образом, стабилизация напряжения в сети осуществляется несколько другим способом, чем в обычных приборах, где задействуется преобразователь.

Устройство блока питания

Если рассматривать обычный блок питания, который используется в радиоприемниках, то он состоит из частотного трансформатора, транзистора, а также нескольких диодов. Дополнительно в цепи присутствует дроссель. Конденсаторы устанавливаются разной емкости и по параметрам могут сильно отличаться. Выпрямители используются, как правило, конденсаторного типа. Они относятся к разряду высоковольтных.

Работа современных блоков

Первоначально напряжение поступает на мостовой выпрямитель. На этом этапе срабатывает ограничитель пикового тока. Необходимо это для того, чтобы в блоке питания не сгорел предохранитель. Далее ток проходит по цепи через специальные фильтры, где происходит его преобразование. Для зарядки резисторов необходимо несколько конденсаторов. Запуск узла происходит только после пробоя динистора. Затем в блоке питания осуществляется отпирание транзистора. Это дает возможность значительно снизить автоколебания.

При возникновении генерации напряжения задействуются диоды в схеме. Они соединены между собой при помощи катодов. Отрицательный потенциал в системе дает возможность запереть динистор. Облегчение запуска выпрямителя осуществляется после запирания транзистора. Дополнительно обеспечивается Чтобы предотвратить насыщение транзисторов, имеется два предохранителя. Срабатывают они в цепи только после пробоя. Для запуска обратной связи необходим обязательно трансформатор. Подпитывают его в блоке питания импульсные диоды. На выходе переменный ток проходит через конденсаторы.

Особенности лабораторных блоков

Принцип работы импульсных блоков питания данного типа построен на активном преобразовании тока. Мостовой выпрямитель в стандартной схеме предусмотрен один. Для того чтобы убирать все помехи, используются фильтры в начале, а также в конце цепи. Конденсаторы импульсный лабораторный блок питания имеет обычные. Насыщение транзисторов происходит постепенно, и на диодах это сказывается положительно. Регулировка напряжения во многих моделях предусмотрена. Система защиты призвана спасать блоки от коротких замыканий. Кабели для них обычно используются немодульной серии. В таком случае мощность модели может доходить до 500 Вт.

Разъемы блока питания в системе чаще всего устанавливаются типа АТХ 20. Для охлаждения блока в корпусе монтируется вентилятор. Скорость вращения лопастей должна регулироваться при этом. Максимальную нагрузку блок лабораторного типа должен уметь выдерживать на уровне 23 А. При этом параметр сопротивления в среднем поддерживается на отметке 3 Ом. Предельная частота, которую имеет импульсный лабораторный блок питания, равна 5 Гц.

Как осуществлять ремонт устройств?

Чаще всего блоки питания страдают из-за сгоревших предохранителей. Находятся они рядом с конденсаторами. Начать ремонт импульсных блоков питания следует со снятия защитной крышки. Далее важно осмотреть целостность микросхемы. Если на ней дефекты не видны, ее можно проверить при помощи тестера. Чтобы снять предохранители, необходимо в первую очередь отсоединить конденсаторы. После этого их можно без проблем извлечь.

Для проверки целостности данного устройства осматривают его основание. Сгоревшие предохранители в нижней части имеют темное пятно, которое свидетельствует о повреждении модуля. Чтобы заменить данный элемент, нужно обратить внимание на его маркировку. Затем в магазине радиоэлектроники можно приобрести аналогичный товар. Установка предохранителя осуществляется только после закрепления конденсатов. Еще одной распространенной проблемой в блоках питания принято считать неисправности с трансформаторами. Представляют они собой коробки, в которых устанавливаются катушки.

Когда напряжение на устройство подается очень большое, то они не выдерживают. В результате целостность обмотки нарушается. Сделать ремонт импульсных блоков питания при такой поломке невозможно. В данном случае трансформатор, как и предохранитель, можно только заменить.

Сетевые блоки питания

Принцип работы импульсных блоков питания сетевого типа основан на низкочастотном снижении амплитуды помех. Происходит это благодаря использованию высоковольтных диодов. Таким образом, контролировать предельную частоту получается эффективнее. Дополнительно следует отметить, что транзисторы применяются средней мощности. Нагрузка на предохранители оказывается минимальная.

Резисторы в стандартной схеме используются довольно редко. Во многом это связано с тем, что конденсатор способен участвовать в преобразовании тока. Основной проблемой блока питания данного типа является электромагнитное поле. Если конденсаторы используются с малой емкостью, то трансформатор находится в зоне риска. В данном случае следует очень внимательно относиться к мощности устройства. Ограничители для пикового тока сетевой импульсный блок питания имеет, а находятся они сразу над выпрямителями. Их основной задачей является контроль рабочей частоты для стабилизации амплитуды.

Диоды в данной системе частично выполняют функции предохранителей. Для запуска выпрямителя используются только транзисторы. Процесс запирания, в свою очередь, необходим для активации фильтров. Конденсаторы также могут применяться разделительного типа в системе. В таком случае запуск трансформатора будет осуществляться намного быстрее.

Применение микросхем

Микросхемы в блоках питания применяются самые разнообразные. В данной ситуации многое зависит от количества активных элементов. Если используется более двух диодов, то плата должна быть рассчитана под входные и выходные фильтры. Трансформаторы также производятся разной мощности, да и по габаритам довольно сильно отличаются.

Заниматься пайкой микросхем самостоятельно можно. В этом случае нужно рассчитать предельное сопротивление резисторов с учетом мощности устройства. Для создания регулируемой модели используют специальные блоки. Такого типа системы делаются с двойными дорожками. Пульсации внутри платы будут происходить намного быстрее.

Преимущества регулируемых блоков питания

Принцип работы импульсных блоков питания с регуляторами заключается в применении специального контроллера. Данный элемент в цепи может изменять пропускную способность транзисторов. Таким образом, предельная частота на входе и на выходе значительно отличается. Настраивать по-разному можно импульсный блок питания. Регулировка напряжения осуществляется с учетом типа трансформатора. Для охлаждения прибора используют обычные куллеры. Проблема данных устройств, как правило, заключается в избыточном токе. Для того чтобы ее решить, применяют защитные фильтры.

Мощность приборов в среднем колеблется в районе 300 Вт. Кабели в системе используются только немодульные. Таким образом, коротких замыканий можно избежать. Разъемы блока питания для подключения устройств обычно устанавливают серии АТХ 14. В стандартной модели имеется два выхода. Выпрямители используются повышенной вольтности. Сопротивление они способны выдерживать на уровне 3 Ом. В свою очередь, максимальную нагрузку импульсный регулируемый блок питания воспринимает до 12 А.

Работа блоков на 12 вольт

Импульсный включает в себя два диода. При этом фильтры устанавливаются с малой емкостью. В данном случае процесс пульсации происходит крайне медленно. Средняя частота колеблется в районе 2 Гц. Коэффициент полезного действия у многих моделей не превышает 78%. Отличаются также данные блоки своей компактностью. Связано это с тем, что трансформаторы устанавливаются малой мощности. В охлаждении при этом они не нуждаются.

Схема импульсного блока питания 12В дополнительно подразумевает использование резисторов с маркировкой Р23. Сопротивление они способны выдержать только 2 Ом, однако для прибора такой мощности достаточно. Применяется импульсный блок питания 12В чаще всего для ламп.

Как работает блок для телевизора?

Принцип работы импульсных блоков питания данного типа заключается в применении пленочных фильтров. Эти устройства способны справляться с помехами различной амплитуды. Обмотка дросселя у них предусмотрена синтетическая. Таким образом, защита важных узлов обеспечивается качественная. Все прокладки в блоке питания изолируются со всех сторон.

Трансформатор, в свою очередь, имеет отдельный куллер для охлаждения. Для удобства использования он обычно устанавливается бесшумным. Предельную температуру данные устройства выдерживают до 60 градусов. Рабочую частоту импульсный блок питания телевизоров поддерживает на уровне 33 Гц. При минусовых температурах данные устройства также могут использоваться, однако многое в этой ситуации зависит от типа применяемых конденсатов и сечения магнитопровода.

Модели устройств на 24 вольта

В моделях на 24 вольта выпрямители применяются низкочастотные. С помехами успешно справляться могут всего два диода. Коэффициент полезного действия у таких устройств способен доходить до 60%. Регуляторы на блоки питания устанавливаются довольно редко. Рабочая частота моделей в среднем не превышает 23 Гц. Сопротивление резисторы могут выдерживать только 2 Ом. Транзисторы в моделях устанавливаются с маркировкой ПР2.

Для стабилизации напряжения резисторы в схеме не используются. Фильтры импульсный блок питания 24В имеет конденсаторного типа. В некоторых случаях можно встретить разделительные виды. Они необходимы для ограничения предельной частоты тока. Для быстрого запуска выпрямителя динисторы применяются довольно редко. Отрицательный потенциал устройства убирается при помощи катода. На выходе ток стабилизируется благодаря запиранию выпрямителя.

Боки питания на схеме DA1

Блоки питания данного типа от прочих устройств отличаются тем, что способны выдерживать большую нагрузку. Конденсатор в стандартной схеме предусмотрен только один. Для нормальной работы блока питания регулятор используется. Устанавливается контроллер непосредственно возле резистора. Диодов в схеме можно встретить не более трех.

Непосредственно обратный процесс преобразования начинается в динисторе. Для запуска механизма отпирания в системе предусмотрен специальный дроссель. Волны с большой амплитудой гасятся у конденсатора. Устанавливается он обычно разделительного типа. Предохранители в стандартной схеме встречаются редко. Обосновано это тем, что предельная температура в трансформаторе не превышает 50 градусов. Таким образом, балластный дроссель со своими задачами справляется самостоятельно.

Модели устройств с микросхемами DA2

Микросхемы импульсных блоков питания данного типа среди прочих устройств выделяются повышенным сопротивлением. Используют их в основном для измерительных приборов. В пример можно привести осциллограф, который показывает колебания. Стабилизация напряжения для него является очень важной. В результате показатели прибора будут более точными.

Регуляторами многие модели не оснащаются. Фильтры в основном имеются двухсторонние. На выходе цепи транзисторы устанавливаются обычные. Все это дает возможность максимальную нагрузку выдерживать на уровне 30 А. В свою очередь, показатель предельной частоты находится на отметке 23Гц.

Блоки с установленными микросхемами DA3

Данная микросхема позволяет устанавливать не только регулятор, но и котроллер, который следит за колебаниями в сети. Сопротивление транзисторы в устройстве способны выдерживать примерно 3 Ом. Мощный импульсный блок питания DA3 с нагрузкой в 4 А справляется. Подсоединять вентиляторы для охлаждения выпрямителей можно. В результате устройства можно использовать при любой температуре. Еще одно преимущество заключается в наличии трех фильтров.

Два из них устанавливаются на входе под конденсаторами. Один фильтр разделительного типа имеется на выходе и стабилизирует напряжение, которое исходит от резистора. Диодов в стандартной схеме можно встретить не более двух. Однако многое зависит от производителя, и это следует учитывать. Основной проблемой блоков питания данного типа считается то, что они не способны справляться с низкочастотными помехами. В результате устанавливать их на измерительные приборы нецелесообразно.

Как работает блок на диодах VD1?

Данные блоки рассчитаны на поддержку до трех устройств. Регуляторы в них имеются трехсторонние. Кабели для связи устанавливаются только немодульные. Таким образом, преобразование тока происходит быстро. Выпрямители во многих моделях устанавливаются серии ККТ2.

Отличаются они тем, что энергию от конденсатора способны передавать на обмотку. В результате нагрузка от фильтров частично снимается. Производительность у таких устройств довольно высокая. При температурах свыше 50 градусов они также могут использоваться.

В отличие от традиционных линейных ИП, предполагающих гашение излишнего нестабилизированного напряжения на проходном линейном элементе, импульсные ИП используют иные методы и физические явления для генерации стабилизированного напряжения, а именно: эффект накопления энергии в катушках индуктивности, а также возможность высокочастотной трансформации и преобразования накопленной энергии в постоянное напряжение. Существует три типовых схемы построения импульсных ИП: повышающая (выходное напряжение выше входного) рис. 1,


Рис. 1. Повышающий импульсный источник питания (Uвых>Uвх).

понижающая (выходное напряжение ниже входного)


Рис. 2. Понижающий импульсный источник питания (Uвых

Понижающий импульсный источник питания (Uвых

Рис. 3. Инвертирующий импульсный источник питания (Uвых

Как видно из рисунка, отличаются они лишь способом подключения индуктивности, в остальном, принцип работы остается неизменным, а именно.

Ключевой элемент (обычно применяют биполярные или МДП транзисторы), работающий с частотой порядка 20-100 кГц, периодически на короткое время (не более 50% времени) прикладывает к катушке индуктивности полное входное нестабилизированное напряжение. Импульсный ток. протекающий при этом через катушку, обеспечивает накопление запаса энергии в её магнитном поле 1/2LI^2 на каждом импульсе. -апасенная таким образом энергия из катушки передастся в нагрузку (либо напрямую, с использованием выпрямляющего диода, либо через вторичную обмотку с последующим выпрямлением), конденсатор выходного сглаживающего фильтра обеспечивает постоянство выходного напряжения и тока. Стабилизация выходного напряжения обеспечивается автоматической регулировкой ширины или частоты следования импульсов на ключевом элементе (для слежения за выходным напряжением предназначена цепь обратной связи).

Такая, хотя и достаточно сложная, схема позволяет существенно повысить КПД всего устройства. Дело в том, что, в данном случае, кроме самой нагрузки в схеме отсутствуют силовые элементы, рассеивающие значительную мощность. Ключевые транзисторы работают в режиме насыщенного ключа (т.е. падение напряжения на них мало) и рассеивают мощность только в достаточно короткие временные интервалы (время подачи импульса). Помимо этого, за счет повышения частоты преобразования можно существенно увеличить мощность и улучшить массогабаритные характеристики.

Важным технологическим преимуществом импульсных ИП является возможность построения на их основе малогабаритных сетевых ИП с гальванической развязкой от сети для питания самой разнообразной аппаратуры. Такие ИП строятся без применения громоздкого низкочастотного силового трансформатора по схеме высокочастотного преобразователя. Это, собственно, типовая схема импульсного ИП с понижением напряжения, где в качестве входного напряжения используется выпрямленное сетевое напряжение, а в качестве накопительного элемента - высокочастотный трансформатор (малогабаритный и с высоким КПД), со вторичной обмотки которого и снимается выходное стабилизированное напряжение (этот трансформатор обеспечивает также гальваническую развязку с сетью).

К недостаткам импульсных ИП можно отнести: наличие высокого уровня импульсных шумов на выходе, высокую, сложность и низкую надежность (особенно при кустарном изготовлении), необходимость применения дорогостоящих высоковольтных высокочастотных компонентов, которые в случае малейшей неисправности легко выходят из строя "всем скопом" (при этом. как правило, можно наблюдать впечатляющие пиротехнические эффекты). Любителям покопаться во внутренностях устройств с отверткой и паяльником при конструировании сетевых импульсных ИП придется быть крайне осторожными, так как многие элементы таких схем находятся под высоким напряжением.

Импульсный блок питания служит для преобразования входного напряжения до величины, необходимой внутренним элементам устройства. Иное название импульсных источников, получившее широкое распространение, – инверторы.

Что это такое?

Инвертор – это вторичный источник питания, который использует двойное преобразование входного переменного напряжения. Величина выходных параметров регулируется путем изменения длительности (ширины) импульсов и, в некоторых случаях, частоты их следования. Такой вид модуляции называется широтно-импульсным.

Принцип работы импульсного блока питания

В основе работы инвертора лежит выпрямление первичного напряжения и дальнейшее его преобразование в последовательность импульсов высокой частоты. Этим он отличается от обычного трансформатора. Выходное напряжение блока служит для формирования сигнала отрицательной обратной связи, что позволяет регулировать параметры импульсов. Управляя шириной импульсов, легко организовать стабилизацию и регулировку выходных параметров, напряжения или тока. То есть это может быть как стабилизатор напряжения, так и стабилизатор тока.

Количество и полярность выходных значений может быть самым различным в зависимости от того, как работает импульсный блок питания.

Разновидности блоков питания

Применение нашли несколько типов инверторов, которые отличаются схемой построения:

  • бестрансформаторные;
  • трансформаторные.

Первые отличаются тем, что импульсная последовательность поступает непосредственно на выходной выпрямитель и сглаживающий фильтр устройства. Такая схема имеет минимум комплектующих. Простой инвертор включает в себя специализированную интегральную микросхему – широтно-импульсный генератор.

Из недостатков бестрансформаторных устройств главным является то, что они не имеют гальванической развязки с питающей сетью и могут представлять опасность удара электрическим током. Также они обычно имеют небольшую мощность и выдают только 1 значение выходного напряжения.

Более распространены трансформаторные устройства, в которых высокочастотная последовательность импульсов поступает на первичную обмотку трансформатора. Вторичных обмоток может быть сколько угодно много, что позволяет формировать несколько выходных напряжений. Каждая вторичная обмотка нагружена на собственный выпрямитель и сглаживающий фильтр.

Мощный импульсный блок питания любого компьютера построен по такой схеме, которая имеет высокую надежность и безопасность. Для сигнала обратной связи здесь используется напряжение 5 или 12 Вольт, поскольку эти значения требуют максимально точной стабилизации.

Использование трансформаторов для преобразования напряжения высокой частоты (десятки килогерц вместо 50 Гц) позволило многократно снизить их габариты и массу и использовать в качестве материала сердечника (магнитопровода) не электротехническое железо, а ферромагнитные материалы с высокой коэрцитивной силой.

На основе широтно-импульсной модуляции построены также преобразователи постоянного тока. Без использования инверторных схем преобразование было связано с большими трудностями.

Схема БП

В схему самой распространенной конфигурации импульсного преобразователя входят:

  • сетевой помехоподавляющий фильтр;
  • выпрямитель;
  • сглаживающий фильтр;
  • широтно-импульсный преобразователь;
  • ключевые транзисторы;
  • выходной высокочастотный трансформатор;
  • выходные выпрямители;
  • выходные индивидуальные и групповые фильтры.

Назначение помехоподавляющего фильтра состоит в задерживании помех от работы устройства в питающую сеть. Коммутация мощных полупроводниковых элементов может сопровождаться созданием кратковременных импульсов в широком спектре частот. Поэтому здесь необходимо в качестве проходных конденсаторов фильтрующих звеньев использовать разработанные специально для этой цели элементы.

Выпрямитель служит для преобразования входного переменного напряжения в постоянное, а установленный следом сглаживающий фильтр устраняет пульсации выпрямленного напряжения.

В том случае когда используется , выпрямитель и фильтр становятся ненужными, и входной сигнал, пройдя цепи помехоподавляющего фильтра, подается непосредственно на широтно-импульсный преобразователь (модулятор), сокращенно ШИМ.

ШИМ является самой сложной частью схемы импульсного источника питания. В его задачу входят:

  • генерация высокочастотных импульсов;
  • контроль выходных параметров блока и коррекция импульсной последовательности в соответствии с сигналом обратной связи;
  • контроль и защита от перегрузок.

Сигнал с ШИМ подается на управляющие выводы мощных ключевых транзисторов, включенных по мостовой или полумостовой схеме. Силовые выводы транзисторов нагружены на первичную обмотку выходного трансформатора высокой частоты. Вместо традиционных используются IGBT- или MOSFET-транзисторы, которые отличаются малым падением напряжения на переходах и высоким быстродействием. Улучшенные параметры транзисторов способствуют уменьшению рассеиваемой мощности при одинаковых габаритах и технических параметрах конструкции.

Выходной импульсный трансформатор использует одинаковый с классическим принцип преобразования. Исключением является работа на повышенной частоте. Как следствие, высокочастотные трансформаторы при одинаковых передаваемых мощностях имеют меньшие габариты.

Напряжение со вторичной обмотки (их может быть несколько) поступает на выходные выпрямители. В отличие от входного выпрямителя, диоды выпрямителя вторичной цепи должны иметь повышенную рабочую частоту. Наилучшим образом на данном участке схемы работают диоды Шоттки. Их преимущества перед обычными:

  • высокая рабочая частота;
  • сниженная емкость p-n перехода;
  • малое падение напряжения.

Назначение выходного фильтра импульсного блока питания – снижение до необходимого минимума пульсаций выпрямленного выходного напряжения. Поскольку частота пульсаций намного выше, чем у сетевого напряжения, то нет необходимости в больших значениях емкости конденсаторов и индуктивности у катушек.

Сфера применения импульсного блока питания

Импульсные преобразователи напряжения применяются в большинстве случаев вместо традиционных трансформаторных с полупроводниковыми стабилизаторами. При одинаковой мощности инверторы отличаются меньшими габаритными размерами и массой, высокой надежностью, а главное – более высоким КПД и возможностью работать в широком диапазоне входного напряжения. А при сравнимых габаритах максимальная мощность инвертора в несколько раз выше.

В такой области, как преобразование постоянного напряжения, импульсные источники практически не имеют альтернативной замены и способны работать не только по понижению напряжения, но и вырабатывать повышенное, организовывать смену полярности. Высокая частота преобразования существенно облегчает фильтрацию и стабилизацию выходных параметров.

Малогабаритные инверторы на специализированных интегральных микросхемах используются в качестве зарядных устройств всевозможных гаджетов, а их надежность такова, что срок службы зарядного блока может превосходить время работоспособности мобильного устройства в несколько раз.

Драйверы питания на 12 Вольт для включения светодиодных источников освещения также построены по импульсной схеме.

Как сделать импульсный блок питания своими руками

Инверторы, особенно мощные, имеют сложную схемотехнику и доступны для повторения только опытным радиолюбителям. Для самостоятельной сборки сетевых источников питания можно рекомендовать несложные маломощные схемы с использованием специализированных микросхем ШИМ-контроллеров. Такие ИМС имеют малое количество элементов обвязки и имеют отработанные типовые схемы включения, которые практически не требуют регулировки и настройки.

При работе с самодельными конструкциями или ремонте промышленных устройств необходимо помнить, что часть схемы всегда будет находиться под потенциалом сети, поэтому требуется соблюдать меры безопасности.

6) Силовой трансформатор я планирую реализовать на сердечнике компании Epcos типа ETD44/22/15 из материала N95. Возможно мой выбор изменится дальше, когда буду рассчитывать моточные данные и габаритную мощность.

7) Долго колебался между выбором типа выпрямителя на вторичной обмотке между сдвоенным диодом Шоттки и синхронным выпрямителем. Можно поставить сдвоенный диод Шоттки, но это P = 0,6В * 40А = 24 Вт в тепло, при мощности ИИП примерно в 650 Вт получается потеря в 4%! При использование в синхронном выпрямителе самых обычных IRF3205 с сопротивление канала тепла выделится P = 0,008 Ом * 40А * 40А = 12,8 Вт . Получается выигрываем в 2 раза или 2% кпд! Все было красиво, пока я не собрал на макете решение на IR11688S . К статическим потерям на канале добавились динамические потери на коммутацию, в итоге то на то и вышло. Емкость у полевиков на большие токи все таки большая. лечется это драйверами по типу HCPL3120, но это увеличение цены изделия и чрезмерное усложнение схемотехники. Собственно из этих соображений решено было поставить сдвоенный Шоттки и спать спокойно.

8) LC-контур на выходе, во-первых, уменьшит пульсации тока, во-вторых, позволит «срезать» все гармоники. Последняя проблема крайне актуальна при питании устройств работающих в радиочастотном диапазоне и имеющие в своем составе высокочастотные аналоговые цепи. У нас же речь идет от КВ трансивере, поэтому тут фильтр просто жизненно необходим, иначе помехи «пролезут» в эфир. В иделе тут еще можно поставить на выход линейный стабилизатор и получить минимальные пульсации в единицы мВ, но на деле скорость ОС позволит и без «кипятильника» получить пульсации напряжения в пределах 20-30 мВ, внутри трансивера критичные узлы запитываются через свои LDO, так что его избыточность очевидна.

Ну вот мы и пробежались по функционалу и это только начало)) Но ничего, дальше пойдет бодрее ибо начинается самая интересная часть - расчеты всего и вся!

Расчет силового трансформатора для полумостового преобразователя напряжения

Сейчас немного стоит подумать о конструктиве и топологии. Я планирую применять полевые транзисторы, а не IGBT, поэтому рабочую частоту можно выбрать побольше, пока задумываюсь о 100 или 125 кГц, такая же частота кстати будет и на ККМ. Повышение частоты позволит несколько уменьшить габариты трансформатора. С другой стороны задирать сильно частоту не хочу, т.к. применяю TL494 в качестве контроллера, после 150 кГц она себя уже не так хорошо показывает, да и динамические потери вырастут.

Исходя из таких вводных, посчитаем наш трансформатор. У меня есть в наличии несколько комплектов ETD44/22/15 и поэтому пока ориентируюсь на него, список исходных данных таков:

1) Материал N95;
2) Тип сердечника ETD44/22/15;
3) Рабочая частота - 100 кГц;
4) Выходное напряжение - 15В;
5) Выходной ток - 40А.

Для расчетов трансформаторов до 5 кВт использую программу «Старичка», она удобна и достаточно точно считает. После 5 кВт начинается магия, частоты растут для уменьшения габаритов, а плотности поля и тока достигают таких значений, что даже скин-эффект способен менять параметры чуть ли не в 2 раза, поэтому для больших мощностей применяю дедовский метод «с формулами и выводом карандашом на бумаге». Вписав в программку свои вводные данные был получен следующий результат:


Рисунок 2 - Результат расчета трансформатора для полумоста

На рисунке с левой стороны отмечены вводные данные, их я описал выше. По центру фиолетовым цветом выделены результаты, которые нас больше всего интересуют, пробегусь кратко по ним:

1) Входное напряжение составляет 380В DC, оно стабилизированное, т.к. полумост питается с ККМ. Такое питание упрощает конструкцию многих узлов, т.к. пульсации токов минимальны и трансформатору не придется вытягивать напряжение при входном сетевом напряжение 140В.

2) Потребляемая (прокачиваемая через сердечник) мощность получилась 600 Вт, что в 2 раза меньше габаритной (той, которую сердечник может прокачать не уйдя в насыщение) мощности, а значит все хорошо. В программке не нашел материал N95, но на сайте Epcos в даташите подсмотрел, что N87 и N95 дадут очень похожие результаты, проверив на листочке выяснил, что разница в 50 Вт габаритной мощности - не страшная погрешность.

3) Данные по первичной обмотке: 21 виток мотаем в 2 провода диаметром 0.8 мм, думаю тут все понятно? Плотность тока около 8А/мм2, а это значит, что обмотки не будут перегреваться - все хорошо.

4) Данные по вторичной обмотке: мотаем 2 обмотки по 2 витка в каждой проводом так же 0.8 мм, но уже в 14 - все таки ток 40А! Далее соединяем начало одной обмотки и конец другой, как это сделать я объясню дальше, почему-то часто люди при сборке на этом моменте в ступор впадают. Тут тоже вроде магии никакой нету.

5) Индуктивность выходного дросселя - 4.9 мкГн, ток соответственно 40А. Нужен он, чтобы на выходе нашего блока не было огромных пульсаций ток, в процессе отладки я покажу на осциллографе работу с ним и без него, все станет ясно.

Расчет занял 5 минут, если у кого-то вопросы, то в комментариях или ЛС спрашивайте - подскажу. Чтобы не искали саму программу, предлагаю скачать ее с облака по ссылке . И моя огромная благодарность Старичку за его труд!

Следующим логичным этапом будет расчет выходного дросселя для полумоста, это как раз тот, что на 4.9 мкГн.

Расчет моточных параметров для выходного дросселя

Вводные данные мы получили в предыдущем пункте при расчет трансформатора, это:

1) Индуктивность - 4.9 мкГн;
2) Номинальный ток - 40А;
3) Амплитуда перед дросселем - 18В;
4) Напряжение после дросселя - 15В.

Используем так же программу от Старичка (все они есть в ссылке выше) и получаем следующие данные:


Рисунок 3 - Расчетные данные для намотки выходного дросселя

Теперь пробежимся по результатам:


1) По вводным данным есть 2 нюанса: частота выбирается та же самая, на которой работает преобразователь, это думаю логично. Второй момент связан с плотностью тока, сразу отмечу - дроссель должен греться ! Вот только насколько сильно уже определяем мы, я выбрал плотность тока 8А/мм 2 , чтобы получить температуру в 35 градусов, это видно в выходных данных (отмечено зеленым). Ведь как мы помним по требованиям на выходе нужен «холодный ИИП». Так же хочется отметить для новичков возможно не совсем очевидный момент - дроссель будет греться меньше, если через него протекает большой ток, то есть при номинальной нагрузке 40А дроссель будет иметь минимальный нагрев. Когда ток меньше номинального, то для части энергии он начинает работать как активная нагрузка (резистор) и превращает все избытки энергии в тепло;

2) Максимальная индукция, это значение которое нельзя превышать, иначе магнитное поле насытит сердечник и будет все очень плохо. Данный параметр зависит от материала и его габаритных размеров. Для современных сердечников из распыленного железа типовым значение является 0,5-0,55 Тл;

3) Намоточные данные: 9 витков мотаются косой из 10 жил провода диаметром 0.8 мм. Программка даже примерно указывает сколько слоев для этого понадобится. Я буду мотать в 9 жил, т.к. потом удобно будет разделить большую косу на 3 «косички» по 3 жилы и без проблем их распаять на плате;

4) Собственно само кольцо на котором буду мотать имеет размеры - 40/24/14.5 мм, его хватает с запасом. Материал №52, думаю многие видели в АТХ блоках кольца желто-голубого цвета, часто они используются в дросселях групповой стабилизации (ДГС).

Расчет трансформатора дежурного источника питания

На функциональной схеме видно, что я хочу использовать в качестве дежурного блока питания «классический» flayback на TOP227, от него будут запитываться все ШИМ контроллеры, индикацию и вентиляторы системы охлаждения. То, что вентиляторы будут запитываться от дежурки я понял только спустя какое-то время, поэтому данный момент на схеме не отображен, но ничего это же реалтайм разработка))

Скорректируем немного наши вводные данные, что же нам нужно:


1) Выходные обмотки для ШИМ: 15В 1А + 15В 1А;
2) Выходная обмотка самопитания: 15В 0.1А;
3) Выходная обмотка для охлаждения: 15В 1А.

Получаем необходимость в блоке питания с суммарной мощностью - 2*15Вт + 1.5Вт + 15Вт = 46.5 Вт . Это нормальная мощность для TOP227, я ее использую в мелких ИИП до 75 Вт для всяких зарядок АКБ, шуруповертов и прочего хлама, за много лет что странно еще ни один пока не сгорел.

Идем в другую программку Старичка и считаем трансформатор для flayback:


Рисунок 4 - Расчетные данные для трансформатора дежурного питания

1) Выбор сердечника обоснован просто - он у меня есть в количестве ящика и те самый 75 Вт он вытягивает)) Данные на сердечника . Он из материала N87 и имеет зазор 0.2 мм на каждой половинке или 0.4 мм так называемый полный зазор. Данный сердечник прямо предназначен для дросселей, а у обратноходовых преобразователей эта индуктивность именно дроссель, но не буду пока в дебри влезать. Если в трансформаторе полумоста зазора не было, то для обратноходового преобразователя он обязателен иначе как и любой дроссель он просто уйдет в насыщение без зазора.

2) Данные о ключе 700В «сток-исток» и 2.7 Ом сопротивления канала, взяты из даташита на TOP227, у данного контроллера силовой ключ встроен в саму микросхему.

3) Входного напряжение минимальное взял чуть с запасом - 160В, это сделано для того, чтобы в случае выключения самого блока питания в работе осталась дежурка и индикация, они сообщат о аварийно низком напряжении питания.

4) Первичная обмотка у нас представляет из себя 45 витков проводом 0.335 мм в одну жилу. Вторичные обмотки силовые по 4 витка и 4 жилы проводом 0.335 мм (диаметр), обмотка самопитания обладает такими же параметрами, поэтому все тоже самое, только 1 жила, ибо ток на порядок ниже.

Расчет силового дросселя активного корректора мощности

Думаю самый интересный участок данного проекта именно корректор коэффициента мощности, т.к. по ним достаточно мало информации в интернете, а рабочих и описанных схем еще меньше.

Выбираем программку для расчета - PFC_ring (PFC это по-басурмански ККМ), вводные используем следующие:

1) Входное напряжение питания - 140 - 265В;
2) Номинальная мощность - 600 Вт;
3) Выходное напряжение - 380В DC;
4) Рабочая частота - 100 кГц, обусловлена выбором ШИМ контроллера.


Рисунок 5 - Расчет силового дросселя активного ККМ

1) Слева как обычно вводим исходные данные, установив 140В минимальным порогом мы получаем блок, который сможет работать при напряжение сети 140В, так мы получаем «встроенный стабилизатор напряжения»;

Схемотехника силовой части и управления достаточно стандартные, если вдруг у вас остались вопросы, то смело спрашивайте в комментариях или в личных сообщениях. По возможности постараюсь всем ответить и объяснить.

Дизайн печатной платы импульсного блока питания

Вот я и добрался до этапа, который остается для многих чем-то сакральным - дизайн/разработка/трассировка печатной платы. Почему предпочитаю именно термин «дизайн»? Он ближе к сущности данной операции, для меня «разводка» платы всегда процесс творческий как у художника написание картины, да и людям из других стран будет проще понять чем вы занимаетесь.

Сам процесс проектирования платы не содержит в себе каких либо подводных камней, они содержатся в том устройстве для которого она предназначена. На деле силовая электроника не выдвигает какое-то дикое количество правил и требований на фоне того же СВЧ аналога или скоростных цифровых шин данных.

Я перечислю основные требования и правила касающиеся именно силовой схемотехники, это позволит реализовать 99% любительских конструкций. О нюансах и «хитростях» рассказывать не буду - каждый должен сам набить себе шишек, получить опыт и уже оперировать им. И так поехали:

Немного о плотности тока в печатных проводниках

Часто люди не задумываются о данном параметре и мне приходилось встречать, где силовая часть выполнена проводниками 0.6 мм при 80% площади платы просто пустующей. Зачем так делать для меня лично загадка.

Так какую же плотность тока можно брать в расчеты? Для обычного провода стандартной цифрой является 10А/мм 2 , это ограничение привязано к охлаждению провода. Можно пропускать и больший ток, но перед этим опустите его в жидкий азот. У плоских проводников, как на печатной плате к примеру, площадь поверхности большая, охлаждать их проще, а значит можно позволить себе большие плотности тока. Для нормальных условий с пассивных или воздушным охлаждением принято брать в расчет 35-50 А/мм 2 , где 35 - для пассивного охлаждения, 50 - при наличии искусственной циркуляции воздуха (мой случай). Есть еще одна цифра - 125 А/мм 2 , это по настоящему большая цифра, не все сверхпроводники могут ее себе позволить, но она достижима лишь при погружном жидкостном охлаждение.

С последним я столкнулся при работе с одной компанией, занимавшейся инженерными коммуникациями и проектированием серверов, на мою доля выпал как раз дизайн материнской платы, а именно часть с многофазным питанием и коммутацией. Сильно удивился, когда увидел плотность тока в 125 А/мм 2 , но мне объяснили и показали на стенде такую возможность - тут я понял зачем же целые стеллажи с серверами погружают в огромные бассейны с маслом)))

В моей железке все по проще, 50 А/мм 2 цифра вполне себе адекватная, при толщине меди в 35 мкм полигоны без проблем обеспечат нужное сечение. Остальное же было для общего развития и понимания вопроса.


2) Длина проводников - в данном пункте нету необходимости равнять линии с точностью до 0,1 мм как это делают, например, при «разводке» шины данных DDR3. Хотя все равно крайне желательно делать длину сигнальных линий примерно равно длины. Достаточно будет и +-30% длины, главное не делать HIN в 10 раз длиннее, чем LIN. Это необходимо, чтобы фронты сигналов не смещались относительно друг друга, ведь даже на частоте всего в сотню килогерц разница в 5-10 раз может вызвать сквозной ток в ключах. Особенно это актуально при малом значение «мертвого времени», даже при 3% у TL494 это актуально;

3) Зазор между проводниками - он необходим для уменьшения токов утечки, особенно это касается проводников, где протекает ВЧ сигнал (ШИМ), ведь поле в проводниках возникает сильно и ВЧ сигнал за счет скин-эффекта стремится вырваться как на поверхность проводника, так и за его пределы. Обычно достаточно зазора в 2-3 мм;

4) Зазор гальванической развязки - это зазор между гальванически развязанными участками платы, обычно требование на пробой около 5 кВ. Чтобы пробить 1 мм воздуха надо около 1-1,2 кВ, но у нас пробой возможен не только по воздуху, но и по текстолиту и маске. В заводских условиях используются материалы проходящие электротестирование и можно спать спокойно. Поэтому основная проблема воздух и из вышеописанных условий можно сделать вывод, что достаточно будет около 5-6 мм зазора. В основном разделение полигонов под трансформатором, т.к. он является основным средством гальванической развязки.

Теперь перейдем непосредственно к дизайну платы, я не буду в данной статье рассказывать ну супер подробно, да и вообще писать целую книгу текста желания не много. Если наберется большая группа желающих (в конце опрос сделаю), то просто сниму видеоролики по «разводке» данного устройства, это будет и быстрее и информативнее.

Этапы создания печатной платы:

1) Первым делом необходимо определиться с примерными габаритами устройства. Если у вас есть уже готовый корпус, то вы должны измерить посадочное место в нем и отталкиваться в размерах платы именно от него. Я же планирую корпус сделать на заказ из алюминия или латуни, поэтому буду стараться сделать максимально компактное устройство без потери качества и ТТХ.


Рисунок 9 - Создаем заготовку будущей платы

Запомните - габариты платы должны быть кратны 1 мм! Или хотя бы 0.5 мм, иначе вы еще вспомните мое завещание Ленина, когда будете собирать все в панели и делать заготовку на производство, а конструкторы, которые будут создавать по вашей плате корпус засыпят вас проклятиями. Не надо создавать плату с размерами аля «208,625 мм» без крайней необходимости!
P.S. спасибо тов. Лунькову за то, что он все таки донес мне эту светлую мысль))

Тут я сделал 4 операции:

А) Сделал саму плату с габаритными размерами 250х150 мм. Пока это примерный размер, дальше думаю ужмется ощутимо;
б) Закруглил углы, т.к. в процессе доставки и сборку острые убьются и сомнутся + плата приятнее выглядит;
в) Разместил крепежные отверстия, не металлизированные, с диаметром отверстия 3 мм под стандартный крепеж и стойки;
г) Создал класс «NPTH», в который определил все не металлизированные отверстия и создал для него правило, создающие зазор 0.4 мм между всеми другими компонентами и компонентами класса. Это технологическое требование «Резонита» для стандартного класса точности (4-й).


Рисунок 10 - Создание правила для не металлизированных отверстий

2) Следующим этапом необходимо сделать расстановку компонентов с учетом всех требований, она должна быть уже сильно приближена к конечному варианту, т.к. побольше части сейчас определятся финальные габариты платы и ее форм-фактор.


Рисунок 11 - Выполнена первичная расстановка компонентов

Установил основные компоненты, они уже с большой вероятностью не будут перемещаться, а следовательно габаритные размеры платы окончательно определены - 220 х 150 мм. Свободное место на плате оставлено не просто так, там будут размещены модули управления и прочие мелкие SMD компоненты. Для удешевления платы и удобства монтажа все компоненты будут только на верхнем слое, соответственно и слой шелкографии только один.


Рисунок 13 - 3D вид платы после расстановки компонентов

3) Теперь, определив расположение и общую структуру расставляем оставшиеся компоненты и «разводим» плату. Дизайн платы можно выполнить двумя способами: в ручную и с помощью автотрассировщика, предварительно описав его действия парой десятков правил. Оба способа хороши, но данную плату сделаю все таки руками, т.к. компонентов мало и особых требований по выравниваю линий и целостности сигналов тут нет и не должно быть. Так будет определенно быстрее, автотрассировка хороша, когда много компонентов (от 500 и далее) и основная часть схемы цифровая. Хотя если кому-то будет интересно, то могу показать как «разводить» платы автоматически за 2 минуты. Правда перед этим надо будет весь день писать правила, хех.

После 3-4х часов «колдунства» (половину времени отрисовывал модели недостающие) с температурой и чашечкой чая я наконец-то развел плату. Я даже не задумывался от экономии места, многие скажу, что габариты можно было ужать на 20-30% и будут правы. У меня штучный экземпляр и тратить свое время, которое явно дороже 1 дм 2 за двухслойную плату, было просто жалко. Кстати о цене платы - при заказе в «Резонит»-е, 1 дм 2 двухслойной платы стандартного класса, обходится примерно в 180-200 рублей, так что много тут не сэкономить если у вас конечно не партия в 500+ штук. Исходя из этого, могу посоветовать - не извращайтесь с уменьшением площади, если 4 класс и не требований к габаритам. И вот что получилось на выходе:


Рисунок 14 - Дизайн платы для импульсного блока питания

В дальнейшем я буду проектировать корпус для данного устройства и мне необходимо знать его полные габариты, а так же иметь возможность «примерить» его внутрь корпуса, чтобы на финальной стадии не выяснилось, например, что основная плата мешает разъемам на корпусе или индикации. Для этого я всегда страюсь отрисовывать все компоненты в 3D виде, на выходе вот такой результат и файлик в формате.step для моего Autodesk Inventor :


Рисунок 15 - Трехмерный вид на получившиеся устройство


Рисунок 16 - Трехмерный вид на устройство (вид сверху)

Теперь документация готова. Сейчас необходимо сформировать необходимый пакет файлов для заказа компонентов, у меня все настройки уже прописаны в Altium-е, поэтому выгружается все одной кнопкой. Нам необходимы Gerber-файлы и файл NC Drill, в первом хранится информация о слоях, во втором координаты сверловки. Посмотреть файлик для выгрузки документации можно будет в конце статьи в проекте, выглядит это все примерно так:


Рисунок 17 - Формирования пакета документации для заказа печатных плат

После того, как файлы готовы можно заказывать платы. Конкретных производителей рекомендовать не буду, наверняка есть лучше и дешевле именно для прототипов. Все платы стандартного класса 2,4,6 слоев я заказываю в Резоните, там же 2 и 4-х слойный платы 5-го класса. Платы 5 класса, где 6-24 слоя в Китае (например, pcbway), а вот платы HDI и 5-го класса с 24 и более слоями уже только на Тайване, все таки качество к Китае еще хромает, а где не хромает ценник уже не такой приятный. Это все касается прототипов!

Следуя своим убеждениям я иду в Резонит, ох сколько они нервов потрепали и крови выпили… но в последнее время вроде исправились и начали более адекватно работать, хоть и с пинками. Заказы я формирую через личный кабинет, вводите данные о плате, подгружаете файлы и отправляете. Личный кабинет у них мне нравится, цену кстати тут же считает и можно меняя параметры добиться лучше цены без потери качества.

Например, сейчас я хотел плату на текстолите 2 мм с медью 35 мкм, но оказалось, что такой вариант в 2,5 раза дороже чем вариант с 1,5 мм текстолитом и 35 мкм - поэтому выбрал последний. Для увеличения жесткости платы я добавил дополнительные отверстия под стойки - проблема решена, цена оптимизирована. Кстати, если бы плата шла в серию, то где-то на 100 штуках эта разница в 2,5 раза пропала и цены сравнялись, ибо тогда нестандартный лист закупали под нас и потратили без остатков.


Рисунок 18 - Финальный вид расчета стоимости плат

Финальная стоимость определена: 3618 рублей . Из них 2100 - это подготовка, она платится только один раз на проект, все последующие повторения заказа идут уже без нее и выплатите лишь за площадь. В данном случае 759 рублей за плату площадью 3.3 дм 2 , чем больше серия, тем меньше будет стоимость, хотя и сейчас она 230 руб/дм 2 , что вполне приемлемо. Можно было конечно сделать срочное изготовление, но я заказываю часто, работаю с одним менеджером и девушка всегда старается пропихнуть заказ быстрее если производство не загружено - в итоге и с вариантом «мелкая серия» по сроком выходит 5-6 дней, достаточно просто вежливо общаться и не хамить людям. Да и спешить мне сильно некуда, поэтому решено сэкономить около 40%, что как минимум приятно.

Эпилог

Ну вот я и подошел к логическому завершению статьи - получение схемотехники, дизайна платы и заказ плат на производстве. Всего же будет 2 части, первая перед вами, а во второй буду рассказывать как я проводил монтаж, сборку и отладку устройства.

Как и обещал делюсь исходниками проекта и прочими продуктами деятельности:

1) Исходник проекта в Altium Designer 16 - ;
2) Файлы для заказа печатных плат - . Вдруг вы захотите повторить и заказать, например, в Китае, этого архива более чем достаточно;
3) Схема устройства в pdf - . Для тех, кто с телефона или для ознакомления не хочет тратить время на установку Altium (качество высокое);
4) Опять же для тех, кто не хочет ставить тяжеловесный софт, но интересно покрутить железку выкладываю 3D модель в pdf - . Для просмотра надо обязательно скачать файл, когда откроете в правом верхнем углу жмем «доверять документу только один раз», дальше тыкаем в центр файла и белый экран превращается в модельку.

Так же хочется поинтересоваться мнение читателей… Сейчас платы заказаны, компоненты тоже - по факту есть 2 недели, о чем написать статью? По мимо таких «мутантов» как эта иногда хочется наваять что-то миниатюрное, но полезное, несколько вариантов я представил в опросах, либо предлагайте свой вариант наверное в личку, чтобы не засорять комментарии.

Только зарегистрированные пользователи могут участвовать в опросе. Войдите , пожалуйста.

Импульсный источник питания - это инверторная система, в которой входное переменное напряжение выпрямляется, а потом полученное постоянное напряжение преобразуется в импульсы высокой частоты и установленой скважности, которые как правило, подаются на импульсный трансформатор.

Импульсные трансформаторы изготавливаются по такому же принципу, как и низкочастотные трансформаторы, только в качестве сердечника используется не сталь (стальные пластины), а феромагнитные материалы - ферритовые сердечники.

Рис. Как работает импульсный источник питания.

Выходное напряжение импульсного источника питания стабилизировано , это осуществляется посредством отрицательной обратной связи, что позволяет удерживать выходное напряжение на одном уровне даже при изменении входного напряжения и нагрузочной мощности на выходе блока.

Обратная отрицательная связь может быть реализована при помощи одной из дополнительных обмоток в импульсном трансформаторе, или же при помощи оптрона, который подключается к выходным цепям источника питания. Использование оптрона или же одной из обмоток трансформатора позволяет реализовать гальваническую развязку от сети переменного напряжения.

Основные плюсы импульсных источников питания (ИИП):

  • малый вес конструкции;
  • небольшие размеры;
  • большая мощность;
  • высокий КПД;
  • низкая себестоимость;
  • высокая стабильность работы;
  • широкий диапазон питающих напряжений;
  • множество готовых компонентных решений.

К недостаткам ИИП можно отнести то что такие блоки питания являются источниками помех, это связано с принципом работы схемы преобразователя. Для частичного устранения этого недостатка используют экранировку схемы. Также из-за этого недостатка в некоторых устройствах применение данного типа источников питания является невозможным.

Импульсные источники питания стали фактически непременным атрибутом любой современной бытовой техники, потребляющей от сети мощность свыше 100 Вт. В эту категорию попадают компьютеры, телевизоры, мониторы.

Для создания импульсных источников питания, примеры конкретного воплощения которых будут приведены ниже, применяются специальные схемные решения.

Так, для исключения сквозных токов через выходные транзисторы некоторых импульсных источников питания используют специальную форму импульсов, а именно, биполярные импульсы прямоугольной формы, имеющие между собой промежуток во времени.

Продолжительность этого промежутка должна быть больше времени рассасывания неосновных носителей в базе выходных транзисторов, иначе эти транзисторы будут повреждены. Ширина управляющих импульсов с целью стабилизации выходного напряжения может изменяться с помощью обратной связи.

Обычно для обеспечения надежности в импульсных источниках питания используют высоковольтные транзисторы, которые в силу технологических особенностей не отличаются в лучшую сторону (имеют низкие частоты переключения, малые коэффициенты передачи по току, значительные токи утечки, большие падения напряжения на коллекторном переходе в открытом состоянии).

Особенно это касается устаревших ныне моделей отечественных транзисторов типа КТ809, КТ812, КТ826, КТ828 и многих других. Стоит сказать, что в последние годы появилась достойная замена биполярным транзисторам, традиционно используемых в выходных каскадах импульсных источников питания.

Это специальные высоковольтные полевые транзисторы отечественного, и, главным образом, зарубежного производства. Кроме того, существуют многочисленные микросхемы для импульсных источников питания.

Схема генератора импульсов регулируемой ширины

Биполярные симметричные импульсы регулируемой ширины позволяет получить генератор импульсов по схеме на рис.1. Устройство может быть использовано в схемах авторегулирования выходной мощности импульсных источников питания. На микросхеме DD1 (К561ЛЕ5/К561 ЛАТ) собран генератор прямоугольных импульсов со скважностью, равной 2.

Симметрии генерируемых импульсов добиваются регулировкой резистора R1. Рабочую частоту генератора (44 кГц) при необходимости можно изменить подбором емкости конденсатора С1.

Рис. 1. Схема формирователя биполярных симметричных импульсов регулируемой длительности.

На элементах DA1.1, DA1.3 (К561КТЗ) собраны компараторы напряжения; на DA1.2, DA1.4 — выходные ключи. На входы компараторов-ключей DA1.1, DA1.3 в противофазе через формирующие RC-диодные цепочки (R3, С2, VD2 и R6, СЗ, VD5) подаются прямоугольные импульсы.

Заряд конденсаторов С2, СЗ происходит по экспоненциальному закону через R3 и R5, соответственно; разряд — практически мгновенно через диоды VD2 и VD5. Когда напряжение на конденсаторе С2 или СЗ достигнет порога срабатывания компараторов-ключей DA1.1 или DA1.3, соответственно, происходит их включение, и резисторы R9 и R10, а также управляющие входы ключей DA1.2 и DA1.4 подключаются к положительному полюсу источника питания.

Поскольку включение ключей производится в противофазе, такое переключение происходит строго поочередно, с паузой между импульсами, что исключает возможность протекания сквозного тока через ключи DA1.2 и DA1.4 и управляемые ими транзисторы преобразователя, если генератор двухполярных импульсов используется в схеме импульсного источника питания.

Плавное регулирование ширины импульсов осуществляется одновременной подачей стартового (начального) напряжения на входы компараторов (конденсаторы С2, СЗ) с потенциометра R5 через диодно-ре-зистивные цепочки VD3, R7 и VD4, R8. Предельный уровень управляющего напряжения (максимальную ширину выходных импульсов) устанавливают подбором резистора R4.

Сопротивление нагрузки можно подключить по мостовой схеме — между точкой соединения элементов DA1.2, DA1.4 и конденсаторами Са, Сb. Импульсы с генератора можно подать и на транзисторный усилитель мощности.

При использовании генератора двухполярных импульсов в схеме импульсного источника питания в состав резистивного делителя R4, R5 следует включить регулирующий элемент — полевой транзистор, фотодиод оптрона и т.д., позволяющий при уменьшении/увеличении тока нагрузки автоматически регулировать ширину генерируемого импульса, управляя тем самым выходной мощностью преобразователя.

В качестве примера практической реализации импульсных источников питания приведем описания и схемы некоторых из них.

Схема испульсного источника питания

Импульсный источник питания (рис. 2) состоит из выпрямителей сетевого напряжения, задающего генератора, формирователя прямоугольных импульсов регулируемой длительности, двухкаскадного усилителя мощности, выходных выпрямителей и схемы стабилизации выходного напряжения.

Задающий генератор выполнен на микросхеме типа К555ЛАЗ (элементы DDI .1, DDI .2) и вырабатывает прямоугольные импульсы частотой 150 кГц. На элементах DD1.3, DD1.4 собран RS-триггер, на выходе которого частота вдвое меньше — 75 кГц. Узел управления длительностью коммутирующих импульсов реализован на микросхеме типа К555ЛИ1 (элементы DD2.1, DD2.2), а регулировка длительности осуществляется с помощью оптрона U1.

Выходной каскад формирователя коммутирующих импульсов собран на элементах DD2.3, DD2.4. Максимальная мощность на выходе формирователя импульсов достигает 40 мВт. Предварительный усилитель мощности выполнен на транзисторах VT1, VT2 типа КТ645А, а оконечный — на транзисторах VT3, VT4 типа КТ828 или более современных. Выходная мощность каскадов — 2 и 60…65 Вт, соответственно.

На транзисторах VT5, VT6 и оптроне U1 собрана схема стабилизации выходного напряжения. Если напряжение на выходе источника питания ниже нормы (12 В), стабилитроны VD19, VD20 {КС182+КС139) закрыты, транзистор VT5 закрыт, транзистор VT6 открыт, через светодиод (U1.2) оптрона протекает ток, ограниченный сопротивлением R14; сопротивление фотодиода (U1.1) оптрона минимально.

Сигнал, снимаемый с выхода элемента DD2.1 и поступающий на входы схемы совпадения DD2.2 напрямую и через регулируемый элемент задержки (R3 — R5, С4, VD2, U1.1), в силу его малой постоянной времени поступает практически одновременно на входы схемы совпадения (элемент DD2.2).

На выходе этого элемента формируются широкие управляющие импульсы. На первичной обмотке трансформатора Т1 (выходах элементов DD2.3, DD2.4) формируются двухполярные импульсы регулируемой длительности.

Рис. 2. Схема импульсного источника питания.

Если по какой-либо причине напряжение на выходе источника питания будет увеличиваться сверх нормы, через стабилитроны VD19, VD20 начнет протекать ток, транзистор VT5 приоткроется, VT6 — закроется, уменьшая ток через светодиод оптрона U1.2.

При этом возрастает сопротивление фотодиода оптрона U1.1. Длительность управляющих импульсов уменьшается, и происходит уменьшение выходного напряжения (мощности). При коротком замыкании нагрузки светодиод оптрона гаснет, сопротивление фотодиода оптрона максимально, а длительность управляющих импульсов — минимальна. Кнопка SB1 предназначена для запуска схемы.

При максимальной длительности положительные и отрицательные управляющие импульсы не перекрываются во времени, поскольку между ними существует временная просечка, обусловленная наличием резистора R3 в формирующей цепи.

Тем самым снижается вероятность протекания сквозных токов через выходные относительно низкочастотные транзисторы оконечного каскада усиления мощности, которые имеют большое время рассасывания избыточных носителей на базовом переходе. Выходные транзисторы установлены на ребристые теплоотводящие радиаторы с площадью не менее 200 см^2. В базовые цепи этих транзисторов желательно установить сопротивления величиной 10…51 Ом.

Каскады усиления мощности и схема формирования двухполярных импульсов получают питание от выпрямителей, выполненных на диодах VD5 — VD12 и элементах R9 — R11, С6 — С9, С12, VD3, VD4.

Трансформаторы Т1, Т2 выполнены на ферритовых кольцах К10x6x4,5 ЗОООНМ; ТЗ — К28х16х9 ЗОООНМ. Первичная обмотка трансформатора Т1 содержит 165 витков провода ПЭЛШО 0,12, вторичные — 2×65 витков ПЭЛ-2 0,45 (намотка в два провода).

Первичная обмотка трансформатора Т2 содержит 165 витков провода ПЭВ-2 0,15 мм, вторичные — 2×40 витков того же провода. Первичная обмотка трансформатора ТЗ содержит 31 виток провода МГШВ, продетого в кембрик и имеющего сечение 0,35 мм^2, вторичная обмотка имеет 3×6 витков провода ПЭВ-2 1,28 мм (параллельное включение). При подключении обмоток трансформаторов необходимо правильно их фазировать. Начала обмоток показаны на рисунке звездочками.

Источник питания работоспособен в диапазоне изменения сетевого напряжения 130…250 В. Максимальная выходная мощность при симметричной нагрузке достигает 60…65 Вт (стабилизированное напряжение положительной и отрицательной полярности 12 S и стабилизированное напряжение переменного тока частотой 75 кГц, снимаемые,со вторичной обмотки трансформатора Т3). Напряжение пульсаций на выходе источника питания не превышает 0,6 В.

При налаживании источника питания сетевое напряжение на него подают через разделительный трансформатор или фер-рорезонансный стабилизатор с изолированным от сети выходом. Все перепайки в источнике допустимо производить только при полном отключении устройства от сети.

Последовательно с выходным каскадом на время налаживания устройства рекомендуется включить лампу накаливания 60 Вт на 220 В. Эта лампа защитит выходные транзисторы в случае ошибок в монтаже. Оптрон U1 должен иметь напряжение пробоя изоляции не менее 400 В. Работа устройства без нагрузки не допускается.

Сетевой импульсный источник питания

Сетевой импульсный источник питания (рис. 3) разработан для телефонных аппаратов с автоматическим определителем номера или для других устройств с потребляемой мощностью 3…5Вт, питаемых напряжением 5…24В.

Источник питания защищен от короткого замыкания на выходе. Нестабильность выходного напряжения не превышает 5% при изменении напряжения питания от 150 до 240 В и тока нагрузки в пределах 20… 100% от номинального значения.

Управляемый генератор импульсов обеспечивает на базе транзистора VT3 сигнал частотой 25…30 кГц.

Дроссели L1, L2 и L3 намотаны на магнитопроводах типа К10x6x3 из пресспермаллоя МП140. Обмотки дросселя L1, L2 содержат по 20 витков провода ПЭТВ 0,35 мм и расположены каждая на своей половине кольца с зазором между обмотками не менее 1 мм.

Дроссель L3 наматывают проводом ПЭТВ 0,63 мм виток к витку в один слой по внутреннему периметру кольца. Трансформатор Т1 выполнен на магнитопроводе Б22 из феррита М2000НМ1.

Рис. 3. Схема сетевого импульсного источника питания.

Его обмотки наматывают на разборном каркасе виток к витку проводом ПЭТВ и пропитывают клеем. Первой наматывают в несколько слоев обмотку I, содержащую 260 витков провода 0,12 мм. Таким же проводом наматывают экранирующую обмотку с одним выводом (на рис. 3 показана пунктирной линией), затем наносят клей БФ-2 и обматывают одним слоем лакот-кани.

Обмотку III наматывают проводом 0,56 мм. Для выходного напряжения 5В она содержит 13 витков. Последней наматывают обмотку II. Она содержит 22 витка провода 0,15…0,18 мм. Между чашками обеспечивают немагнитный зазор.

Высоковольтный источник постоянного напряжения

Для создания высокого напряжения (30…35 кВ при токе нагрузки до 1 мА) для питания электроэффлювиальной люстры (люстры А. Л. Чижевского) предназначен источник питания постоянного тока на основе специализированной микросхемы типа К1182ГГЗ .

Источник питания состоит из выпрямителя сетевого напряжения на диодном мосте VD1, конденсатора фильтра С1 и высоковольтного полумостового автогенератора на микросхеме DA1 типа К1182ГГЗ. Микросхема DA1 совместно с трансформатором Т1 преобразует постоянное выпрямленное сетевое напряжение в высокочастотное (30…50 кГц) импульсное.

Выпрямленное сетевое напряжение поступает на микросхему DA1, а стартовая цепочка R2, С2 запускает автогенератор микросхемы. Цепочки R3, СЗ и R4, С4 задают частоту генератора. Резисторы R3 и R4 стабилизируют длительность полупериодов генерируемых импульсов. Выходное напряжение повышается обмоткой L4 трансформатора и подается на умножитель напряжения на диодах VD2 — VD7 и конденсаторах С7 — С12. Выпрямленное напряжение подается на нагрузку через ограничительный резистор R5.

Конденсатор сетевого фильтра С1 рассчитан на рабочее напряжение 450 В (К50-29), С2 — любого типа на напряжение 30 В. Конденсаторы С5, С6 выбирают в пределах 0,022…0,22 мкФ на напряжение не менее 250 В (К71-7, К73-17). Конденсаторы умножителя С7 — С12 типа КВИ-3 на напряжение 10 кВ. Возможна замена на конденсаторы типов К15-4, К73-4, ПОВ и другие на рабочее напряжение 10кB или выше.

Рис. 4. Схема высоковольтного источника питания постоянного тока.

Высоковольтные диоды VD2 — VD7 типа КЦ106Г (КЦ105Д). Ограничительный резистор R5 типа КЭВ-1. Его можно заменить тремя резисторами типа МЛТ-2 по 10 МОм.

В качестве трансформатора используется телевизионный строчный трансформатор, например, ТВС-110ЛА. ВЬюоковольтную обмотку оставляют, остальные удаляют и на их месте размещают новые обмотки. Обмотки L1, L3 содержат по 7 витков провода ПЭЛ 0,2 мм, а обмотка L2 — 90 витков такого же провода.

Цепочку резисторов R5, ограничивающих ток короткого замыкания, рекомендуется включить в «минусовой» провод, который подводится к люстре. Этот провод должен иметь вьюоко-вольтную изоляцию.

Корректор коэффициента мощности

Устройство, именуемое корректором коэффициента мощности (рис. 5), собрано на основе специализированной микросхемы TOP202YA3 (фирма Power Integration) и обеспечивает коэффициент мощности не менее 0,95 при мощности нагрузки 65 Вт. Корректор приближает форму тока, потребляемую нагрузкой, к синусоидальной.

Рис. 5. Схема корректора коэффициента мощности на микросхеме TOP202YA3.

Максимальное напряжение на входе — 265 В. Средняя частота преобразователя — 100 кГц. КПД корректора — 0,95.

Импульсный источник питания с микросхемой

Схема источника питания с микросхемой той же фирмы Power Integration показана на рис. 6. В устройстве применен полупроводниковый ограничитель напряжения — 1,5КЕ250А.

Преобразователь обеспечивает гальваническую развязку выходного напряжения от напряжения сети. При указанных на схеме номиналах и элементах устройство позволяет подключать нагрузку, потребляющую 20 Вт при напряжении 24 В. КПД преобразователя приближается к 90%. Частота преобразования — 100 Гц. Устройство защищено от коротких замыканий в нагрузке.

Рис. 6. Схема импульсного источника питания 24В на микросхеме фирмы Power Integration.

Выходная мощность преобразователя определяется типом используемой микросхемы, основные характеристики которых приведены в таблице 1.

Таблица 1. Характеристики микросхем серии TOP221Y — TOP227Y.

Простой и высокоэффективный преобразователь напряжения

На основе одной из микросхем ТОР200/204/214 фирмы Power Integration может быть собран простой и высокоэффективный преобразователь напряжения (рис. 7) с выходной мощностью до 100 Вт.

Рис. 7. Схема импульсного Buck-Boost преобразователя на микросхеме ТОР200/204/214.

Преобразователь содержит сетевой фильтр (С1, L1, L2), мостовой выпрямитель (VD1 — VD4), собственно сам преобразователь U1, схему стабилизации выходного напряжения, выпрямители и выходной LC-фильтр.

Входной фильтр L1, L2 намотан в два провода на феррито-вом кольце М2000 (2×8 витков). Индуктивность полученной катушки — 18…40 мГн. Трансформатор Т1 выполнен на ферритовом сердечнике со стандартным каркасом ETD34 фирмы Siemens или Matsushita, хотя можно использовать и иные импортные сердечники типа ЕР, ЕС, EF или отечественные Ш-образные ферритовые сердечники М2000.

Обмотка I имеет 4×90 витков ПЭВ-2 0,15 мм; II — 3×6 того же провода; III — 2×21 витков ПЭВ-2 0,35 мм. Все обмотки наматывают виток к витку. Между слоями должна быть обеспечена надежная изоляция.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то