Принцип работы сотовой связи. Как работает сотовая связь

Вряд ли возможно сегодня найти человека, который бы никогда не пользовался сотовым телефоном. Но каждый ли понимает, как работает сотовая связь? Как устроено и работает то, к чему мы все давно привыкли? Передаются ли сигналы от базовых станций про проводам или все это действует как-то иначе? А может быть вся сотовая связь функционирует лишь за счет радиоволн? На эти и другие вопросы попробуем дать ответ в нашей статье, оставив описание стандарта GSM за ее рамками.

В момент, когда человек пытается совершить вызов со своего мобильного телефона, или когда начинают звонить ему, телефон посредством радиоволн подключается к одной из базовых станций (наиболее доступной), к одной из ее антенн. Базовые станции можно наблюдать то там, то тут, взглянув на дома наших городов, на крыши и на фасады промышленных зданий, на высотки, наконец на специально возведенные для станций мачты красно-белого цвета (особенно вдоль автострад).

Станции эти выглядят как прямоугольные коробки серого цвета, из которых в разные стороны торчат разнообразные антенны (обычно до 12 антенн). Антенны здесь работают как на прием, так и на передачу, и принадлежат они оператору сотовой связи. Антенны базовой станции направлены во всевозможные стороны (сектора), чтобы обеспечить «покрытие сетью» абонентам со всех сторон на расстоянии до 35 километров.

Антенна одного сектора в состоянии обслуживать одновременно до 72 звонков, и если антенн 12, то представьте себе: 864 звонка способна в принципе обслужить одна крупная базовая станция одновременно! Хотя обычно ограничиваются 432 каналами (72*6). Каждая антенна соединена кабелем с управляющим блоком базовой станции. А уже блоки нескольких базовых станций (каждая станция обслуживает свою часть территории) присоединяются к контроллеру. К одному контроллеру присоединяется до 15 базовых станций.

Базовая станция в принципе способна функционировать на трех диапазонах: сигнал 900 МГц лучше проникает внутрь зданий и сооружений, распространяется дальше, поэтому именно данный диапазон часто используют в деревнях и на полях; сигнал на частоте 1800 МГц распространяется не так далеко, но на одном секторе устанавливают больше передатчиков, поэтому в городах ставят чаще именно такие станции; наконец 2100 МГц — это сеть 3G.

Контроллеров, конечно, в населенном пункте или районе, может быть несколько, поэтому контроллеры, в свою очередь, присоединяются кабелями к коммутатору. Задача коммутатора — связать сети операторов мобильной связи друг с другом и с городскими линиями обычной телефонной связи, междугородной связи и международной связи. Если сеть небольшая, то достаточно одного коммутатора, если крупная — используются два и более коммутаторов. Коммутаторы объединяются между собой проводами.

В процессе перемещения человека, разговаривающего по мобильнику, по улице, например: идет он пешком, едет в общественном транспорте, или передвигается на личном авто, - его телефон не должен ни на мгновение потерять сеть, нельзя оборвать разговор.

Непрерывность связи получается благодаря способности сети базовых станций очень оперативно переключать абонента с одной антенны на другую в процессе его перемещения от зоны действия одной антенны — в зону действия другой (от соты к соте). Абонент сам не замечает, как перестает быть связан с одной базовой станцией, и подключен уже к другой, как переключается от антенны — к антенне, от станции — к станции, от контроллера — к контроллеру…

При этом коммутатор обеспечивает оптимальное распределение нагрузки по многоуровневой схеме сети, чтобы снизить вероятность выхода оборудования из строя. Многоуровневая сеть строится так: сотовый телефон — базовая станция — контроллер — коммутатор.

Допустим, мы совершаем вызов, и вот сигнал уже добрался до коммутатора. Коммутатор передает наш звонок в сторону абонента назначения — в городскую сеть, в сеть международной или междугородней связи, либо на сеть другого мобильного оператора. Все это происходит очень быстро с использованием высокоскоростных оптоволоконных кабельных каналов.

Далее наш звонок поступает на коммутатор, что расположен на стороне принимающего звонок (вызываемого нами) абонента. В «приемном» коммутаторе уже есть данные о том, где находится вызываемый абонент, в какой зоне действия сети: какой контроллер, какая базовая станция. И вот, с базовой станции начинается опрос сети, находится адресат, и на его телефон «поступает вызов».

Вся цепочка описанных событий, с момента набора номера до момента раздавшегося на принимающей стороне звонка, длится обычно не более 3 секунд. Так мы можем сегодня звонить в любую точку мира.

Андрей Повный

Немного грустно, что подавляющее большинство людей на вопрос: «Как работает сотовая связь?», отвечают «по воздуху» или вообще - «не знаю».

В продолжение этой темы, у меня вышел один забавный разговор с другом на тему работы мобильной связи. Случилось это аккурат за пару дней до отмечаемого всеми связистами и телекомщиками праздника «Дня радио». Так уж сложилось, что в силу своей ярой жизненной позиции, мой друг считал, что мобильная связь работает вообще без проводов через спутник . Исключительно за счет радиоволн. Сначала у меня не получалось переубедить его. Но после непродолжительной беседы все встало на свои места.

После этой дружеской «лекции» появилась идея написать простым языком о том, как работает сотовая связь. Все как есть.

Когда вы набираете номер и начинаете звонить, ну, или вам кто-нибудь звонит, то ваш мобильный телефон по радиоканалу связывается с одной из антенн ближайшей базовой станции. Где же находятся эти базовые станции, спросите вы?

Обратите внимание на промышленные здания, городские высотки и специальные вышки . На них и располагаются большие серые прямоугольные блоки с торчащими антеннами разных форм. Но антенны эти не телевизионные и не спутниковые, а приемо-передающие операторов сотовой связи. Они направлены в разные стороны, чтобы обеспечить связью абонентов со всех сторон. Ведь мы же не знаем, откуда будет поступать сигнал и куда занесет «горе-абонента» с телефонной трубкой? На профессиональном жаргоне антенны также называют «секторами». Как правило, они устанавливаются от одной до двенадцати.

От антенны сигнал по кабелю передается непосредственно в управляющий блок станции . Вместе они и образуют базовую станцию [антенны и управляющий блок]. Несколько базовых станций, чьи антенны обслуживают отдельную территорию, например, район города или небольшой населенный пункт, подсоединены к специальному блоку - контроллеру . К одному контроллеру обычно подключается до 15 базовых станций.

В свою очередь, контроллеры, которых также может быть несколько, кабелями подключены к «мозговому центру» - коммутатору . Коммутатор обеспечивает выход и вход сигналов на городские телефонные линии, на других операторов сотовой связи, а также операторов междугородней и международной связи.

В небольших сетях используется только один коммутатор, в более крупных, обслуживающих сразу более миллиона абонентов, могут использоваться два, три и более коммутаторов , объединенных между собой опять-таки проводами.

Зачем же такая сложность? Спросят читатели. Казалось бы, можно антенны просто подключить к коммутатору и все будет работать . А тут базовые станции, коммутаторы, куча кабелей… Но, не все так просто.

Когда человек передвигается по улице пешком или идет на автомобиле, поезде и т.д. и при этом еще и разговаривает по телефону, важно обеспечить непрерывность связи. Связисты процесс эстафетной передачи обслуживания в мобильных сетях называют термином «handover». Необходимо вовремя переключать телефон абонента из одной базовой станции на другую, от одного контроллера к другому и так далее.

Если бы базовые станции были напрямую подключены к коммутатору, то всеми этими переключениями пришлось бы управлять коммутатору . А ему «бедному» и так есть, чем заняться. Многоуровневая схема сети дает возможность равномерно распределить нагрузку на технические средства . Это снижает вероятность отказа оборудования и, как следствие, потери связи. Ведь все мы заинтересованы в бесперебойной связи, не так ли?

Итак, достигнув коммутатора, наш звонок переводится д алее - на сеть другого оператора мобильной, городской междугородной и международной связи. Конечно же, это происходит по высокоскоростным кабельным каналам связи. Звонок поступает на коммутатор другого оператора. При этом последний «знает», на какой территории [в области действия, какого контроллера] сейчас находится нужный абонент. Коммутатор передает телефонный вызов конкретному контроллеру, в котором содержится информация, в зоне действия какой базовой станции находится адресат звонка. Контроллер посылает сигнал этой единственной базовой станции, а она в свою очередь «опрашивает», то есть вызывает мобильный телефон. Трубка начинает причудливо звонить.

Весь этот длинный и сложный процесс в реальности занимает 2-3 секунды !

Точно также происходят телефонные звонки в разные города России, Европы и мира. Для связи коммутаторов различных операторов связи используются высокоскоростные оптоволоконные каналы связи . Благодаря им сотни тысяч километров телефонный сигнал преодолевает за считанные секунды.

Спасибо великому Александру Попову за то, что он дал миру радио! Если бы не он, возможно, мы бы сейчас были лишены многих благ цивилизации.

Все мы пользуемся мобильными телефонами, но при этом редко кто задумывается - как же они работают? В данной статье мы постараемся разобраться, как, собственно, реализуется связь относительно вашего мобильного оператора.

Когда вы осуществляете звонок своему собеседнику, или кто-то звонит вам, ваш телефон соединяется по радиоканалу с одной из антенн соседней базовой станции (БС, BS, Base Station) .Каждая базовая станция сотовой связи (в простонародье - вышки сотовой связи) включает в себя от одной до двенадцати приемо-передающих антенн , имеющих направления в разные стороны с целью обеспечения качественной связью абонентов в радиусе своего действия. Такие антенны специалисты на своем жаргоне называют «секторами» , представляющими собой серые прямоугольные конструкции, которые вы можете практически каждый день видеть на крышах зданий или специальных мачтах.


Сигнал от такой антенны поступает по кабелю прямо в управляющий блок базовой станции. Базовая станция является совокупностью секторов и управляющего блока. При этом определенную часть населенного пункта или территории обслуживают сразу несколько базовых станций, подключенных к специальному блоку - контроллеру локальной зоны (сокращенно LAC, Local Area Controller или просто «контроллер»). Как правило, один контроллер объединяет до 15 базовых станций определенного района.

Со своей стороны, контроллеры (их также может быть несколько) соединены с самым главным блоком - Центром управления мобильными услугами (MSC, Mobile services Switching Center) , который для упрощения восприятия принято называть просто «коммутатором» . Коммутатор, в свою очередь, осуществляет вход и выход на любые линии связи - как сотовой, так и проводной.

Если отобразить написанное в виде схемы, то получится следующее:
GSM-сети небольшого масштаба (как правило, региональные) могут использовать всего один коммутатор. Крупные же, такие как наши операторы «большой тройки» МТС, Билайн или МегаФон, обслущивающие одновременно миллионы абонентов, используют сразу несколько объединенный между собой устройств MSC.

Давайте разберемся, зачем нужна столь сложная система и почему нельзя подключить антенны базовых станций к коммутатору напрямую? Для этого нужно рассказать про еще один термин, называемый на техническом языке handover (хэндовер) . Он характеризует собой передачу обслуживания в мобильных сетях по эстафетному принципу. Иными словами, когда вы перемещаетесь по улице пешком или в транспортном средстве и говорите при этом по телефону, то, чтобы ваш разговор при этом не прерывался, следует своевременно переключать ваш аппарат из одного сектора БС в другой, из зоны действия одной базовой станции или контроллера локальной зоны в другую и т.д. Следовательно, если бы сектора базовых станций подключались к коммутатору напрямую, ему бы пришлось самому осуществлять данную процедуру хендовера всех своих абонентов, а у коммутатора и без того хватает задач. Поэтому для уменьшения вероятности отказов оборудования, связанных с его перегрузками, схема построения сотовых сетей GSM реализуется по многоуровнему принципу.

В итоге, если вы со своим телефоном перемещаетесь из зоны обслуживания одного сектора БС в зону действия другого, то данное перемещение осуществляет блок управления данной базовой станции, не касаясь при это более «высокостоящих» устройств - LAC и MSC. Если же хэндовер происходит между разными БС, то за него берется уже LAC и т. д.

Коммутатор - ни что иное, как основной «мозг» сетей GSM, поэтому его работу следует рассмотреть более детально. Коммутатор сотовой сети берет на себя примерно те же задачи, что и АТС в сетях проводных операторов. Именно он понимает, куда вы осуществляете звонок или кто звонит вам, регулирует работу дополнительных услуг и, собственно, решает - можете ли вы в настоящее время осуществить свой звонок или нет.

Теперь давайте разберемся, что же происходит, когда вы включаете свой телефон или смартфон?

Итак, вы нажали «волшебную кнопку» и ваш телефон включился. На SIM-карте вашего сотового оператора находится специальный номер, который носит название IMSI - International Subscriber Identification Number (Международный опознавательный номер абонента) . Он является уникальным номером для кажой SIM-карты не только у вашего оператора МТС, Билайн, МегаФон и т.п., а уникальным номером для всех мобильных сетей в мире! Именно по нему операторы отличают абонентов между собой.

В момент включения телефона ваш аппарат посылает данный код IMSI на базовую станцию, которая передает его далее на LAC, он же, в свою очередь, отсылает его на коммутатор. При этом в нашу игру вступают два дополнительных устройства, свзанных непосредственно с коммутатором - HLR (Home Location Register) и VLR (Visitor Location Register) . В переводе на русский это, соответственно, Регистр домашних абонентов и Регистр гостевых абонентов . HLR хранит в себе IMSI всех абонентов своей сети. В VLR же содержится информация о тех абонентах, которые пользуются сетью данного оператора в настоящее время.

Номер IMSI передается в HLR с помощью системы шифрования (за этот процесс отвечает еще одно устройство AuC - Центр аутентификации) . HLR при этом проверяет, существует ли в его базе абонент с данным номером, и если факт его наличия подтверждается, система смотрит, может ли он в настоящее время пользоваться услугами связи или, скажем, имеет финансовую блокировку. Если все нормально, то данный абонент отправляется в VLR и после этого получает возможность звонить и пользоваться другими услугами связи.

Для наглядности отобразим данную процедуру с помощью схемы:

Таким образом, мы коротко описали принцип работы сотовых сетей GSM. На самом деле, это описание достаточно поверхностно, т.к. если углубиться в технические детали подробнее, то материал бы получился во много раз объемнее и гораздо менее понятным для большинства читателей.

Во второй части мы продолжим знакомство с работой сетей GSM и рассмотрим, как и за что оператор списывает средства с нашего с вами счета.

СОТОВАЯ СВЯЗЬ СОТОВАЯ СВЯЗЬ

СО́ТОВАЯ СВЯЗЬ (англ. cellular phone, подвижная радиорелейная связь), вид радиотелефонной связи, в которой конечные устройства - мобильные телефоны (см. МОБИЛЬНЫЙ ТЕЛЕФОН) - соединены друг с другом с помощью сотовой сети - совокупности специальных приемопередатчиков (базовых станций). Базовые станции связываются друг с другом с помощью каналов фиксированной связи, а с обслуживаемыми мобильными телефонами - с помощью радиоволн. Область, где могут находится обслуживаемые отдельной базовой станцией мобильные телефоны, называется сотой (ячейкой, англ. cell). Один сотовый телефон обычно в каждый момент времени виден несколькими базовыми станциями, и, согласно используемым в сотовой сети стандартам и протоколам, связывается с той базовой станцией, которая имеет наименьшее ослабление сигнала (и при этом у этой станции не исчерпан лимит на число обслуживаемых телефонов). Таким образом, когда мобильный телефон перемещается вместе с использующим его человеком, и попадает в области видимости разных базовых станций, то его соединение с сотовой сетью не разрывается, и он может совершать и принимать звонки, а также пользоваться всеми услугами сотовой сети.
Компании, которые предоставляют доступ к сотовым сетям, называются операторами сотовой связи.
Мощность радиопередатчика мобильного телефона в сотовой сети гораздо меньше (в сотни раз) мощности передатчика базовой станции, поэтому мобильные телефоны имеют сравнительно небольшие размеры и безопасны в использовании. Уровень излучения мобильных телефонов регламентируются специальными международными стандартами безопасности. Существует множество стандартов и технологий мобильной связи.
Сети мобильной связи первого поколения
Первые сотовые сети были построены с использованием аналоговых стандартов - стандартов первого поколения (1G, first generation). Самые распространенные из них - NMT и AMPS. Обычно рядом с названием стандарта записывают частоту в мегагерцах, рядом с которой выделен частотный диапазон для взаимодействия базовой станции с мобильными телефонами, например базовые станции сетей NMT-450 общаются с сотовыми телефонами на частоте 450 МГц.
Сеть на основе стандарта NMT (Nordic Mobile Telephone) - первого стандарта сотовой связи - начала работать в странах Северной Европы в 1981. Также NMT был первым стандартом мобильной связи, используемым в России (1991) и в США.
В аналоговых стандартах для обеспечения одновременной работы нескольких мобильных телефонов в одной соте, а также базовых станций различных сот, использовалось только разделение каналов по частоте (FDMA, Frequency Division Multiple Access, одновременный доступ с разделением по частоте), что в условиях дефицита свободных частот означает работу в одной соте максимум только 10-20 телефонов и большие размеры сот. Это было приемлемо только при относительно низкой распространенности мобильной связи. Также аналоговые стандарты не давали никакой защиты от помех, а подслушать разговор иногда можно было с помощью простого радиоприемника.
В 2000-е гг. везде в мире сети первого поколения вытесняются сетями второго и третьего поколений.
Сети мобильной связи второго поколения
В сетях второго поколения (2G, second generation) данные между базовыми станциями и мобильными телефонами передаются в цифровом виде. Это позволило использовать в стандартах DAMPS и пришедшему ему на смену GSM для одновременной работы с одной базовой станции нескольких телефонов временное разделение (TDMA, Time Division Multiple Access, одновременный доступ с разделением по времени) - каждый частотный канал разделен на несколько так называемых «таймслотов», т. е. интервалов времени, в течение которых канал занимает один телефон. Таким образом, одна базовая станция может обслуживать до нескольких сотен телефонов одновременно. А мощности передатчиков в мобильных телефонах второго поколения были снижены, так как потери при передаче оцифрованного звука гораздо ниже.
В стандарте CDMA (Code Division Multiple Access, одновременный доступ с разделением по коду) используются более сложные методы разделения радиоэфира между различными мобильными телефонами. Причем, как много ни было бы разных телефонов в соте, и сколько бы базовых станций ни было бы соседями, каждый мобильный телефон использует для приема и передачи целую частотную полосу (канал) сравнительно большой ширины - 1,25 МГц в стандарте CDMA2000 1x. Чтобы различать сигналы разных телефонов и базовых станций, каждый передатчик имеет собственный код, который распространяется по всей ширине канала.
Самым популярным стандартом сотовой связи является именно стандарт второго поколения GSM - Global System for Mobile Communications (Глобальная система мобильной связи). Мобильными телефонами этого стандарта сейчас пользуются более миллиарда человек во всем мире.
Технологии передачи данных в сетях второго поколения
Но главным следствием перехода к цифровой форме сигнала стала возможность использовать мобильные телефоны для передачи не только голоса (звука), но и других видов информации. Первой подобной услугой, сделавшей возможным передачу текста между мобильными телефонами, был так называемый «сервис коротких сообщений» - Short Message Service (сокращенно SMS). SMS впервые появился в стандарте GSM (в декабре 1992 в сети британского оператора Vodaphone был произведен эксперимент по рассылке SMS), но позднее был реализован и в сетях на основе других стандартов. С помощью технологии SMS можно передавать не только короткие текстовые сообщения, но и простые картинки и звуки, а также выражать свои эмоции с помощью специальных изображений - смайликов (от smile - улыбка). Для этого используются технологии EMS и Nokia Smart Messaging.
Позднее, с совершенствованием мобильных телефонов и развитием компьютеризации, в сетях GSM были введены технологии для передачи компьютерных данных, доступа к сети Интернет (см. ИНТЕРНЕТ) . Первой такой технологией была CSD (Circuit Switched Data, передача данных через прямое подключение), в которой выделенный телефону таймслот используется для передачи данных со скоростью 9.6 килобит в секунду - таймслот выделяется точно так же, как и при совершении телефонных звонков. При этом телефон нельзя использовать по своему прямому назначению. Для увеличения скорости передачи была создана технология HSCSD (High Speed CSD, высокоскоростная CSD) - телефон получает несколько таймслотов сразу, также применяется специальный алгоритм для коррекции ошибок в зависимости от качества соединения. При использовании этой технологии в соте может не хватить таймслотов для всех мобильных телефонов, поэтому она не стала распространенной.
Самой распространенной технологией передачи данных является GPRS (General Packet Radio Service, служба пакетной радиопередачи данных общего пользования), которая позволяет использовать выделенные таймслоты сразу нескольким мобильным телефонам, использует различные алгоритмы при разном качестве связи с БС, различной загруженности БС. Каждый телефон использует различное количество таймслотов, освобождая их при отсутствии необходимости или запрашивая новые. Таймслоты делятся между телефонами с помощью пакетного разделения, как в компьютерных сетях. Количество таймслотов, которое может использовать телефон, ограничено аппаратно, и зависит от класса GPRS мобильного телефона. Скорость передачи асимметрична - если для получения информации телефон класса может использовать до 4-х таймслотов при 8-м и 10-м классах GPRS, то для передачи всего 1-2. Теоретический предел скорости для GPRS при идеальном соединении (21,4 килобит в секунду) и 5-и выделенных таймслотах составляет 107 килобит в секунду. Но реально средняя скорость работы GPRS находится на уровне 56 килобит в секунду. Мобильным телефонам при использовании технологии GPRS выделяются IP-адреса в Интернете, в большинстве случаев не уникальные.
Дальнейшим развитием технологии GPRS стала технология EDGE (Enhanced Data Rates for GSM Evolution, повышенная скорость передачи данных для развития GSM). В этой технологии, по сравнению с GPRS, применены новые схемы кодирования информации, а также изменен алгоритм обработки ошибок (ошибочно переданные пакеты не передаются заново, передается только информация для их восстановления). В результате, максимальная скорость передачи достигает 384 килобит в секунду.
Иногда технологию GPRS называют технологией мобильной связи «поколения 2,5» - 2.5G, а технологию EDGE - технологией 2.75G.
Для сетей CDMA2000 создана технология 1xRTT, позволяющая достигать скорости 144 килобит в секунду.
Назначение технологий передачи данных в сетях мобильной связи
Первоначально эти технологии использовались в мобильных телефонах для доступа в Интернет с помощью персональных компьютеров, и лишь затем, с дальнейшим развитием мобильных телефонов, предоставили доступ в Интернет непосредственно с мобильного телефона. Для получения информации на мобильный телефон использовалась технология WAP (Wireless Application Protocol, протокол для беспроводных приложений), которая предъявляла сравнительно небольшие требования к техническим характеристикам мобильного телефона. Странички создавались на специальном языке WML (Wireless Markup Language), приспособленном к особенностям мобильных телефонов - небольшому размеру экрана, только клавишному управлению, небольшим скоростям передачи данных, задержкам при загрузке страниц, и так далее. Более того, ввиду низкой производительности процессора и малого объема памяти мобильного телефона, для максимального облегчения работы мобильного браузера странички на этом языке обрабатывались не непосредственно, а с помощью промежуточного сервера (так называемого WAP-шлюза), который компилировал их в специальный байт-код, выполняемый мобильным телефоном. Именно за это - работу промежуточного сервера - операторы сотовой связи так высоко оценивают эту услугу.
Однако с совершенствованием мобильных телефонов вскоре произошли изменения. Во-первых, отпала необходимость в промежуточном сервере - теперь браузеры современных мобильных телефонов выполняют его работу самостоятельно. Во-вторых, на смену специализированному языку WML приходит стандарт xHTML - он отличается от повсеместно используемого в Интернете языка HTML только соблюдением некоторых специальных правил, а именно, спецификации XML. В-третьих, современные мобильные телефоны обладают вполне достаточным размером экрана для отображения обычных, предназначенных для компьютеров, страниц Интернета. В-четвертых, с развитием современного Интернета оказалось, что код HTML-страниц стал упрощаться и структурироваться, в связи с тем, что теперь он пишется преимущественно машинно. В связи с этими изменениями, многие современные телефоны вполне могут самостоятельно обрабатывать HTML.
На базе этих технологий передачи данных также были созданы дополнительные сервисы для мобильных телефонов - например, MMS(Multimedia Messaging System, система fпередачи мультимедийных сообщений). С помощью мобильного телефона теперь легко можно составить сообщение, содержащее текст, изображение, звук, видео или другие компьютерные файлы. Многие элементы MMS могут быть объединены в слайды, и принявший MMS телефон может показать презентацию, состоящую из них. Технически, когда отправляется MMS-сообщение, используется специализированный протокол передачи данных через обычное Интернет-соединение, например, через GPRS.
MMS-сообщения с мобильного телефона можно отправлять не только на другие мобильные телефоны, но и на адреса электронной почты - на электронный ящик придут все файлы, из которых состоит MMS. Каждое сообщение может быть отправлено сразу по нескольким адресам.
Если адресатом является номер другого мобильного телефона, поддерживающего MMS, то он напрямую закачивает содержимое сообщения по специальному протоколу, либо автоматически, либо по специальному запросу. А если принимающий сообщение мобильный телефон не поддерживает MMS, то он получает SMS-сообщение, содержащее ссылку в Интернете, перейдя по которой можно через Web посмотреть содержимое MMS либо с самого мобильного телефона, либо с персонального компьютера.
Однако большинство современных мобильных телефонов оснащено программами - клиентами электронной почты, и, по мере их совершенствования, MMS становится ненужным, вытесняется другими сервисами, например, BlackBerry.
Доступ в Интернет с мобильных телефонов может использоваться для тех же целей, что и в персональных компьютерах, например, для использования различных служб обмена сообщениями, вроде ICQ.
Мобильная связь третьего поколения
Скорости передачи данных в сетях второго поколения недостаточны для реализации многих новых задач мобильной связи, в частности, передачи высококачественного видео в реальном времени (видеофонии), современных фотореалистичных компьютерных игр через Интернет и других. Для обеспечения необходимых скоростей созданы новые стандарты и протоколы:
1. Стандарт UMTS (Universal Mobile Telecommunications System, универсальная система мобильной связи) на базе технологии W-CDMA (Wideband Code Division Multiple Access, широкополосный CDMA), частично совместимой с GSM. Скорость приема и передачи данных достигает 1920 килобит в секунду.
2. Технология 1xEV (evolution, развитие) для сетей CDMA2000. Скорость приема данных достигает 3,1 мегабит в секунду, а передачи - 1,8 мегабит в секунду.
3. Технологии TD-SCMA, HSDPA и HSUPA. Позволяют достичь еще более высоких скоростей. По состоянию на 2006 технологии W-CDMA предоставляют часто поддержку HSDPA. TD-SCMA разрабатываются.
Таким образом, современные технологии мобильной связи - это не столько технологии мобильной телефонии, сколько универсальные технологии передачи информации.


Энциклопедический словарь . 2009 .

Смотреть что такое "СОТОВАЯ СВЯЗЬ" в других словарях:

    Сотовая связь, сеть подвижной связи один из видов мобильной радиосвязи, в основе которого лежит сотовая сеть. Ключевая особенность заключается в том, что общая зона покрытия делится на ячейки (соты), определяющиеся зонами покрытия отдельных … Википедия

    Один из видов мобильной радиосвязи, в основе которого лежит сотовая сеть. Ключевая особенность заключается в том, что общая зона покрытия делится на ячейки (соты), определяющиеся зонами покрытия отдельных базовых станций (БС). Соты частично… … Словарь бизнес-терминов

    Сотовая связь третьего поколения - Сети сотовой связи третьего поколения (3rd Generation, или 3G) работают на частотах диапазона около 2 гигагерц и обеспечивают передачу данных на скорости до 2 мегабит в секунду. Такие характеристики позволяют использовать мобильный телефон, в… … Энциклопедия ньюсмейкеров

    ООО «Екатеринбург 2000» Тип Оператор сотовой связи Расположение … Википедия

    Статья содержит ошибки и/или опечатки. Необходимо проверить содержание статьи на соответствие грамматическим нормам русского языка … Википедия

    В Московском метрополитене работают сотовые телефоны стандарта GSM следующих сотовых операторов на следующих станциях. Содержание 1 «МТС» 2 «Билайн» 3 «МегаФон» … Википедия

    - … Википедия

    Сотовая связь один из видов мобильной радиосвязи, в основе которого лежит сотовая сеть. Ключевая особенность заключается в том, что общая зона покрытия делится на ячейки (соты), определяющиеся зонами покрытия отдельных базовых станций (БС). Соты … Википедия

    Координаты: 56°49′53.36″ с. ш. 60°35′14.81″ в. д. / 56.831489° с. ш. 60.587447° в. д. … Википедия

Мобильная сотовая связь

Сотовая связь - один из видов мобильной радиосвязи , в основе которого лежит сотовая сеть . Ключевая особенность заключается в том, что общая зона покрытия делится на ячейки (соты), определяющиеся зонами покрытия отдельных базовых станций (БС). Соты частично перекрываются и вместе образуют сеть. На идеальной (ровной и без застройки) поверхности зона покрытия одной БС представляет собой круг, поэтому составленная из них сеть имеет вид сот с шестиугольными ячейками (сотами).

Примечательно, что в английском варианте связь называется «ячеистой» или «клеточной» (cellular), что не учитывает шестиугольности сот .

Сеть составляют разнесённые в пространстве приёмопередатчики, работающие в одном и том же частотном диапазоне, и коммутирующее оборудование, позволяющее определять текущее местоположение подвижных абонентов и обеспечивать непрерывность связи при перемещении абонента из зоны действия одного приёмопередатчика в зону действия другого.

История

Первое использование подвижной телефонной радиосвязи в США относится к 1921 г.: полиция Детройта использовала одностороннюю диспетчерскую связь в диапазоне 2 МГц для передачи информации от центрального передатчика к приёмникам, установленным на автомашинах. В 1933 г. полиция Нью-Йорка начала использовать систему двусторонней подвижной телефонной радиосвязи также в диапазоне 2 МГц. В 1934 г. Федеральная комиссия связи США выделила для телефонной радиосвязи 4 канала в диапазоне 30…40 МГц, и в 1940 г. телефонной радиосвязью пользовались уже около 10 тысяч полицейских автомашин. Во всех этих системах использовалась амплитудная модуляция . Частотная модуляция начала применяться с 1940 г. и к 1946 г. полностью вытеснила амплитудную. Первый общественный подвижный радиотелефон появился в 1946 г. (Сент-Луис, США; фирма Bell Telephone Laboratories), в нём использовался диапазон 150 МГц. В 1955 г. начала работать 11-канальная система в диапазоне 150 МГц, а в 1956 г. - 12-канальная система в диапазоне 450 МГц. Обе эти системы были симплексными, и в них использовалась ручная коммутация. Автоматические дуплексные системы начали работать соответственно в 1964 г. (150 МГц) и в 1969 г. (450 МГц).

В СССР В 1957 г. московский инженер Л. И. Куприянович создал опытный образец носимого автоматического дуплексного мобильного радиотелефона ЛК-1 и базовую станцию к нему. Мобильный радиотелефон весил около трех килограммов и имел радиус действия 20-30 км. В 1958 году Куприянович создает усовершенствованные модели аппарата весом 0,5 кг и размером с папиросную коробку. В 60-х гг Христо Бочваров в Болгарии демонстрирует свой опытный образец карманного мобильного радиотелефона. На выставке «Интероргтехника-66» Болгария представляет комплект для организации местной мобильной связи из карманных мобильных телефонов РАТ-0,5 и АТРТ-0,5 и базовой станции РАТЦ-10, обеспечивающей подключение 10 абонентов.

В конце 50-х гг в СССР начинается разработка системы автомобильного радиотелефона «Алтай» , введенная в опытную эксплуатацию в 1963 г. Система «Алтай» первоначально работала на частоте 150 МГц. В 1970 г. система «Алтай» работала в 30 городах СССР и для нее был выделен диапазон 330 МГц.

Аналогичным образом, с естественными отличиями и в меньших масштабах, развивалась ситуация и в других странах. Так, в Норвегии общественная телефонная радиосвязь использовалась в качестве морской мобильной связи с 1931 г.; в 1955 г. в стране было 27 береговых радиостанций. Наземная мобильная связь начала развиваться после второй мировой войны в виде частных сетей с ручной коммутацией. Таким образом, к 1970 г. подвижная телефонная радиосвязь, с одной стороны, уже получила достаточно широкое распространение, но с другой - явно не успевала за быстро растущими потребностями, при ограниченном числе каналов в жёстко определённых полосах частот. Выход был найден в виде системы сотовой связи, что позволило резко увеличить ёмкость за счёт повторного использования частот в системе с ячеистой структурой.

Конечно, как это обычно бывает в жизни, отдельные элементы системы сотовой связи существовали и раньше. В частности, некоторое подобие сотовой системы использовалось в 1949 г. в Детройте (США) диспетчерской службой такси - с повторным использованием частот в разных ячейках при ручном переключении каналов пользователями в оговоренных заранее местах. Однако архитектура той системы, которая сегодня известна как система сотовой связи, была изложена только в техническом докладе компании Bell System, представленном в Федеральную комиссию связи США в декабре 1971 г. И с этого времени начинается развитие собственно сотовой связи, которое стало поистине триумфальным с 1985 г., в последние десять с небольшим лет.

В 1974 г. Федеральная комиссия связи США приняла решение о выделении для сотовой связи полосы частот в 40 МГц в диапазоне 800 МГц; в 1986 г. к ней было добавлено ещё 10 МГц в том же диапазоне. В 1978 г. в Чикаго начались испытания первой опытной системы сотовой связи на 2 тыс. абонентов. Поэтому 1978 год можно считать годом начала практического применения сотовой связи. Первая автоматическая коммерческая система сотовой связи была введена в эксплуатацию также в Чикаго в октябре 1983 г. компанией American Telephone and Telegraph (AT&T). В Канаде сотовая связь используется с 1978 г., в Японии - с 1979 г., в Скандинавских странах (Дания, Норвегия, Швеция, Финляндия) - с 1981 г., в Испании и Англии - с 1982 г. По состоянию на июль 1997 г. сотовая связь работала более чем в 140 странах всех континентов, обслуживая более 150 млн абонентов.

Первой коммерчески успешной сотовой сетью была финская сеть Autoradiopuhelin (ARP). Это название переводится на русский как «Автомобильный радиотелефон». Запущенная в г., она достигла 100%-ного покрытия территории Финляндии в . Размер соты был равен около 30 км , в г. в ней было более 30 тыс. абонентов . Работала она на частоте 150 МГц .

Принцип действия сотовой связи

Основные составляющие сотовой сети - это сотовые телефоны и базовые станции . Базовые станции обычно располагают на крышах зданий и вышках. Будучи включённым, сотовый телефон прослушивает эфир, находя сигнал базовой станции. После этого телефон посылает станции свой уникальный идентификационный код. Телефон и станция поддерживают постоянный радиоконтакт, периодически обмениваясь пакетами. Связь телефона со станцией может идти по аналоговому протоколу (NMT-450) или по цифровому (DAMPS , GSM, англ. handover ).

Сотовые сети могут состоять из базовых станций разного стандарта, что позволяет оптимизировать работу сети и улучшить её покрытие.

Сотовые сети разных операторов соединены друг с другом, а также со стационарной телефонной сетью. Это позволяет абонентам одного оператора делать звонки абонентам другого оператора, с мобильных телефонов на стационарные и со стационарных на мобильные.

Операторы разных стран могут заключать договоры роуминга . Благодаря таким договорам абонент, находясь за границей, может совершать и принимать звонки через сеть другого оператора (правда, по повышенным тарифам).

Сотовая связь в России

В России сотовая связь начала внедряться с 1990 г., коммерческое использование началось с 9 сентября 1991 г., когда в Санкт-Петербурге компанией «Дельта Телеком» была запущена первая в России сотовая сеть (работала в стандарте NMT-450) и был совершён первый символический звонок по сотовой связи мэром Санкт-Петербурга Анатолием Собчаком . К июлю 1997 г. общее число абонентов в России составило около 300 тысяч. На 2007 год основные протоколы сотовой связи, используемые в России - GSM-900 и GSM-1800 . Помимо этого, работают и UMTS. В частности, первый фрагмент сети этого стандарта в России был введён в эксплуатацию 2 октября 2007 года в Санкт-Петербурге компанией «МегаФон ». В Свердловской области продолжает эксплуатироваться сеть сотовой связи стандарта DAMPS , принадлежащей компании Сотовая Связь «МОТИВ» .

В России в декабре 2008 г насчитывалось 187,8 млн пользователей сотовой связи (по числу проданных сим-карт). Уровень проникновения сотовой связи (количество SIM-карт на 100 жителей) на эту дату составил, таким образом, 129,4 %. В регионах, без учёта Москвы, уровень проникновения превысил 119,7 %.

Доля рынка крупнейших сотовых операторов на декабрь 2008 года составила: 34,4 % у МТС , 25,4 % у «Вымпелкома » и 23,0 % у «МегаФона ».

В декабре 2007 года число пользователей сотовой связи в России выросло до 172,87 млн абонентов, в Москве - до 29,9, в Питере - до 9,7 млн. Уровень проникновения в России - до 119,1 %, Москве - 176 %, Санкт-Петербурге - 153 %. Доля рынка крупнейших сотовых операторов на декабрь 2007 года составила: МТС 30,9 %, «ВымпелКом» 29,2 %, «МегаФон» 19,9 %, другие операторы 20 %.

Согласно данным британской исследовательской компании Informa Telecoms & Media за 2006 год, средняя стоимость минуты сотовой связи для потребителя в России составила $0,05 - это самый низкий показатель из стран «большой восьмёрки ».

Компания IDC на основе исследования российского рынка сотовой связи сделала вывод, что в 2005 году общая продолжительность разговоров по сотовому телефону жителей РФ достигла 155 миллиардов минут, а текстовых сообщений было отправлено 15 миллиардов штук.

Согласно исследованию компании J"son & Partners, количество зарегистрированных в России сим-карт по состоянию на конец ноября 2008 года достигло 183,8 млн .

См. также

Источники

Ссылки

  • Информационный сайт о поколениях и стандартах сотовой связи .
  • Сотовая связь в России 2002-2007, данные официальной статистики
  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то