Проектирование и поддержка локальной вычислительной сети предприятия. Проектирование локальной сети. Локальные и глобальные сети. Сети других типов классификации

Лабораторная работа №2.

Цель работы: овладение навыками работы в Microsoft Office Visio, планирование и проектирование компьютерной сети.

Процесс построения (проектирования) сети представляет собой упрощенное моделирование не наступившей действительности и включает в себя следующие основные этапы:

1. Анализ задач, для решения которых создается сеть, а также определение объема финансирования проекта.

2. Проектирование физической структуры – этап, на котором анализируются начальные условия и создается детальный проект физической организации сети.

3. Проектирование инфраструктуры – этап, на котором определяются протоколы взаимодействия, используемые службы, политика безопасности и т.п. — т.е. логическая организация сети.

4. Развертывание – этап, связанный с прокладкой линий связи, установкой и настройкой оборудования.

Этап анализа является одним из важнейших, поскольку определяет все остальные решаемые задачи: как физическую структуру сети, так и логическую. Именно на данном этапе выступает основное различие компьютерных сетей.

На этапе проектирования решаются следующие задачи:

1. На основе определенных целевых требований к сети определяется необходимый состав оборудования и, прежде всего, компьютеров: количество, характеристики и т.д.

2. Определяется физическое расположение рабочих мест и определяются этажи и аудитории, которые будут охватываться сетью. При решении этой задачи должна учитываться принципиальная возможность прокладки линий связи к рабочим местам/помещениям.

3. Исходя из решаемых задач, стоимости и расположения, определяется тип физических линий связи, соединяющих рабочие места, состав и расположение коммуникационного оборудования (например, концентраторов).

4. Определяется способ подключения к Интернету: выбирается провайдер – организация, обеспечивающая подключение организации к сети Интернет. При выборе провайдера учитываются факторы: характеристики возможных физических соединений с провайдером, требования к оборудованию и необходимое дополнительное оборудование, начальная стоимость подключения, стоимость эксплуатации подключения, технологические ограничения подключения (невозможность использования некоторых служб).

5. Исходя из технических требований, определяется узел проектируемой сети, который будет являться шлюзом для подключения к Интернету и определяется место его расположения. При этом учитывается удобство физического соединения шлюза с проектируемой сетью и удобство подведения физических линий для подключения к Интернету.

Общий алгоритм, описывающий процесс построения сети:

1. Определение исходных данных.

– определение целей использования сети;

– определение требований к сети;

– характеристики используемого оборудования (компьютеры, сетевое оборудование, принтеры, модемы и др.);

– характеристика сетевого ПО (операционные системы, серверное ПО, антивирусное ПО);

– примерная схема здания в котором планируется строить сеть.

2. Проектирование сети.

– способ сегментирования и объединения сегментов (определение необходимых сегментов оборудования для их формирования);

– выбор типа кабеля (как правило выбирается неэкранированная витая пара);

– определение активных устройств (модемы, маршрутизаторы и т.п.);

– выбор программного обеспечения (серверные и клиентские ОС, серверное программное обеспечение и т.п.);

– разработка схемы сети (указываются узлы сети и длины соединительных кабелей).

3. Определение стоимости.

– анализ основных направлений затрат;

– составление примерной сметы затрат.

4. Примерный план проведения работ.

5. Развертывание сети.

При создании новой сети желательно учитывать следующие факторы:

– требуемый размер сети (в настоящее время, в ближайшем будущем и по прогнозу на перспективу);

– структура, иерархия и основные части сети (по подразделениям предприятия, а также по комнатам, этажам и зданиям предприятия); основные направления и интенсивность информационных потоков в сети (в настоящее время, в ближайшем будущем и в дальней перспективе); характер передаваемой по сети информации;

– технические характеристики оборудования (компьютеров, адаптеров, кабелей, репитеров, концентраторов, коммутаторов);

– возможности прокладки кабельной системы в помещениях и между ними, а также меры обеспечения целостности кабеля;

– обслуживание сети и контроль ее безотказности и безопасности;

– требования к программным средствам по допустимому размеру сети, скорости, гибкости, разграничению прав доступа, стоимости, по возможностям контроля обмена информацией и т.д. (например, если предполагается использование одного ресурса многими пользователями, то следует использовать серверную ОС);

– необходимость подключения к другим сетям (например, глобальным);

– имеющиеся компьютеры и их программное обеспечение, а также периферийные устройства (принтеры, сканеры и т.д.).

При выборе размера (под размером сети в данном случае понимается как количество объединяемых в сеть компьютеров, так и расстояния между ними) и структуры сети необходимо учитывать:

– количество компьютеров (следует оставлять возможность для дальнейшего роста количества компьютеров в сети);

– требуемую длину линий связи сети (например, если расстояния очень большие, может понадобиться использование дорогого оборудования).

– способы объединения частей сети (для объединения частей сети могут использоваться репитеры, репитерные концентраторы, коммутаторы, мосты и маршрутизаторы, причем в ряде случаев стоимость этого объединительного оборудования может даже превысить стоимость компьютеров, сетевых адаптеров и кабеля;

Возможность масштабирования (например, лучше приобретать коммутаторы или маршрутизаторы с количеством портов, несколько большим, чем требуется в настоящий момент).

Пример. Пусть небольшое предприятие занимает три этажа, на каждом по пять комнат, и включает в себя три подразделения, по три группы. В этом случае можно построить сеть таким образом (рис. 1):

Рабочие группы занимают по 1–3 комнаты, их компьютеры объединены между собой репитерными концентраторами. Концентратор может использоваться один на комнату, один на группу или один на весь этаж. Концентратор целесообразно расположить в помещении, в которое имеет доступ минимальное количество сотрудников.

Подразделения занимают отдельный этаж. Все три сети рабочих групп каждого подразделения объединяются коммутатором, а для связи с сетями других подразделений используется маршрутизатор. Коммутатор вместе с одним из концентраторов лучше поместить в отдельной комнате.

Общая сеть предприятия включает три сегмента сетей подразделений, объединенных маршрутизатором. Этот же маршрутизатор может использоваться для подключения к глобальной сети.

Серверы рабочих групп располагаются в комнатах рабочих групп, серверы подразделений – на этажах подразделений.

Рис. 1. Структура сети предприятия (С – серверы рабочих групп, РК – репитерные концентраторы, Ком – коммутаторы)

При выборе сетевого оборудования надо учитывать множество факторов, в частности:

– уровень стандартизации оборудования и его совместимость с наиболее распространенными программными средствами;

– скорость передачи информации и возможность ее дальнейшего увеличения;

– возможные топологии сети и их комбинации (шина, пассивная звезда, пассивное дерево);

– метод управления обменом в сети (CSMA/CD, полный дуплекс или маркерный метод);

– разрешенные типы кабеля сети, максимальную его длину, защищенность от помех;

– стоимость и технические характеристики конкретных аппаратных средств (сетевых адаптеров, трансиверов, репитеров, концентраторов, коммутаторов).

В настоящее время для организации локальных сетей в подавляющем большинстве случаев используется неэкранированная витая пара UTP. Более дорогие варианты на основе экранированной витой пары, оптоволоконного кабеля или беспроводных соединений применяются на предприятиях, где в этом существует действительно острая необходимость. Например, оптоволокно может использоваться для связи между удаленными сегментами сети без потери скорости.

При выборе сетевого программного обеспечения (ПО) надо, в первую очередь, учитывать следующие факторы:

– какую сеть поддерживает сетевое ПО: одноранговую, сеть на основе сервера или оба этих типа;

– максимальное количество пользователей (лучше брать с запасом не менее 20%);

– количество серверов и возможные их типы;

– совместимость с разными операционными системами и компьютерами, а также с другими сетевыми средствами;

– уровень производительности программных средств в различных режимах работы;

– степень надежности работы, разрешенные режимы доступа и степень защиты данных;

– какие сетевые службы поддерживаются;

– стоимость программного обеспечения, его эксплуатации и модернизации.

Еще до установки сети необходимо решить вопрос об управлении сетью. Даже в случае одноранговой сети лучше выделить для этого отдельного специалиста (администратора), который будет иметь всю информацию о конфигурации сети и распределении ресурсов и следить за корректным использованием сети всеми пользователями. Если сеть большая, то одним сетевым администратором уже не обойтись, нужна группа, возглавляемая системным администратором.

После установки и запуска сети решать эти вопросы, как правило, слишком поздно.

При проектировании следует определить возможные направления финансовых затрат (к данному этапу проектирования необходимые предпосылки для решения этой задачи уже имеются):

– дополнительные компьютеры и обновление существующих компьютеров. Необязательное направление затрат: при достаточном количестве и качестве существующих компьютеров их обновление не требуется (или требуется в минимальном объеме – например, для установки более современных сетевых карт); в одноранговой сети не нужен (хотя и желателен) также специальный файл-сервер.

– сетевые аппаратные средства (кабели и все, что необходимо для организации кабельной системы, сетевые принтеры, активные сетевые устройства – повторители, концентраторы, маршрутизаторы и т.д.).

– сетевые программные средства, прежде всего, сетевая ОС на необходимое число рабочих станций (с запасом).

– оплата работы приглашенных специалистов при организации кабельной системы, установке и настройке сетевой ОС, при проведении периодической профилактики и срочного ремонта. Необязательное направление затрат: для небольших сетей со многими из этих работ может и должен справляться штатный сетевой администратор (возможно, с помощью других сотрудников данного предприятия).

Спроектировать компьютерную сеть (собрать исходные данные; выбрать: размер и структуру сети, оборудование, сетевые программные средства; спроектировать кабельную систему; рассчитать примерную стоимость оборудования) в соответствии с № варианта.

Контрольные вопросы:

1.Какие этапы включает процесс построения сети?

2. Классификация локальных вычислительных сетей?

3. Базовые технологии локальных сетей?

4. Топология локальной вычислительной сети?

5.Маршрутизатор, коммутатор?

6.Плюсы и минусы Microsoft Office Visio?

Статьи к прочтению:

Этапы проектирования локальных сетей

Федеральное государственное бюджетное образовательное учреждение

Высшего профессионального образования

Уральский государственный университет путей сообщения

Кафедра «ИТ и ЗИ»

Курсовой проект

На тему: «Проектирование ЛВС предприятия»

Выполнил Паршин К.А.

Проверил: к.т.н. доцент ст. гр. ИТ-311

Ахметгареев К.Ю

Екатеринбург, 2013

Введение

Локальная вычислительная сеть

Канальный уровень модели OSI

Схема расположения компьютеров

Расчет общей длины кабеля

Форматы кадров Ethernet

Протокол SIP

Коммутаторы

Маршрутизация

Мультисервис. IP - телефония, SIP, H.323

Распределение IP - адресов для ЛВС.

Программное и аппаратное обеспечение

Расчет сметной стоимости

Заключение

Список литературы

Введение

Локальная вычислительная сеть представляет собой совокупность узлов коммутации и линий связи, обеспечивающих передачу данных пользователей сети. Поэтому требования могут быть разделены на две части:

требования к узлам коммутации

требования в линиям связи

Целью любого проектирования является выбор варианта наиболее полно удовлетворяющего требованиям заказчика.

Спроектировать локальную вычислительную сеть (ЛВС) предприятия для информационного обеспечения взаимодействия отделов на этаже производственного здания (Приложение 1) с учетом исходных данных:



1. Локальная вычислительная сеть

Локальная вычислительная сеть (ЛВС, локальная сеть; англ. Local Area Network, LAN) - компьютерная сеть, покрывающая обычно относительно небольшую территорию или небольшую группу зданий (дом, офис, фирму, институт). Также существуют локальные сети, узлы которых разнесены географически на расстояния более 12 500 км (космические станции и орбитальные центры). Несмотря на такие расстояния, подобные сети всё равно относят к локальным.

Компьютеры могут соединяться между собой, используя различные среды доступа: медные проводники (витая пара), оптические проводники (оптические кабели) и через радиоканал (беспроводные технологии). Проводные, оптические связи устанавливаются через Ethernet, беспроводные - через Wi-Fi, Bluetooth, GPRS и прочие средства. Отдельная локальная вычислительная сеть может иметь связь с другими локальными сетями через шлюзы, а также быть частью глобальной вычислительной сети (например, Интернет) или иметь подключение к ней.

Чаще всего локальные сети построены на технологиях Ethernet или Wi-Fi. Для построения простой локальной сети используются маршрутизаторы, коммутаторы, точки беспроводного доступа, беспроводные маршрутизаторы, модемы и сетевые адаптеры.

Технологии локальных сетей реализуют, как правило, функции только двух нижних уровней модели OSI - физического и канального. Функциональности этих уровней достаточно для доставки кадров в пределах стандартных топологий, которые поддерживают LAN: звезда, общая шина, кольцо и дерево. Однако из этого не следует, что компьютеры, связанные в локальную сеть, не поддерживают протоколы уровней, расположенных выше канального. Эти протоколы также устанавливаются и работают на узлах локальной сети, но выполняемые ими функции не относятся к технологии LAN.

Протоколы ЛВС.

В ЛВС не требуется обеспечивать большинство функций, поэтому выполняемые функции разделены между физическим и канальным уровнями, причем канальный уровень расщеплен на два подуровня: управление доступом к среде (МАС) и управление логическим каналом (LLC).

В ЛВС в качестве кабельных передающих сред используются витая пара, коаксиальный кабель и оптоволоконный кабель.

Основные характеристики ЛВС:

Территориальная протяженность сети (длина общего канала связи);

Максимальная скорость передачи данных;

Максимальное число АС в сети;

Максимально возможное расстояние между рабочими станциями в сети;

Топология сети;

Вид физической среды передачи данных;

Максимальное число каналов передачи данных;

Метод доступа абонентов в сеть;

Структура программного обеспечения сети;

Возможность передачи речи и видеосигналов;

Условия надежной работы сети;

Возможность связи ЛВС между собой и с сетью более высокого уровня;

Возможность использования процедуры установления приоритетов при одновременном подключении абонентов к общему каналу.

Канальный уровень модели OSI

Канальный уровень обеспечивает надежную передачу данных по физическому сетевому каналу. Различные спецификации канального уровня определяют различные характеристики сетей и протоколов, включая физическую адресацию, сетевую топологию, диагностирование ошибок, чередование фреймов и управление потоком. Физическая адресация определяет, каким образом адресуются устройства на канальном уровне. Сетевая топология состоит из спецификаций канального уровня, которые определяют физическое соединение устройств, такие топологии, как шинная или кольцевая. Диагностирование ошибок информирует протоколы высшего уровня о том, что произошла ошибка передачи, а чередование фреймов данных пересортирует фреймы, которые передавались с нарушением последовательности, определенным протоколом IEEE 802.3. Наконец, управление потоком управляет передачей данных таким образом, что принимающее устройство не будет перегружено большим трафиком, чем оно может обработать в единицу времени.

Канальный уровень разбит на два подуровня: подуровень управления логическим соединением (Logical Link Control - LLC) и подуровень управления доступом к передающей среде (Media Access Control - MAC). Подуровень управления логическим соединением (LLC) канального уровня управляет обменом данными между устройствами по одному каналу сети. Подуровень LLC определяется в спецификации IEEE 802.2 и поддерживает как службы, работающие без подтверждения соединений, так и службы, ориентированные на соединения, используемые протоколами высшего уровня. Спецификация IEEE 802.2 определяет количество полей фреймов канального уровня, позволяющих разделение несколькими протоколами высшего уровня одного физического канала данных.

Подуровень управления доступом к передающей среде (MAC) канального уровня управляет доступом протоколов к физической сетевой среде. Спецификация IEEE определяет MAC адреса и позволяет на канальном уровне множеству устройств идентифицировать друг друга уникальным образом.

3. 100Base-TX

Стандарт этого физического интерфейса предполагает использование неэкранированной витой пары категории не ниже 5. Он полностью идентичен стандарту FDDI UTP PMD, который также подробно рассмотрен в главе 6. Физический порт RJ-45 как и в стандарте 10Base-T может быть двух типов: MDI (сетевые карты, рабочие станции) и MDI-X (повторителе Fast Ethernet, коммутаторы). Порт MDI в единичном количестве может иметься на повторителе Fast Ethernet. Для передачи по медному кабелю используются пары 1 и 3. Пары 2 и 4 - свободны. Порт RJ-45 на сетевой карте и на коммутаторе может поддерживать на ряду с режимом 100Base-TX и режим 10Base-T или функцию автоопределения скорости. Большинство современных сетевых карт и коммутаторов поддерживают эту функцию по портам RJ-45 и кроме этого могут работать в дуплексном режиме.

BASE-TX использует для передачи данных по одной паре скрученных (витых) проводов в каждом направлении, обеспечивая до 100 Мбит/с пропускной способности в каждом направлении.

Витая пара - слаботочный кабель для передачи данных с помощью электрического сигнала по медным или алюминиевым омеднёнными жилам. В современном мире, кабель UTP 5e глубоко используется в СКС (структурированных кабельных системах). Среди разновидностей UTP различающихся характеристиками и количеством жил, наиболее часто встречаются UTP 5e по 4 пары и UTP 2 пары для внутренней прокладки и внешней, в последнем случае, в конструкции кабеля имеется трос. UTP с тросом удобно прокладывать по улице между зданиями, а цена данной продукции существенно ниже аналогов. Обычно внешняя витая пара UTP изготавливается в черной оболочке из поливинилхлорида, в том числе с экраном в виде металлической оплетки в бухтах с разной длиной, распространенный вариант - 305 метров бухта. Для прокладки в помещениях цвет оболочки - серый. В основном UTP применяется для подключения абонентов к сети Интернет или построения локальной вычислительной сети, в этом случае при использовании 100-мегабитного соединения используются только две витые пары 5е, при гигабитном соединении - все 4. Свое второе название "витая пара" получила за счёт скрутки жил попарно, расшифровывается UTP - Unshielded twisted pair. Благодаря своей сбалансированности кабель обладает всеми необходимыми характеристиками для СКС, среди мировых производителей кабеля UTP наиболее известны такие марки, как: Hyperline, Neomax, iO-SCS, MAXYS, SilverLAN. Как правило, оптовые цены на UTP 5e гораздо ниже среди аналогичной кабельной продукции, в нашем ассортименте вся "витая пара" сертифицирована и соответствует мировым стандартам качества.

Схема расположения компьютеров

Для того, что бы начертить план нашего помещения воспользуемся программой «Компас». Масштаб чертежа 1:100. Сразу же расположим на плане 27 рабочих места согласно заданию, два коммутатора, и определим трассу прокладки кабеля, что бы она удовлетворяла всем нашим условиям.

Расчет общей длины кабеля

Используя полученный чертеж, рассчитаем необходимую длину кабеля L, для прокладки нашей сети. Для расчета пользуемся формулой (1). Так же при расчете учитываем все подъемы, спуски, повороты и т.д. После нахождения необходим длины кабеля L проверим её на соответствие условию (2).

где:i - расстояние от i-ого рабочего места до коммутатора К1;j - расстояние от j-ого рабочего места до коммутатора К2;- расстояние от коммутатора К1 до маршрутизатора М;- расстояние от коммутатора К2 до маршрутизатора М;

8*300b ≤ L ≤ 300b (2)

где:- целое число бухт кабеля.

Табл. 1 Длины кабелей































Данная длина кабеля удовлетворяет нашему условию.

Форматы кадров Ethernet

Данные, передаваемые в сети Ethernet, разбиты на кадры. Данные по сети в чистом виде не передаются. Как правило, к единице данных "пристраевается" заголовок. В некоторых сетевых технологиях добавляется также окончание. Заголовок и окончание несут служебную информацию и состоят из определённых полей.

Так как существует несколько типов кадров, то для того, чтобы понять друг друга, отправитель и получатель должны использовать один и тот же тип кадров. Кадры могут быть четырёх разных форматов, несколько отличающихся друг от друга. Базовых форматов кадров (raw formats) существует всего два - Ethernet II и Ethernet 802.3. Эти форматы отличаются назначением всего одного поля.

Для успешной доставки информации получателю каждый кадр должен кроме данных содержать служебную информацию: длину поля данных, физические адреса отправителя и получателя, тип сетевого протокола и т.д.

Для того, чтобы рабочие станции имели возможность взаимодействовать с сервером в одном сегменте сети, они должны поддерживать единый формат кадра. Существует четыре основных разновидности кадров Ethernet:Type II802.3802.2SNAP (SubNetwork Access Protocol).

Минимальная допустимая длина всех четырёх типов кадров Ethernet составляет 64 байта, а максимальная - 1518 байт. Так как на служебную информацию в кадре отводится 18 байт, то поле "Данных" может иметь длину от 46 до 1500 байт. Если передаваемые по сети данные меньше допустимой минимальной длины, кадр будет автоматически дополняться до 46 байт. Столь жёсткие ограничения на минимальную длину кадра введены для обеспечения нормальной работы механизма обнаружения коллизий.

Для того, чтобы сеть Ethernet, состоящая из сегментов различной физической природы, работала корректно, необходимо, чтобы выполнялись три основных условия:

)Количество станций в сети не превышает 1024 (с учетом ограничений для коаксиальных сегментов).

)Удвоенная задержка распространения сигнала (Path Delay Value, PDV) между двумя самыми удаленными друг от друга станциями сети не превышает 575 битовых интервалов.

)Сокращение межкадрового расстояния (Interpacket Gap Shrinkage) при прохождении последовательности кадров через все повторители не более, чем на 49 битовых интервалов (напомним, что при отправке кадров станция обеспечивает начальное межкадровое расстояние в 96 битовых интервалов).

Соблюдение этих требований обеспечивает корректность работы сети даже в случаях, когда нарушаются простые правила конфигурирования, определяющие максимальное количество повторителей и максимальную длину сегментов каждого типа.

Физический смысл ограничения задержки распространения сигнала по сети уже пояснялся - соблюдение этого требования обеспечивает своевременное обнаружение коллизий.

Требование на минимальное межкадровое расстояние связано с тем, что при прохождении кадра через повторитель это расстояние уменьшается. Каждый пакет, принимаемый повторителем, ресинхронизируется для исключения дрожания сигналов, накопленного при прохождении последовательности импульсов по кабелю и через интерфейсные схемы. Процесс ресинхронизации обычно увеличивает длину преамбулы, что уменьшает межкадровый интервал. При прохождении кадров через несколько повторителей межкадровый интервал может уменьшиться настолько, что сетевым адаптерам в последнем сегменте не хватит времени на обработку предыдущего кадра, в результате чего кадр будет просто потерян. Поэтому не допускается суммарное уменьшение межкадрового интервала более чем на 49 битовых интервалов.

Расчет PDV- временная задержка. Первое слагаемое описывает задержку во всех кабельных сегментах. Второе слагаемое описывает временную задержку в узлах коммутации. Третье слагаемое - задержку в сетевых адаптерах.

Если скорость 10 Мбит/с à PDV должно быть не более 576 бит на интервал.

Если скорость 100 Мбит/с àPDV не более 512 бит на интервал. (бит на интервал 6t).

При подсчете PDV необходимо найти 2 самых удаленных друг от друга компьютера в сети. Так же необходимо определить задержки в концентраторах.

Увеличение PDV более максимального значения провит к существенному числу коллизий, из-за того что кадр минимальной длинны 64б не успевает обойти сеть 2 раза и механизм collisium detected не фиксирует конфликт.

(UTP-5) = 1,112 bt/M - задержки в кабеле категории TX

(2TX/FX) =100 bt - задержки в 2х адаптерах категории ТХ

(TX/FX) = 92 bt - задержки в коммутаторах и маршрутизаторах 2й категории= (17,34 + 16,91 + 51,61 + 20,35) * 1,112 + 3 * 92 + 100 = 505,9 bt

Мбит/с => PDV < 512 bt

bt - запас межкадрового интервала

Для качественной работы сети нужно, что бы PDV удовлетворяло следующему условию: PDV ≤ 512 bt.

В нашем случае это условие выполняется. Так как все наши условия выполняются, то можно окончательно вычерчивать трассу прокладки кабеля (приложение 1).

Протокол SIP

Протокол инициирования сеансов - Session Initiation Protocol (SIP) является протоколом прикладного уровня и предназначается для организации, модификации и завершения сеансов связи: мультимедийных конференций, телефонных соединений и распределения мультимедийной информации. Пользователи могут принимать участие в существующих сеансах связи, приглашать других пользователей и быть приглашенными ими к новому сеансу связи. Приглашения могут быть адресованы определенному пользователю, группе пользователей или всем пользователям.

В основе протокола лежат следующие принципы:

Персональная мобильность пользователей. Пользователи могут перемещаться без ограничений в пределах сети, поэтому услуги связи должны предоставляться им в любом месте этой сети. Пользователю присваивается уникальный идентификатор, а сеть предоставляет ему услуги связи вне зависимости от того, где он находится. Для этого пользователь с помощью специального сообщения - REGISTER - информирует о своих перемещениях сервер определения местоположения.

Масштабируемость сети. Она характеризуется, в первую очередь, возможностью увеличения количества элементов сети при её расширении. Серверная структура сети, построенной на базе протокола SIP, в полной мере отвечает этому требованию.

Расширяемость протокола. Она характеризуется возможностью дополнения протокола новыми функциями при введении новых услуг и его адаптации к работе с различными приложениями.

Взаимодействие с другими протоколами сигнализации. Протокол SIP может быть использован совместно с протоколом Н.323. Возможно также взаимодействие протокола SIP с системами сигнализации ТфОП - DSS1 и ОКС7. Для упрощения такого взаимодействия сигнальные сообщения протокола SIP могут переносить не только специфический SIP, адрес, но и телефонный номер. Кроме того, протокол SIP, наравне с протоколами H.323 и ISUP/IP, может применяться для синхронизации работы устройств управления шлюзами.

10. Коммутаторы

Цели применения:

увеличение пропускной возможносли ЛВС

создание параллельной обработки потоков пакетов внутренней сети - IntraNet и внешней - Internet

решение вопросов безопасности сети

оптимизация архитектуры сети

Классификация:

Коммутаторы первого уровня:

Оптические коммутаторы - выполнены на основе призм и работает на принципе физики оптики (расщепление сигнала). Они коммутируют оптические сигналы.

Коммутаторы второго уровня:

переключение (cross bar) с буферизацией на входе

самомаршрутизация (self route) с разделяемой памятью

высокоскоростная шина (high speed bus)bar - переключение с буферизацией на входе, основанное на коммутационной матрице.road - управляемая многовходовая память

Сравнительный анализ технологий коммутации.

Технология cross bar обеспечивает наивысшее быстродействие и пропускную способность коммутатора в виду отсутствия внутренней памяти.

Коммутаторы, выполненные на такой технологии вносят минимальные временные задержки в сети передачи данных. Такие коммутаторы называются коммутаторами для раб. группы 1-го класса. Данные коммутаторы простое устройство и небольшую стоимость. Изображается в виде моноблока с ограниченным числом портов.

Недостаток технологии:

не фильтруются кадры, имеющие ошибки

минимальные возможности по администрированию

возможна внутренняя блокировка матрицыroad.

Поскольку в данной технологии кадр полностью помещается во внутреннюю память коммутатора, то на ряду с MAC адресом получателя проверяется контрольная сумма кадра, и если происходит несовпадение, то такой кадр коммутатором удаляется.

Достоинства:

отсутствие блокировок

наличие фильтрации незначительных кадров

количество портов может быть гораздо больше чем в crossbar

больше возможностей по администрированию, в частности, по фильтрации кадров.

Недостатки:

существенная временная задержка при обрабатывании кадра

такие коммутаторы к рабочей группе 1-го класса.

стоимость self-road больше чем crossbar

Коммутаторы 3 уровня.

Принято называть коммутаторами с функцией маршрутизации. Работает на 3-х уровнях модели OSI. Кроме сетевой задачи коммутации кадров в сети могут осуществлять маршрутизацию пакетов интернет приложений.

Нет разницы, что используется MAC адрес или ip протокол. У него имеется таблица соответствия MAC и IP адресов.

Коммутаторы 4 уровня.

Технология коммутации на уровне 4 включает в себя возможности управления производительностью и трафиком коммутаторов уровня 2 и 3, дополняя их новыми функциями, в том числе возможностями управления серверами и приложениями. Новые коммутаторы используют информацию, которая содержится в заголовках пакетов и относится к уровню 3 и 4 стека протоколов, такую как IP-адреса источника и приемника, биты SYN/FIN, отмечающие начало и конец прикладных сеансов, а также номера портов TCP/UDP для идентификации принадлежности трафика к различным приложениям. На основании этой информации, коммутаторы уровня 4 могут принимать решения о перенаправлении трафика того или иного сеанса.

Маршрутизация

Цель маршрутизации: накопление информации для маршрутизируемых протоколов стека TCP/IP путем составления и корректировки таблицы маршрутизации.

Маршрутизация выполняется на сетевом уровне модели OSI.

Сетевой уровень обеспечивает решения следующих задач:

Согласует принципы передачи данных

Решает проблему протоколов. WAN работает с LAN

Различает формат данных

Различает среды передачи данных.

Это все возможно благодаря большому количеству протоколов.

Главный протокол на сетевом уровне модели OSI IP протокол. Его задача передача пакетов от отправителя к получателю, где отправитель и получатель являются компьютерами. Каждому хосту в глобальной сети присваивается свой IP адрес. Используется 4 класса:


В классе А первый байт идет на структуру сети 3 байта на адрес хоста.

В классе В 2 байта - адрес сети, 2 байта - адрес хоста

В классе С 3 байта - адрес, 1 байт хост.

Общая длина IP пакета может достигать 64 байта. IP опции распространяются на способы маршрутизации.

Маршрутизация в глобальных сетях происходит следующим образом: создается запрос, предположим запрос PING, в сообщении имеется информация IP отправителя и IP получателя. Данный запрос идет на маршрутизатор, и далее пересылается на все маршрутизаторы, они смотрят в сообщение и определяют имеется ли у них в таблице информация об IP получателе. Если да, в ответном сообщении содержится информация об MAC адресе получателя. Данные записываются в ARP таблицу. Таким образом, устанавливается связь. ARP запрос - это один из огромного числа протоколов, которые работают на сетевом уровне модели OSI. Так же на сетевом уровне работаю такие протоколы, как ICMP, IPsec, RIP, DGP.

Характеристика протоколов:

надежность

стабильность

простота

сходимость

оптимальность

Классификация протоколов по способу управления:

статические (постройки таблицы маршрутизации выполняется в ручную, маршруты не меняются с течением времени)

динамические (постройка таблицы выполняется автоматически по мере изменения в сети передачи данных)

Для реализации всех этих протоколов используется, как уже было сказано чуть ранее, маршрутизатор. Это сетевое устройство, которое предназначено для соединения локальных сетей в единую структурированную сеть с управляемым трафиком и высокими возможностями защиты.

Мультисервис. IP - телефония, SIP, H.323

локальная вычислительная сеть

Для того чтобы передавать голос, видео и данные в глобальных сетях были созданы сети нового поколения NGN. Благодаря NGN появилась возможность устраивать IP телефонию, аудио(видео)конференцию. Это стало возможно с помощью softswitch. - программный коммутатор, управляющий сеансами VoIP. В нем реализуется несколько подходов к построению IP-телефонии: H.323, SIP, MGCP..323 рекомендация ITU-T, набор стандартов для передачи мультимедиа-данных по сетям с пакетной передачей.

Сигнализация - формирует соединение и управляет его статусом, описывает тип передаваемых данных

Управление потоковым мультимедиа (видео и голос) - передача данных посредством транспортных протоколов реального времени (RTP)

Приложения передачи данных.

Коммуникационные интерфейсы - взаимодействие устройств на физическом, канальном, сетевом уровнях.Session Initiation Protocol - протокол установления сеанса передачи данных, который описывает способ установления и завершения пользовательского интернет-сеанса, включающего обмен мультимедийным содержимым.

В основу протокола рабочая группа заложила следующие принципы:

Простота: включает в себя только шесть методов (функций)

Персональная мобильность пользователей. Пользователи могут перемещаться в пределах сети без ограничений. При этом набор предоставляемых услуг остается неизменным.

Масштабируемость сети. Структура сети на базе протокола SIP позволяет легко ее расширять и увеличивать число элементов.

Расширяемость протокола. Протокол характеризуется возможностью дополнять его новыми функциями при появлении новых услуг.

Интеграция в стек существующих протоколов Интернет. Протокол SIP является частью глобальной архитектуры мультимедиа, разработанной комитетом IETF. Кроме SIP, эта архитектура включает в себя протоколы RSVP, RTP, RTSP, SDP.

Взаимодействие с другими протоколами сигнализации. Протокол SIP может быть использован совместно с другими протоколами IP-телефонии, протоколами ТфОП, и для связи с интеллектуальными сетями.

Таким образом softswitch позволят организовывать мультисервис. С помощью сети передачи данных пользователи могут пользоваться VoIP телефонами, IP телевидением, и многими другими функциями. - power over Ethernet, это система, позволяющая преобразовывать переменное напряжение 220 В в постоянное 48 В (от 36 до 52 В). Данная технология используется в коммутаторах для питания web камер, или IP телефонов.

Главное преимущество технологии PoE - отсутствие необходимости тянуть к сетевым устройствам отдельную электропроводку для подачи питания туда, где её нет. Беспроводные точки доступа, камеры видео наблюдения, системы контроля доступа, которые получают питание по технологии PoE, можно устанавливать везде, где это необходимо. Облегчается работа инсталлятора в труднодоступных местах.

Я выбрал телефон Cisco Systems CP-7906G, так как он отвечает нашим требованиям: IP-телефон на 1 линию с 1 портом Fast Ethernet и поддержкой PoE

Распределение IP - адресов для ЛВС

Имеется один IP - адрес, который определил провайдер (задан):

10.0.5 - IP- адрес

255.255.192/26 маска сети

10.0.5/26 - идентификатор сети

10.0.63 - широковещательсеть 197.10.0.0/28

10.0.1/28 197.10.0.5/28

10.0.2/28 197.10.0.6/28

10.0.3/28 197.10.0.7/28

10.0.4/28 197.10.0.8/28

10.0.9/28 - IP - телефон

10.0.15 Широковещательный адрессеть 197.10.0.16/28

10.0.17/28 197.10.0.21/28

10.0.18/28 197.10.0.22/28

10.0.19/28 197.10.0.23/28

10.0.20/28 197.10.0.24/28

10.0.31 Широковещательный адрессеть 197.10.0.32/28

10.0.33/28 197.10.0.35/28

10.0.34/28 197.10.0.36/28

10.0.47 Широковещательный адрессеть 197.10.0.48/28

10.0.49/28 197.10.0.53/28

10.0.50/28 197.10.0.54/28

10.0.51/28 197.10.0.55/28

10.0.63 Широковещательный адрес

Программное и аппаратное обеспечение

В нашем курсовом проекте выбрана отрасль строительство. Данная отрасль занимается созданием архитектурных проектов зданий, городских сооружений и прочего.это мощная САПР платформа, которая объединяет знакомый набор базовых функций с усовершенствованным набором 2D инструментов и интеллектуальным прямым 3D моделированием для Windows и Linux по приемлемой цене.читает и записывает данные в формате dwg и предлагает очень высокую совместимость с AutoCAD®. В дополнение к этому BricsCAD предлагает прямое 3D моделирование в формате dwg. BricsCAD - намного больше чем просто альтернатива.

Благодаря полному набору совместимых API, приложения сторонних разработчиков могут работать на BricsCAD без модификации исходного кода.


Системный блок DNS Extreme

Тип процессора Intel Core i5

Код процессора i5 3340

Количество ядер процессора 4

Частота процессора 3100 МГц

Размер оперативной памяти 8192 Мб

Объем жесткого диска 1000 Гб

Оптический привод DVD±RW

Чипсет графического контроллера NVIDIA GeForce GTX 650

Размер видеопамяти 1024 Мб

Сервер Cisco UCS C240 M3

Тип процессора Intel Xeon

Чипсет Intel® C600

Процессор Intel® Xeon® E5 2620

Частота процессора 2.0 ГГц

Установлено ЦП 1

Питание 2 x 650 Вт

Коммутатор Cisco WS-C3560V2-24PS-S

Количество портов коммутатора 24 x Ethernet 10/100 Мбит/сек

Маршрутизатор Cisco 857-K9

Объем оперативной памяти 64 Мб

Количество портов коммутатора 4 x Ethernet 10/100 Мбит/сектелефон Cisco 7906G

Сетевые интерфейсы 1 x RJ-45 10/100BASE-TX

с портом Fast Ethernet и поддержкой PoE

Витая пара UTP 5e

(полоса частот 125 МГц) 4-парный кабель, усовершенствованная категория 5. Скорость передач данных до 100 Мбит/с при использовании 2 пар и до 1000 Мбит/с при использовании 4 пар. Кабель категории 5e является самым распространённым и используется для построения компьютерных сетей. Ограничение на длину кабеля между устройствами (компьютер-свитч, свитч-компьютер, свитч-свитч) - 100 м.

Расчет сметной стоимости

Оборудвание/Программа

Название

Количество

Цена, руб/шт

Цена, руб

Системный блок, с ОС Windows 7 Home Premium 64-bit

Клавиатура

Gigabyte GK-K6150 Multimedia USB Black

DNS OFFICE WRD-039BS Black USB

Операционная система

Microsoft Windows Server 2008 R2 Standart Edition SP1 (64-bit)

Антивирусное ПО

Kaspersky Internet Security

3990 на 5 ПК 1790 на 2 ПК

IP-телефон

Cisco Systems CP-7906G

UTP 4 пары кат.5e

305 м(бухта)

Plug RJ45 5E 8P8C

Настенная розетка

Plug RJ45 кат.5

Кабель-канал

Угол внутренний

Коммутатор

Cisco WS-C3560V2-24PS-S

Маршрутизатор

Cisco UCS C240 M3

Шкаф серверный

Работы по проектированию и монтажу




Итого:2 279 806 рублей

Заключение

В ходе проделанной работы была спроектирована ЛВС предприятия, определена трасса прокладки кабеля, было выбрано необходимое оборудование и программное обеспечение. Так же была сосчитана смета на реализацию ЛВС. Итоговые характеристики сети получились следующими:

Количество рабочих мест - 27, шт;

Топология - звезда;

Скорость передачи - 100, Мбит/с;

Срок эксплуатации - 10, лет;

Сметная стоимость ЛВС - 2 200 833 руб.

Список литературы

1)Лекции по предмету «Инфокоммуникационные системы» - преподаватель Паршин К.А.

) DNS online магазин -www.dns.ru


ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА

Уральский государственный университет путей сообщения

Кафедра "ИТиЗИ"

КУРСОВАЯ РАБОТА

по дисциплине: "Информационные сети"

"Проектирование локальной вычислительной сети предприятия"

Екатеринбург,

Содержание

  • 2.2 Расчет PDV
  • 3. Распределение IP -адресов для спроектированной сети
  • 6.1 Коммутатор
  • Для нашего проекта мы выбрали коммутатор D - Link DES -1016 A / C 1 A 16 port 10/100 Fast Ethernet Switch (рис.2).
  • 6.2 Маршрутизатор
  • Маршрутизатор Netgear WNDRMAC-100RUS 802.11n, 600 Мбит/с, 1 WAN, 4xLAN Gbit, USB2.0, IPTV и L2TP, для Mac и ПК (рис.3).
  • 6.3 Кабель
  • 6.4 Шкаф монтажный
  • 10. Сметная стоимость ЛВС
  • Заключение

1. Описание задач, выбор технологии

В курсовом проекте необходимо спроектировать локальную вычислительную сеть предприятия для информационного обеспечения взаимодействия отделов. Проектирование необходимо производить с учетом плана этажа производственного здания изображенного на Рисунке 1. с учетом исходных данных, помещенных в Таблице 1.

Рисунок 1 "План помещения"

Таблица 1. Исходные данные

Локальная вычислительная сеть должна объединить персональные компьютеры пользователей между собой и обеспечить доступ к разделяемому ресурсу, размещенному на сервере.

В качестве базовой технологии сети необходимо использовать Ethernet, т.к. на данный момент это самая популярная и относительно простая технология, следовательно, ассортимент оборудования широк, само оно дешево и просто в установке.

Использовать будем Fast Ethernet так как скорость обмен информацией будет достаточна для данного предприятия. В качестве среды передачи используется витая пара 5-ой категории (UTP-5) и простыми разъемами RJ45 что идеально подходит для Fast Ethernet"a.

Топология сети - звезда. В центре сети будет находится маршрутизатор К0. Он будет соединен с коммутаторами К1 и К2. От них к каждому компьютеру будет проведена сеть. В кабинете администратора будет расположен сервер, с соответствующим программным обеспечением и уровнем доступа. Такое решение способствует быстрому обмену информацией в сети. Она будет подключена к сети Интернет и оснащена необходимым аппаратным и программным обеспечением.

локальная вычислительная сеть программный

2. Расчеты параметров проектируемой ЛВС

В качестве базовых принципов, обеспечивающих устойчивость любой сети, следует принять выполнение следующих условий:

· количество станций в сети - не более 1024;

· максимальная длина каждого физического сегмента - не более величины, определённой в соответствующем стандарте физического уровня;

· Удвоенная задержка распространения сигнала (PDV) между двумя самыми удаленными друг от друга станциями сети не превышает 57,5 битовых интервалов.

· Сокращение межкадрового расстояния (PVV) при прохождении последовательности кадров через все повторители не более, чем на 4,9 битовых интервалов

2.1 Рассчитаем общую длину кабеля

l k 1 i - расстояние от i-ого рабочего места до коммутатора К1;

l k 2 i - расстояние от j-ого рабочего места до коммутатора К2;

L k 1 - расстояние от коммутатора К1 до коммутатора К0;

L k 2 - расстояние от коммутатора К2 до коммутатора К0;

Таблица 2.

Номер рабочего места

Расстояние до коммутатора №1, м

Таблица 3.

Номер рабочего места

Расстояние до коммутатора №2, м

Таблица 4.

Номер коммутатора

Расстояние до маршрутизатора, м

Общая длина кабеля L=265,9*1,1=292,5

2.2 Расчет PDV

t b - базовая составляющая задержки;

t v - переменная составляющая задержки;

Наиболее удалёнными станциями являются PC1 и PC2

PC1 (Левый сегмент) и PC2 (Правый сегмент).

а) Левый сегмент (100Base-Tx): кабель 19,4·1,112=21,6 bt;

б) Промежуточный 1 (100Base-Tx): кабель 19,1·1,112= 21,2 bt;

в) Промежуточный 2 (100Base-Tx): кабель 54·1,112= 60,5 bt;

г) Правый сегмент (100Base-Tx): кабель 21,2·1,112= 23,6 bt;

Всего: 21,6 +21,2 +60,5 +23,6 =126,9 bt

PDV=100+126,9+92*3=502,9 bt

Сравниваем с 512, величина меньше, значит PDV нормальный.

3. Распределение IP-адресов для спроектированной сети

Планирование сети

Планирование сети - это процесс присвоения IP-адресов компьютерам.

В соответствии с вариантом (23) выберем IP-адрес:

Необходимо создать 4 подсети.

Для начала необходимо перевести имеющийся IP-адрес в двоичный вид:

Теперь необходимо выбрать маску подсети таким образом, чтобы при помощи её можно было получить требуемое количество IP-адресов. По варианту задания имеется 22 рабочих места. Наиболее близкое к 22 число, равное степени двойки - это 32 = 2^5. Следовательно для того, чтобы организовать ЛВС с 32 IP-адресами понадобиться маска 255.255.255.224. Но нам предстоит дальнейшее разделение сети на подсети, а это сопровождается потерями IP-адресов при каждом делении, поэтому в итоге необходимо использовать маску, которая предоставит большее количество IP-адресов. Таковой является маска 255.255.255.192.

Переведём маску в двоичный вид:

11111111.11111111.11111111.11000000.

Побитно умножив IP-адрес и маску получим адрес сети:

11001101.01100010.00101010.00110111

11111111.11111111.11111111.11000000

_________________________________

11001101.011010.00101010.00000000

То есть в десятичной форме адрес сети: 205.26.42.0.

Так как используемая маска сети даёт 2^6=64 IP-адреса, то получим следующее пространство IP-адресов в сети: 205.26.42.0 - 205.104.88.63.

При этом следует учитывать, что адрес 205.26.42.0 - базовый адрес сети (не используется при адресации хостов, указывает только на сеть, т.е. адрес сети), а 205.26.42.63 - адрес бродкаста (не используется при адресации хостов (это адрес широковещательной рассылки в данной сети)).

Теперь следует разбить имеющуюся сеть на две подсети по 32 хоста.

Для этого применим маску 255.255.255.224.

Получим подсети:

1-ая подсеть: 205.26.42.0 (массив IP-адресов 205.26.42.0 - 205.26.42.31; 205.26.42.0 - базовый адрес подсети, 205.26.42.31 - адрес бродкаста в подсети);

2-ая подсеть 205.26.42.32 (массив IP-адресов 205.26.42.32 - 205.26.42.63; 205.26.42.32 - базовый адрес подсети, 205.26.42.63 - адрес бродкаста в подсети);

Получившиеся сети разобьём ещё на две подсети:

Используем маску 255.255.255.240.

Получим подсети:

Подсеть 1.1: 205.26.42.0 (205.26.42.0 - 205.26.42.15);

Подсеть 1.2: 205.26.42.16 (205.26.42.16 - 205.26.42.31);

Подсеть 2.1: 205.26.42.32 (205.26.42.32 - 205.26.42.47);

Подсеть 2.2: 205.26.42.48 (205.26.42.48 - 205.26.42.63);

Необходимо помнить, что в каждой подсети первый IP-адрес - это базовый адрес подсети, а последний - адрес бродкаста. Их нельзя присваивать хостам. В итоге, в каждой подсети имеется по четырнадцать IP-адресов, т.е. всем хостам хватит IP-адресов, а оставшиеся могут быть использованы при дальнейшем расширении сети или для различных сетевых устройств.

4. Спецификация оборудования и расходных материалов

Для реализации данного проекта ЛВС потребуются следующие оборудование и расходные материалы:

Таблица 5 "Оборудование и расходные материалы"

Наименование

Стоимость, руб.

Количество

Розетка RJ-45 1 порт белая

62 руб. за штуку

Кабель UTP 4 пары кат.5e < бухта 300/305м> типа PCNet

Netgear WNDRMAC-100RUS 802.11n, 600 Мбит/с, 1 WAN, 4xLAN Gbit, USB2.0, IPTV и L2TP, для Mac и ПК

D-Link DES-1016A/C1A 16port 10/100 Fast Ethernet Switch

Кабель канал

3,69 руб. за метр

292,5 метра

20 руб. за штуку

5. Выбор операционной системы и прикладного ПО

Отрасль деятельности предприятия - медицина. Поэтому необходимы следующие операционная система и прикладное программное обеспечение:

· операционная система рабочих станций: Windows 7 Professional 32&64-bit Russian;

· антивирусная защита: Kaspersky Internet Security 2011 Russian Edition;

· офисный пакет приложений для работы с текстами, электронными таблицами, базами данных и др: OpenOffice

· Программа MedExpert Professional

6. Выбор коммутационного оборудования

В сети расположено 21 рабочая станция. Для их соединения используются два коммутатора - К1, К2 и маршрутизатор К0, соединяющий между собой К1, К2 и сервер. Количество портов для коммутаторов К1 и К2 установлено равным 12.

6.1 Коммутатор

Для нашего проекта мы выбрали коммутаторD-Link DES-1016A/C1A 16port 10/100 Fast Ethernet Switch (рис.2).

Основные характеристики:

Технология Think Green

Коммутатор D-Link DES-1016A с 16 портами 10/100 Мбит/с входит в новую серию устройств, предназначенных для сетей SOHO. Благодаря технологии Green устройство уменьшает затраты на энергию и снижает потребляемую устройством мощность, не жертвуя эксплуатационными и функциональными характеристиками. Использование адаптера питания, соответствующего стандарту EnergyStar Level V и директиве RoHS по ограничению использования вредных веществ, а также повторное использование упаковки обеспечивают защиту окружающей среды.

Сохранение электроэнергии

16-портовый коммутатор DES-1016A обеспечивает автоматическое сохранение электроэнергии несколькими способами. Благодаря автоматическому отключению питания портов при отсутствии соединения происходит сохранение значительного количества энергии на неактивных портах или портах, подключенных к выключенным компьютерам. Коммутатор способен анализировать длину любого подключенного кабеля для выбора необходимого уровня потребления электропитания, обеспечивая тем самым экономию электроэнергии без ущерба для производительности.

Защита окружающей среды

DES-1016A разработан в соответствии со стандартом EnergyStar Level V и постановлениями CEC и MEPS, требующими использования адаптеров питания, сокращающих энергопотребление в целях защиты окружающей среды. Коммутатор также соответствует стандартам RoHS по ограничению использования вредных веществ и повторному использованию упаковки, что значительно сокращает количество отходов согласно директиве WEEE.

СПЕЦИФИКАЦИИ

Основные характеристики

Встроенная технология D-Link Green Недорогое решение Fast Ethernet для домашних сетей и сетей SOHO 16 портов Fast Ethernet 10/100 Мбит/с Коммутационная матрица 3.2 Гбит/с Автоматическое определение MDI/MDIX на всех портах Метод коммутации: Store-and-forward Ethernet/Fast Ethernet: Полный дуплекс/полудуплекс Управление потоком IEEE 802.3x

Поддержка Jumbo-фреймов размером до 9216 Байт Поддержка IEEE 802.1p QoS (4 очереди, Strict Mode) Соответствие директиве RoHS Функция Plug-and-play

Стандарты

Поддержка IEEE 802.1p QoS IEEE 802.3 10BASE-T Ethernet (медная витая пара) IEEE 802.3u 100BASE-TX Fast Ethernet (медная витая пара) IEEE 802.3az Energy-Efficient Ethernet (EEE) ANSI/IEEE 802.3 NWay автоопределение скорости и режима работы Управление потоком IEEE 802.3х

Протокол

Скорость передачи данных

10 Мбит/с (полудуплекс) 20 Мбит/с (полный дуплекс) Fast Ethernet:

100 Мбит/с (полудуплекс) 200 Мбит/с (полный дуплекс)

Топология

Сетевые кабели

UTP кат 3, 4, 5/5e (100м макс.) EIA/TIA-586 100 Ом STP (100м макс.) 100BASE-TX:

UTP кат 5/5e (100 м макс.) EIA/TIA-568 100 Ом STP (100 м макс.)

Интерфейсы среды передачи

Автоматическое определение MDI/MDIX на всех портах

Индикаторы

На порт: Link/Activity/Speed На устройство: Power

Метод коммутации

Store-and-forward

Таблица MAC-адресов

8K записей на устройство

Изучение MAC-адресов

Автоматическое обновление

Скорость фильтрации/ передачи пакетов

Ethernet: 14880 пакетов в сек. на порт Fast Ethernet: 148800 пакетов в сек. на порт

256 Kбайт на устройство

6.2 Маршрутизатор

Маршрутизатор Netgear WNDRMAC-100RUS 802.11n, 600 Мбит/с, 1 WAN, 4xLAN Gbit, USB2.0, IPTV и L2TP, для Mac и ПК (рис.3).

Основные характеристики:

ОПИСАНИЕ

NETGEAR Wireless Extreme для компьютеров Mac и PC (WNDRMAC) - это беспроводной двухдиапазонный гигабитный маршрутизатор N600, который идеально подходит для высокоскоростного беспроводной доступа к Интернету и домашней сети. Маршрутизатор Wireless Extreme сертифицирован на соответствие требованиям DLNA, что обеспечивает быструю скорость вывода потокового мультимедиа на домашние кинотеатры и онлайновых игр с несколькими участниками. С помощью функции Simultaneous Dual Band маршрутизатор обеспечивает наивысшую гибкость и производительность благодаря использованию двух независимых сетей. Маршрутизатор поддерживает функцию ReadySHARE® для общего доступа через беспроводную сеть к внешним USB-дискам с компьютеров Mac и ПК и функцию ReadyShare Printer для беспроводной печати на USB-принтере.

ОСОБЕННОСТИ

Совместимость с компьютерами Mac и ПК - полная совместимость со всеми домашними компьютерами.

Simultaneous Dual Band - удваивается полоса пропускания, улучшается стабильность соединения и меньше влияние помех.

Быстрое потоковое воспроизведение мультимедиа - Обеспечивает скорость и производительность Wireless-N для потокового воспроизведения мультимедиа, онлайновых игр с несколькими участниками и одновременной загрузки нескольких больших файлов.

Live Parental Controls - Централизованный родительский контроль за всеми подключенными к домашней сети устройствами.

Сертификация DLNA - может выводить мультимедиа в потоковом режиме на DLNA-сертифицированные HDTV, плееры Blu-ray и игровые приставки.

СПЕЦИФИКАЦИИ

Системные требования

Широкополосный доступ к Интернету (по кабельной сети/DSL) и модем с портом Ethernet Беспроводной адаптер 2.4/5.0 ГГц 802.11a/b/g/n или адаптер и кабель Ethernet у каждого ПК Mac® OS, Microsoft® Windows® 7, Vista®, XP, 2000, UNIX® или Linux® Браузер Safari® 1.4 или Firefox® 2.0 или более поздней версии, Microsoft® Internet Explorer® 5.0

Стандарты

IEEE 802.11 a/b/g/n 2.4 ГГц и 5.0 ГГц Пять (5) портов 10/100/1000 Gigabit Ethernet (1 WAN и 4 LAN)

Физические характеристики

Размеры: 223 x 153 x 31 мм Вес: 0.5 кг

Состав пакета поставки

Маршрутизатор NETGEAR WNDRMAC Подставка Кабель Ethernet Адаптер питания с вилкой под евророзетку

6.3 Кабель

Берем кабель UTP 4 пары кат.5e < бухта 300/305м> типа PCNet (рис.4).

Основные характеристики:

6.4 Шкаф монтажный

ШТК-М-18.6.6-1ААА Шкаф монтажный 19” напольный 18U

Новый модельный ряд 19" напольных шкафов ЦМО был разработан с учетом замечаний заказчиков по сборке и эксплуатации. Несущая конструкция состоит из основания, крыши, 2-х каркасных симметрических стоек, между которыми крепятся 6 поперечных швеллеров. Цокольная часть шкафа имеет усиленную конструкцию, рассчитанную на установку тяжелого оборудования типа серверов и источников бесперебойного питания.

Теперь шкаф представляет собой единую размерную монолитную конструкцию без лишних выступов и зазоров. Последняя серия шкафов снабжена демпфирующими прокладками, исключающими дребезжание соприкасающихся составных металлических частей шкафа. Общий вес шкафа снижен за счет уменьшения толщины металла панелей с 1,2 мм до 1 мм. Жесткость конструкции сохранилась, благодаря добавлению 2-х поперечных ребер жесткости на каждую стенку.

Установка шкафа осуществляется на цоколь, либо на опоры. Регулируемые по высоте опорные ножки и/или ролики позволяют компенсировать неровности пола и осуществить перемещение шкафа.

Ввод кабелей осуществляется в основании шкафа с боковых сторон или сзади через предусмотренные отверстия. Также отверстия для кабельных вводов предусмотрены в крыше шкафа.

Технические характеристики

Параметр

Значение

Размеры, мм

962 х 600 х 600 (В х Ш х Г)

RAL 7032 светло-серый

передняя - запирающаяся на замок с закаленным стеклом, задняя - металлическая

металлические съемные (на замках)

Масса, кг

Исполнение

Напольный

Материал

Уровень защиты

7. Системный блок IRONSCHOOL 01048

Процессор

Intel Pentium G840 2.8GHz s1155

Количество ядер

Тактовая частота

Материнская плата

Intel H61 mATX s1155

На задней панели: 6 USB, D-Sub, Ethernet, PS/2 (клавиатура), PS/2 (мышь)

Сетевая карта

10/100 Мбит/с

Оперативная память

4096 Mb DDR3 1333MHz

Тип памяти

Тактовая частота

Жёсткий диск

Скорость вращения

Интерфейс

Видео-карта

GeForce NV GT 440 1Gb

Видеопамять

DVI, поддержка HDCP, HDMI, VGA

InWin mATX EMR007 450W Black/silver

Форм-фактор

Mini-Tower, mATX

Блок питания

На лицевой панели: USB x2, наушники, микрофон

Габариты

190 x 350 x 380 мм

Оптический привод

Карт-ридер

Кардридер

Слоты для карт памяти

SD, MMC, MS, MS DUO, MS Pro, MS DUO Pro, SM, xD, CF, 1х USB 2.0

Операционная система

ОС не установлена

Гарантия

1 год + 1 год (сервисное обслуживание)

8. Монитор 19" ViewSonic VA1938wa-LED

9. Программа MedExpert Professional

Система MedExpert предназначена для автоматизации медицинских клиник любых масшатабов, начиная от одного кабинета и заканчивая крупными центрами.

Используемая в Системе клиент-серверная технология доступа к данным даёт возможность централизовать хранение данных и обеспечить оперативный доступ к ним с любого компьютера клиники.

Конфигурация системы - это набор программных модулей определяющих возможности программного продукта выбранной версии.

Для каждой версии существует:

Минимальная (базовая) конфигурация Это конфигурация, меньше которой система не поставляется, и которой достаточно для автоматизации минимально необходимого перечня задач клиники;

Стандартная конфигурация Это конфигурация в которую входят все необходимые модули и подсистемы для данной версии;

Дополнительные модули или подсистемы Это программные модули, которые могут быть приобретены совместно с любой конфигурацией и предоставляют расширенные возможности работы с системой.

Стоимость приобретаемой конфигурации определяется как сумма цен на выбранные подсистемы. Это обозначает, что Вы можете самостоятельно сформировать необходимую Вам конфигурацию в зависимости от финансовых возможностей и требуемых задач.

Стоимость любой версии не зависит от количества рабочих мест (компьютеров), на которых устанавливается система на данном объекте заказчика. В версии MedExpert Professional к стоимости выбранной конфигурации добавляется стоимость лицензии на каждого дополнительного врача (лицензия на одного врача в этой версии автоматически включена в стоимость базовой конфигурации).

Все условия продажи и использования системы оговариваются в Договоре и Лицензионном соглашении.

10. Сметная стоимость ЛВС

Сметная стоимость материалов и монтажных услуг приведена в таблице 6:

Таблица 6 "Смета затрат"

Наименование

Цена за ед., руб.

Количество

Сумма (руб.)

Розетка RJ-45 1 порт белая

Кабель UTP 4 пары кат.5e < бухта 300/305м> типа PCNet

Netgear WNDRMAC-100RUS 802.11n, 600 Мбит/с, 1 WAN, 4xLAN Gbit, USB2.0, IPTV и L2TP, для Mac и ПК

D-Link DES-1016A/C1A 16port 10/100 Fast Ethernet Switch

Кабель канал

292,5 метра

Windows 7 Professional

Kaspersky Small Office Security

4900 руб.5 ПК

MedExpert Professional

1 комплект

(СИСТЕМНЫЙ БЛОК) IRONSCHOOL 01048

собранный

Монитор 19" ViewSonic VA1938wa-LED

Итого:

491907,3 руб.

Заключение

В ходе данной курсовой работы была спроектирована локальная вычислительная сеть предприятия для информационного обеспечения взаимодействия отделов, была разработана схема прокладки кабелей, проверена работоспособность, а также подсчитана смета на создание сети.

Итоговые характеристики сети получились следующими:

Площадь покрытия - 1140 м 2 .

Количество рабочих мест - 21 шт.

Скорость передачи - 100 Мбит. /с.

Срок эксплуатации - 20 лет.

Сметная стоимость ЛВС - 287815,8 тыс. руб.

Список используемых источников

1. http://www.forum3.ru/? cmd=show_tovar&code=94865

2. http://www.forum3.ru/? cmd=show_tovar&code=104200

3. http://www.nix.ru/autocatalog/net_cable/45e_305_PCNet_15697.html

4. http://www.ait.org.ua

5. "Компьютерные сети 3-е изд" Кузин А.В. 2011 год

Подобные документы

    Настройка телекоммуникационного оборудования локальной вычислительной сети. Выбор архитектуры сети. Сервисы конфигурации сервера. Расчет кабеля, подбор оборудования и программного обеспечения. Описание физической и логической схем вычислительной сети.

    курсовая работа , добавлен 22.12.2014

    Подбор пассивного сетевого оборудования. Обоснование необходимости модернизации локальной вычислительной сети предприятия. Выбор операционной системы для рабочих мест и сервера. Сравнительные характеристики коммутаторов D-Link. Схемы локальной сети.

    курсовая работа , добавлен 10.10.2015

    Разработка топологии сети, выбор операционной системы, типа оптоволоконного кабеля. Изучение перечня функций и услуг, предоставляемых пользователям в локальной вычислительной сети. Расчет необходимого количества и стоимости устанавливаемого оборудования.

    курсовая работа , добавлен 26.12.2011

    Проект локальной вычислительной сети, объединяющей два аптечных магазина и склад. Выбор топологии сети и методов доступа. Технико-экономическое обоснование проекта. Выбор сетевой операционной системы и разработка спецификаций. Смета на монтаж сети.

    курсовая работа , добавлен 08.06.2011

    Выбор топологии локальной вычислительной сети и составление схемы коммуникаций с условными обозначениями. Установление системного и прикладного программного обеспечения. Размещение пассивного и активного оборудования ЛВС. Реализация сетевой политики.

    курсовая работа , добавлен 18.03.2015

    Проектирование локальной вычислительной сети для предприятия c главным офисом в центре города и двумя филиалами на удалении не более 1,5 км. Выбор топологии сети и основного оборудования. Программное обеспечение для клиент-серверного взаимодействия сети.

    курсовая работа , добавлен 27.02.2015

    Функции пользователей в локальной вычислительной сети, анализ и выбор организации ресурсов. Выбор сетевой операционной системы. Сервисное программное обеспечение. Выбор протокола, сетевой технологии и кабеля. Резервирование и архивирование данных.

    дипломная работа , добавлен 22.02.2013

    Выбор технологий локальной вычислительной сети. Выход в Интернет. Схема кабельных укладок и расчет длин кабелей. Логическая топология и масштабирование сети. Спецификация используемого оборудования с указанием стоимости и расчет затрат на оборудование.

    курсовая работа , добавлен 27.11.2014

    Выбор и обоснование архитектуры локальной вычислительной сети образовательного учреждения СОС Ubuntu Server. Описание физической схемы телекоммуникационного оборудования проектируемой сети. Настройка сервера, компьютеров и программного обеспечения сети.

    курсовая работа , добавлен 12.06.2014

    Подключение рабочих станций к локальной вычислительной сети по стандарту IEEE 802.3 10/100 BASET. Расчёт длины витой пары, затраченной на реализацию сети и количества разъёмов RJ-45. Построение топологии локальной вычислительной сети учреждения.

0

Курсовая работа

Проектирование ЛВС в общеобразовательной средней школе

Введение 3

  1. Создание ЛВС в школе 4
  2. Конструкторская часть 8

2.1 Выбор и обоснование технологии построения ЛВС 8

2.2 Анализ среды передачи данных 8

2.3 Топология сети 8

2.4 Метод доступа 9

  1. Выбор и обоснование аппаратного обеспечения сети 10

3.1 Коммуникационные устройства 10

3.2 Сетевое оборудование 13

3.3 Планировка помещений 16

3.4 Расчет количества кабеля 19

  1. Инструкция по монтажу сети 22
  2. Расчет стоимости оборудования 30

Заключение 31

Список литературы 33

Введение

Локальная вычислительная сеть - это совместное подключение нескольких компьютеров к общему каналу передачи данных, благодаря которому обеспечивается совместное использование ресурсов, таких, как базы данных, оборудование, программы. С помощью локальной сети удаленные рабочие станции объединяются в единую систему, имеющую следующие преимущества:

  1. Разделение ресурсов - позволяет совместно использовать ресурсы, например, периферийные устройства (принтеры, сканеры), всеми станциями, входящими в сеть.
  2. Разделение данных - позволяет совместно использовать информацию, находящуюся на жестких дисках рабочих станций и сервера.
  3. Разделение программных средств - обеспечивает совместное использование программ, установленных на рабочих станциях и сервере.
  4. Разделение ресурсов процессора - возможность использования вычислительных мощностей для обработки данных другими системами, входящими в сеть.

Разработка локальной вычислительной сети будет вестись в здании общеобразовательной школы.

Цель данной работы- расчет технических характеристик разрабатываемой сети, определение аппаратных и программных средств, расположение узлов сети, каналов связи, расчет стоимости внедрения сети.

  1. Создание ЛВС в школе

За последние годы произошло коренное изменение роли и места персональных компьютеров и информационных технологий в жизни общества. Современный период развития общества определяется как этап информатизации. Информатизация общества предполагает всестороннее и массовое внедрение методов и средств сбора, анализа, обработки, передачи, архивного хранения больших объемов информации на базе компьютерной техники, а также разнообразных устройств передачи данных, включая телекоммуникационные сети.

Концепция модернизации образования, проект “Информатизация системы образования” и, наконец, технический прогресс ставят перед образованием задачу формирования ИКТ - компетентной личности, способной применять знания и умения в практической жизни для успешной социализации в современном мире.

Процесс информатизации школы предполагает решение следующих задач:

  • развитие педагогических технологий применения средств информатизации и коммуникации на всех ступенях образования;
  • использование сети Интернет в образовательных целях;
  • создание и применение средств автоматизации психолого-педагогических тестирующих, диагностирующих методик контроля и оценки уровня знаний обучаемых, их продвижения в учении, установления уровня интеллектуального потенциала обучающегося;
  • автоматизация деятельности административного аппарата школы;
  • подготовка кадров в области коммуникативно-информационных технологий.

Локальная сеть объединяет компьютеры, установленные в одном помещении (например, школьный компьютерный класс, состоящий из 8—12 компьютеров) или в одном здании (например, в здании школы могут быть объединены в локальную сеть несколько десятков компьютеров, установленных в различных предметных кабинетах).

Локальная вычислительная сеть, ЛВС (англ. Local Area Network, LAN) компьютерная сеть, покрывающая относительно небольшую территорию.

В небольших локальных сетях все компьютеры обычно равноправны, т. е. пользователи самостоятельно решают, какие ресурсы своего компьютера (диски, каталоги, файлы) сделать общедоступными по сети. Такие сети называются одноранговыми.

Для увеличения производительности локальной сети, а также в целях обеспечения большей надежности при хранении информации в сети некоторые компьютеры специально выделяются для хранения файлов или программ-приложений. Такие компьютеры называются серверами, а локальная сеть — сетью на основе серверов.

Типичная школьная локальная сеть выглядит следующим образом. Имеется одна точка выхода в Интернет, к которой подключается соответствующий маршрутизатор (ADSL или Ethernet). Маршрутизатор связан с коммутатором (свичем), к которому уже подключаются пользовательские ПК. На маршрутизаторе практически всегда активирован DHCP-сервер, что подразумевает автоматическую раздачу IP-адресов всем пользовательским ПК. Собственно, в таком решении есть как свои плюсы, так и минусы. С одной стороны, наличие DHCP-сервера упрощает процесс создания сети, поскольку нет необходимости вручную производить сетевые настройки на компьютерах пользователей. С другой стороны, в условиях отсутствия системного администратора вполне типична ситуация, когда никто не знает пароля доступа к маршрутизатору, а стандартный пароль изменен. Казалось бы, зачем вообще нужно «лезть» в маршрутизатор, если и так все работает? Так-то оно так, но бывают неприятные исключения. К примеру, количество компьютеров в школе увеличилось (оборудовали еще один класс информатики) и начались проблемы с конфликтами IP-адресов в сети. Дело в том, что неизвестно, какой диапазон IP-адресов зарезервирован на маршрутизаторе под раздачу DHCP-сервером, и вполне может оказаться, что этих самых IP-адресов просто недостаточно. Если такая проблема возникает, то единственный способ решить ее, не залезая при этом в настройки самого маршрутизатора, — это вручную прописать все сетевые настройки (IP-адрес, маску подсети и IP-адрес шлюза) на каждом ПК. Причем, дабы избежать конфликта IP-адресов, сделать это нужно именно на каждом ПК. В противном случае назначенные вручную IP-адреса могут оказаться из зарезервированного для раздачи DHCP-сервером диапазона, что со временем приведет к конфликту IP-адресов.

Другая проблема заключается в том, что все компьютеры, подключенные к коммутатору и соответственно имеющие выход в Интернет через маршрутизатор, образуют одну одноранговую локальную сеть, или просто рабочую группу. В эту рабочую группу входят не только компьютеры, установленные в школьном компьютерном классе, но и все остальные компьютеры, имеющиеся в школе. Это и компьютер директора, и компьютер завуча, и компьютеры секретарей, и компьютеры бухгалтерии (если таковая имеется в школе), и все остальные компьютеры с выходом в Интернет. Конечно, было бы разумно разбить все эти компьютеры на группы и назначить каждой группе пользователей соответствующие права. Но, как мы уже отмечали, никакого контроллера домена не предусмотрено, а потому реализовать подобное просто не удастся. Конечно, эту проблему можно было бы частично решить на аппаратном уровне, организовав несколько виртуальных локальных сетей (VLAN) и тем самым физически отделив ученические ПК от остальных компьютеров. Однако для этого нужен управляемый коммутатор (или хотя бы Smart-коммутатор), наличие которого в школе — большая редкость. Но даже если такой коммутатор и имеется, то нужно еще уметь настраивать виртуальные сети. Можно даже не использовать виртуальные сети, а установить дополнительный маршрутизатор и коммутатор и применять различную IP-адресацию (IP-адреса из разных подсетей) для компьютеров в классе информатики и всех остальных компьютеров. Но опять-таки это требует дополнительных затрат на приобретение соответствующего оборудования и опыта по настройке маршрутизаторов. К сожалению, решить проблему разделения школьных компьютеров на изолированные друг от друга группы без дополнительных финансовых затрат нельзя (наличие управляемого коммутатора в школе. исключение из правил). В то же время подобное разделение и не является обязательным. Если рассматривать необходимость такого разделения с точки зрения сетевой безопасности, то проблему безопасности компьютеров учителей и администрации от посягательств со стороны учеников можно решить и другим способом.

  1. Конструкторская часть

2.1 Выбор и обоснование технологии построения ЛВС.

Основным назначением проектируемой вычислительной сети является обеспечение коммуникации между компьютерами сети и предоставление воз-можности передачи файлов на скорости до 100 Мбит/с. Таким образом, для построения ЛВС для всех отделов здания будет использоваться технология Fast Ethernet.

Технологии построения ЛВС. В данной работе для построения сети будет использоваться технология Fast Ethernet, обеспечивающая скорость передачи данных 100 Мбит/с. Также будет применена топология «звез-да» с использованием в качестве линий связи неэкранированной витой пары ка-тегории CAT5.

2.2 Анализ среды передачи данных.

Для передачи данных в Fast Ethernet будет применяться стандарт 100 Base-TX. Используется 4-парный ка-бель категории CAT5. В передаче данных участвуют все пары. Параметры:

 скорость передачи данных: 100 Мбит/с;

 тип используемого кабеля: неэкранированная витая пара категории CAT5;

 максимальная длина сегмента: 100 м.

2.3 Топология сети.

Топология сети определяется размещением узлов в сети и связей между ними. Термин «топология сети» относится к пути, по кото-рому данные перемещаются в сети. Для технологии Fast Ethernet будет использоваться топология «звезда».

Для построения сети со звездообразной архитектурой в центре сети необходимо разместить концентратор (коммутатор). Его основная функция -обеспечение связи между компьютерами, входящими в сеть. То есть все компьютеры, включая файл-сервер, не связываются непосредственно друг с другом, а присоединяются к концентратору. Такая структура надежнее, поскольку в случае выхода из строя одной из рабочих станций все остальные сохраняют работоспособность. Топология в виде звезды является наиболее быстродействующей из всех топологий вычислительных сетей, поскольку передача данных между рабочими станциями проходит через центральный узел (при его хорошей производительности) по отдельным линиям, используемым только этими рабочими станциями. Частота запросов передачи информации от одной станции к другой, невысокая по сравнению с достигаемой в других топологиях.

2.4 Метод доступа.

В сетях Fast Ethernet используется метод доступа CSMA/CD. Основная концепция этого метода заключается в следующем:

Все станции прослушивают передачи по каналу, определяя состояние канала;

Проверка несущей;

Начало передачи возможно лишь после обнаружения свободного состо-яния канала;

Станция контролирует свою передачу, при обнаружении столкновения (коллизии) передача прекращается и станция генерирует сигнал столкновения;

Передача возобновляется через случайный промежуток времени, дли-тельность которого определяется по специальному алгоритму, если канал в этот момент окажется свободным;

Несколько неудачных попыток передачи интерпретируются станцией как отказ сети.

Даже в случае CSMA/CD может возникнуть ситуация коллизии, когда две или больше станций одновременно определяют свободный канал и начинают по-пытку передачи данных.

  1. Выбор и обоснование аппаратного обеспечения сети

3.1 Коммуникационные устройства

Выбор сетевого адаптера.

Сетевой адаптер - это периферийное устройство компьютера,
непосредственно взаимодействующее со средой передачи данных, которая
прямо или через другое коммуникационное оборудование связывает его с
другими компьютерами. Это устройство решает задачи надежного обмена
двоичными данными, представленными соответствующими электромагнитными сигналами, по внешним линиям связи. Сетевой адаптер подключается посредством шины PCI на материнскую плату.

Сетевой адаптер обычно выполняет следующие функции:

  • оформление передаваемой информации в виде кадра определенного формата.
  • получение доступа к среде передачи данных.
  • кодирование последовательности бит кадра последовательностью электрических сигналов при передаче данных и декодирование при их приеме.
  • преобразование информации из параллельной формы в последовательную и обратно.
  • синхронизация битов, байтов и кадров.

В качестве сетевых адаптеров выбираются сетевые платы TrendNet ТЕ 100-PCIWN.

Выбор концентратора (коммутатора).

Концентратор (повторитель), является центральной частью компьютерной сети в случае реализации топологии «звезда».

Основная функция концентратора - повторение сигналов, поступающих на его порт. Повторитель улучшает электрические характеристики сигналов и их синхронность, и за счет этого появляется возможность увеличивать общую длину кабеля между самыми удаленными в сети узлами.

Многопортовый повторитель часто называют концентратором или хабом, что отражает тот факт, что данное устройство реализует не только функцию повторения сигналов, но и концентрирует в одном центральном устройстве функции объединения компьютеров в сеть.

Отрезки кабеля, соединяющие два компьютера или какие либо два других сетевых устройства, называются физическими сегментам, поэтому концентраторы и повторители, которые используются для добавления новых физических сегментов, являются средством физической структуризации сети.

Концентратор - устройство, у которого суммарная пропускная способность входных каналов выше пропускной способности выходного канала. Так как потоки входных данных в концентраторе больше выходного потока, то главной его задачей является концентрация данных.

Концентратор является активным оборудованием. Концентратор служит центром (шиной) звездообразной конфигурации сети и обеспечивает подключение сетевых устройств. В концентраторе для каждого узла (ПК, принтеры, серверы доступа, телефоны и пр.) должен быть предусмотрен отдельный порт.

Коммутаторы.

Коммутаторы контролируют сетевой трафик и управляют его движением, анализируя адреса назначения каждого пакета. Коммутатор знает, какие устройства соединены с его портами, и направляет пакеты только на необходимые порты. Это дает возможность одновременно работать с несколькими портами, расширяя тем самым полосу пропускания.

Таким образом, коммутация уменьшает количество лишнего трафика, что происходит в тех случаях, когда одна и та же информация передается всем портам,

Коммутаторы и концентраторы часто используются в одной и той же сети; концентраторы расширяют сеть, увеличивая число портов, а коммутаторы разбивают сеть на небольшие, менее перегруженные сегменты. Однако применение коммутатора оправдано лишь в крупных сетях, т. к, его стоимость на порядок выше стоимости концентратора.

Коммутатор следует использовать в случае построения сетей, число рабочих станций в которой составляет более 50, к которому можно отнести и наш случай, вследствие чего выбираем коммутаторы D-Link DES-1024D/E, 24-port Switch 10/100Mbps.

3.2 Сетевое оборудование

Выбор типа кабеля.

Сегодня подавляющее большинство компьютерных сетей в качестве среды передачи использует провода или кабели. Существуют различные типы кабелей, которые удовлетворяют потребностям всевозможных сете от больших до малых.

В большинстве сетей применяется только три основные группы кабелей:

  • коаксиальный кабель (coaxial cable);
  • витая пара (twisted pair):

* неэкранированная (unshielded); о * экранированная (shielded);

Оптоволоконный кабель, одномодовый, многомодовый (fiber
optic).

На сегодня самый распространенный тип кабеля и наиболее подходящий по своим характеристикам - это витая пара. Остановимся на ней более подробно.

Витой парой называется кабель, в котором изолированная пара проводников скручена с небольшим числом витков на единицу длины. Скручивание проводов уменьшает электрические помехи извне при распространении сигналов по кабелю, а экранированные витые пары еще более увеличивают степень помехозащищенности сигналов.

Кабель типа «витая пара» используется во многих сетевых технологиях, включая Ethernet, ARCNet и IBM Token Ring.

Кабели на витой паре подразделяются на: неэкранированные (UTP -Unshielded Twisted Pair) и экранированные медные кабели. Последние подразделяются на две разновидности: с экранированием каждой пары и общим экраном (STP - Shielded Twisted Pair) и с одним только общим экраном (FTP - Foiled Twisted Pair). Наличие или отсутствие экрана у кабеля вовсе не означает наличия или отсутствия защиты передаваемых данных, а говорит лишь о различных подходах к подавлению помех. Отсутствие экрана делает неэкранированные кабели более гибкими и устойчивыми к изломам. Кроме того, они не требуют дорогостоящего контура заземления для эксплуатации в нормальном режиме, как экранированные. Неэкранированные кабели идеально подходят для прокладки в помещениях внутри офисов, а экранированные лучше использовать для установки в местах с особыми условиями эксплуатации, например, рядом с очень сильными источниками электромагнитных излучений, которых в офисах обычно нет.

Вследствие того, что выбрана технология Fast Ethernet 100Base-T, и звездообразная топология предлагается выбрать кабель категории 5 неэкранированная витая пара (UTP).

Выбор разъемов.

Для соединения рабочих станций и коммутатора выбираются разъемы RJ-45, 8-контактные розетки, кабель которых обжимается специальным образом.

Когда компьютер используется для обмена информацией по телефонной
сети, необходимо устройство, которое может принять сигнал из телефонной
сети и преобразовать его в цифровую информацию. Это устройство
называется модем (модулятор-демодулятор). Назначение модема заключается в замене сигнала, поступающего из компьютера (сочетание нулей и единиц), электрическим сигналом с частотой, соответствующей рабочему диапазону телефонной линии.

Модемы бывают внутренние и внешние. Внутренние модемы выполнены в виде платы расширения, вставляемый в специальный слот расширения на материнской плате компьютера. Внешний модем, в отличие от внутреннего, выполнен в виде отдельного устройства, т.е. в отдельном корпусе и со своим блоком питания, когда внутренний модем получает электричество от блока питания компьютера.

Внутренний модем Достоинства

  1. Все внутренние модели без исключения (в отличие от внешних) имеют встроенное FIFO. (First Input First Output - первым пришел, первым принят). FIFO - это микросхема, обеспечивающая буферизацию данных. Обычный модем при прохождении байта данных через порт каждый раз запрашивает прерывания у компьютера. Компьютер по специальным IRQ-линиям прерывает на некоторое время работу модема, а потом опять возобновляет её. Это замедляет работу компьютера в целом. FIFO же позволяет использовать прерывания в несколько раз реже. Это имеет большое значение при работе в многозадачных средах. Таких как Windows95, OS/2, Windows NT, UNIX и других.
  2. При использовании внутреннего модема уменьшается количество проводов, натянутых в самых неожиданных местах. Так же внутренний модем не занимает на рабочем столе.
  3. Внутренние модемы являются последовательным портом компьютера и не занимают существующих портов компьютера.
  4. Внутренние модели модемов всегда дешевле внешних.
    Недостатки
  5. Занимают слот расширения на материнской плате компьютера. Это очень неудобно на мультимедийных машинах, на которых установлено большое количество дополнительных плат, а также на компьютерах, которые работают серверами в сетях.
  6. Нет индикаторных лампочек, которые при имении определённого навыка позволяют следить за процессами, происходящими в модеме.
  7. Если модем завис, то восстановить работоспособность можно восстановить только клавишей перезагрузки компьютера "RESET".

Внешние модемы Достоинства

  1. Они не занимают слот расширения, и при необходимости их можно легко отключить и перенести на другой компьютер.
  2. На передней панели есть индикаторы, которые помогают понять, какую операцию сейчас производит модем.
  3. При зависании модема не нужно перезагружать компьютер, достаточно выключить и включить питание модема.

Недостатки

  1. Необходима мультикарта со встроенным FIFO. Без FIFO модем конечно будет работать, но при этом будет падать скорость передачи данных.
  2. Внешний модем занимает на рабочем столе и ему требуются дополнительные провода для подключения. Это тоже создает некоторое неудобство.
  3. Он занимает последовательный порт компьютера.
  4. Внешний модем всегда дороже аналогичного внутреннего, т.к. включает корпус с индикаторными лампочками и блок питания.

Для нашей сети выберем внутренний модем ZyXEL Omni 56K. V.90 (PCTel) int PCI.

3.3 Планировка помещений

На всех схемах присутствуют условные обозначения:

СВ - сервер.

РС - рабочая станция.

К - коммутатор.

Рис. 1 Схема сети на первом этаже

Рис. 2 Схема сети на втором этаже

Рис. 3 Схема сети на 3 этаже

3.4 Расчет количества кабеля

Расчет общей длины кабеля по этажам, необходимого для построения локальной сети, приведен в таблицах 1,2,3. Кабель прокладывается вдоль стен в специальных коробках.

Таблица 1. Длина кабеля на 1 этаже.

К1-К2 16 метров

К1-К3 14 метров

Общая длина кабеля на первом этаже составляет 96 метров.

Таблица 2. Длина кабеля на 2 этаже

Рабочая станция

Длина кабеля

От РС до К

Длинна кабеля между коммутаторами:

К4К5 17 метров

Длинна кабеля от сервера до К 4 - 1 метр

Общая длина кабеля на втором этаже составляет 156 метра.

Таблица 3. Длина кабеля на 3 этаже

Рабочая станция

Длина кабеля от РС до К

Длинна кабеля между коммутаторами:

К7К6 17 метров

К7К8 15 метров

Общая длина кабеля в сегменте С составляет 230 метра.

Длинна кабеля между этажами по 2 метра

Суммарная длина кабеля всей локальной сети с учетом коэффициента запаса составляет (96+156+230+2+2)* 1,2=583, 2 м.

  1. Инструкция по монтажу сети

В начале развития локальных сетей коаксиальный кабель как среда передачи был наиболее распространен. Он использовался и используется преимущественно в сетях Ethernet и отчасти ARCnet. Различают "толстый" и "тонкий" кабели.

"Толстый Ethernet", как правило, используется следующим образом. Он прокладывается по периметру помещения или здания, и на его концах устанавливаются 50-омные терминаторы. Из-за своей толщины и жесткости кабель не может подключаться непосредственно к сетевой плате. Поэтому на кабель в нужных местах устанавливаются "вампиры" - специальные устройства, прокалывающие оболочку кабеля и подсоединяющиеся к его оплетке и центральной жиле. "Вампир" настолько прочно сидит на кабеле, что после установки его невозможно снять без специального инструмента. К "вампиру", в свою очередь, подключается трансивер - устройство, согласовывающее сетевую плату и кабель. И, наконец, к трансиверу подключается гибкий кабель с 15-контактными разъемами на обоих концах - вторым концом он подсоединяется к разъему AUI (attachment unit interface) на сетевой плате.

Все эти сложности были оправданы только одним - допустимая максимальная длина "толстого" коаксиального кабеля составляет 500 метров. Соответственно одним таким кабелем можно обслужить гораздо большую площадь, чем "тонким" кабелем, максимально допустимая длина которого составляет, как известно, 185 метров. При наличии некоторого воображения можно представить себе, что "толстый" коаксиальный кабель - это распределенный в пространстве Ethernet-концентратор, только полностью пассивный и не требующий питания. Других преимуществ у него нет, недостатков же хоть отбавляй - прежде всего высокая стоимость самого кабеля (порядка 2,5 долл. за метр), необходимость использования специальных устройств для монтажа (25-30 долл. за штуку), неудобство прокладки и т.п. Это постепенно привело к тому, что "толстый Ethernet" медленно, но верно сошел со сцены, и в настоящее время мало где применяется.

"Тонкий Ethernet" распространен значительно шире, чем его "толстый" собрат. Принцип использования у него тот же, но благодаря гибкости кабеля он может присоединяться непосредственно к сетевой плате. Для подключения кабеля используются разъемы BNC (bayonet nut connector), устанавливаемые собственно на кабель, и T-коннекторы, служащие для отвода сигнала от кабеля в сетевую плату. Разъемы типа BNC бывают обжимные и разборные (пример разборного разъема - отечественный разъем СР-50-74Ф).

Т-коннектор

Для монтажа разъема на кабель вам потребуется либо специальный инструмент для обжимки, либо паяльник и плоскогубцы.

Кабель необходимо подготовить следующим образом:

  1. Аккуратно отрежьте так, чтобы его торец был ровным. Наденьте на кабель металлическую муфту (отрезок трубки), который поставляется в комплекте с BNC-разъемом.
  2. Снимите с кабеля внешнюю пластиковую оболочку на длину примерно 20 мм. Будьте аккуратны, чтобы не повредить по возможности ни один проводник оплетки.
  3. Оплетку аккуратно расплетите и разведите в стороны. Снимите изоляцию с центрального проводника на длину примерно 5 мм.
  4. Установите центральный проводник в штырек, который также поставляется в комплекте с разъемом BNC. Используя специальный инструмент, надежно обожмите штырек, фиксируя в нем проводник, либо впаяйте проводник в штырек. При пайке будьте особенно аккуратны и внимательны - плохая пайка через некоторое время станет причиной отказов в работе сети, причем локализовать это место будет достаточно трудно.
  5. Вставьте центральный проводник с установленным на него штырьком в тело разъема до щелчка. Щелчок означает, что штырек сел на свое место в разъеме и зафиксировался там.
  6. Равномерно распределите проводники оплетки по поверхности разъема, если необходимо, обрежьте их до нужной длины. Надвиньте на разъем металлическую муфту.
  7. Специальным инструментом (или плоскогубцами) аккуратно обожмите муфту до обеспечения надежного контакта оплетки с разъемом. Не обжимайте слишком сильно - можно повредить разъем или пережать изоляцию центрального проводника. Последнее может привести к неустойчивой работе всей сети. Но и обжимать слишком слабо тоже нельзя - плохой контакт оплетки кабеля с разъемом также приведет к отказам в работе.

Отмечу, что отечественный разъем СР-50 монтируется примерно так же, за исключением того, что оплетка в нем заделывается в специальную разрезную втулку и закрепляется гайкой. В некоторых случаях это может оказаться даже удобнее.

Кабели на основе витой пары

Витая пара (UTP/STP, unshielded/shielded twisted pair) в настоящее время является наиболее распространенной средой передачи сигналов в локальных сетях. Кабели UTP/STP используются в сетях Ethernet, Token Ring и ARCnet. Они различаются по категориям (в зависимости от полосы пропускания) и типу проводников (гибкие или одножильные). В кабеле 5-й категории, как правило, находится восемь проводников, перевитых попарно (то есть четыре пары).

Кабель UTP

Структурированная кабельная система, построенная на основе витой пары 5-й категории, имеет очень большую гибкость в использовании. Ее идея заключается в следующем.

На каждое рабочее место устанавливается не менее двух (рекомендуется три) четырехпарных розеток RJ-45. Каждая из них отдельным кабелем 5-й категории соединяется с кроссом или патч-панелью, установленной в специальном помещении, - серверной. В это помещение заводятся кабели со всех рабочих мест, а также городские телефонные вводы, выделенные линии для подключения к глобальным сетям и т.п. В помещении, естественно, монтируются серверы, а также офисная АТС, системы сигнализации и прочее коммуникационное оборудование.

Благодаря тому что кабели со всех рабочих мест сведены на общую панель, любую розетку можно использовать как для подключения рабочего места к ЛВС, так и для телефонии или вообще чего угодно. Допустим, две розетки на рабочем месте были подключены к компьютеру и принтеру, а третья - к телефонной станции. В процессе работы появилась необходимость убрать принтер с рабочего места и установить вместо него второй телефон. Нет ничего проще - патч-корд соответствующей розетки отключается от концентратора и переключается на телефонный кросс, что займет у администратора сети никак не больше нескольких минут.

Розетка на 2 порта

Патч-панель, или панель соединений, представляет собой группу розеток RJ-45, смонтированных на пластине шириной 19 дюймов. Это стандартный размер для универсальных коммуникационных шкафов - рэков (rack), в которых устанавливается оборудование (концентраторы, серверы, источники бесперебойного питания и т.п.). На обратной стороне панели смонтированы соединители, в которые монтируются кабели.

Кросс в отличие от патч-панели розеток не имеет. Вместо них он несет на себе специальные соединительные модули. В данном случае его преимущество перед патч-панелью в том, что при его использовании в телефонии вводы можно соединять между собой не специальными патч-кордами, а обычными проводами. Кроме того, кросс можно монтировать прямо на стену - наличия коммуникационного шкафа он не требует. В самом деле, нет смысла приобретать дорогостоящий коммуникационный шкаф, если вся ваша сеть состоит из одного-двух десятков компьютеров и сервера.

Кабели с многожильными гибкими проводниками используются в качестве патч-кордов, то есть соединительных кабелей между розеткой и сетевой платой, либо между розетками на панели соединений или кроссе. Кабели с одножильными проводниками - для прокладки собственно кабельной системы. Монтаж разъемов и розеток на эти кабели совершенно идентичен, но обычно кабели с одножильными проводниками монтируются на розетки рабочих мест пользователей, панели соединений и кроссы, а разъемы устанавливают на гибкие соединительные кабели.

Патч-панель

Как правило, применяются следующие виды разъемов:

  • S110 - общее название разъемов для подключения кабеля к универсальному кроссу "110" или коммутации между вводами на кроссе;
  • RJ-11 и RJ-12 - разъемы с шестью контактами. Первые обычно применяются в телефонии общего назначения - вы можете встретить такой разъем на шнурах импортных телефонных аппаратов. Второй обычно используется в телефонных аппаратах, предназначенных для работы с офисными мини-АТС, а также для подключения кабеля к сетевым платам ARCnet;
  • RJ-45 - восьмиконтактный разъем, использующийся обычно для подключения кабеля к сетевым платам Ethernet либо для коммутации на панели соединений.

Разъем RJ-45

В зависимости от того, что с чем нужно коммутировать, применяются различные патч-корды: "45-45" (с каждой стороны по разъему RJ-45), "110-45" (с одной стороны S110, с другой - RJ-45) или "110-110".

Для монтажа разъемов RJ-11, RJ-12 и RJ-45 используются специальные обжимочные приспособления, различающиеся между собой количеством ножей (6 или 8) и размерами гнезда для фиксации разъема. В качестве примера рассмотрим монтаж кабеля 5-й категории на разъем RJ-45.

  1. Аккуратно обрежьте конец кабеля. Торец кабеля должен быть ровным.
  2. Используя специальный инструмент, снимите с кабеля внешнюю изоляцию на длину примерно 30 мм и обрежьте нить, вмонтированную в кабель (нить предназначена для удобства снятия изоляции с кабеля на большую длину). Любые повреждения (надрезы) изоляции проводников абсолютно недопустимы - именно поэтому желательно использовать специальный инструмент, лезвие резака которого выступает ровно на толщину внешней изоляции.
  3. Аккуратно разведите, расплетите и выровняйте проводники. Выровняйте их в один ряд, при этом соблюдая цветовую маркировку. Существует два наиболее распространенных стандарта по разводке цветов по парам: T568A (рекомендуемый компанией Siemon) и T568B (рекомендуемый компанией ATT и фактически наиболее часто применяемый).

На разъеме RJ-45 цвета проводников располагаются так:

Проводники должны располагаться строго в один ряд, без нахлестов друг на друга. Удерживая их одной рукой, другой ровно обрежьте проводники так, чтобы они выступали над внешней обмоткой на 8-10 мм.

  1. Держа разъем защелкой вниз, вставьте в него кабель. Каждый проводник должен попасть на свое место в разъеме и упереться в ограничитель. Прежде чем обжимать разъем, убедитесь, что вы не ошиблись в разводке проводников. При неправильной разводке помимо отсутствия соответствия номерам контактов на концах кабеля, легко выявляемого с помощью простейшего тестера, возможна более неприятная вещь - появление "разбитых пар" (splitted pairs).

Для выявления этого брака обычного тестера недостаточно, так как электрический контакт между соответствующими контактами на концах кабеля обеспечивается и с виду все как будто бы нормально. Но такой кабель никогда не сможет обеспечить нормальное качество соединения даже в 10-мегабитной сети на расстояние более 40-50 метров. Поэтому нужно быть внимательным и не торопиться, особенно если у вас нет достаточного опыта.

  1. Вставьте разъем в гнездо на обжимочном приспособлении и обожмите его до упора-ограничителя на приспособлении. В результате фиксатор на разъеме встанет на свое место, удерживая кабель в разъеме неподвижным. Контактные ножи разъема врежутся каждый в свой проводник, обеспечивая надежный контакт.

Аналогичным образом можно осуществить монтаж разъемов RJ-11 и RJ-12, используя соответствующий инструмент.

Для монтажа разъема S110 специального обжимочного инструмента не требуется. Сам разъем поставляется в разобранном виде. Кстати, в отличие от "одноразовых" разъемов типа RJ разъем S110 допускает многократную разборку и сборку, что очень удобно. Последовательность действий при монтаже следующая:

  1. Снимите внешнюю изоляцию кабеля на длину примерно 40 мм, разведите в стороны пары проводников, не расплетая их.
  2. Закрепите кабель (в той половинке разъема, на которой нет контактной группы) с помощью пластмассовой стяжки и отрежьте получившийся "хвост".
  3. Аккуратно уложите каждый проводник в органайзер на разъеме. Не расплетайте пару на большую, чем требуется, длину - это ухудшит характеристики всего кабельного соединения. Последовательность укладки пар обычная - синяя-оранжевая-зеленая-коричневая; при этом светлый провод каждой пары укладывается первым.
  4. Острым инструментом (бокорезами или ножом) обрежьте каждый проводник по краю разъема.
  5. Установите на место вторую половинку разъема и руками обожмите ее до защелкивания всех фиксаторов. При этом ножи контактной группы врежутся в проводники, обеспечивая контакт.

Оптоволоконный кабель

Оптоволоконные кабели - наиболее перспективная и обеспечивающая наибольшее быстродействие среда распространения сигналов для локальных сетей и телефонии. В локальных сетях оптоволоконные кабели используются для работы по протоколам ATM и FDDI.

Приспособление для снятия изоляции и обжимки разъема

Оптоволокно, как понятно из его названия, передает сигналы при помощи импульсов светового излучения. В качестве источников света используются полупроводниковые лазеры, а также светодиоды. Оптоволокно подразделяется на одно- и многомодовое.

Одномодовое волокно очень тонкое, его диаметр составляет порядка 10 микрон. Благодаря этому световой импульс, проходя по волокну, реже отражается от его внутренней поверхности, что обеспечивает меньшее затухание. Соответственно одномодовое волокно обеспечивает большую дальность без применения повторителей. Теоретическая пропускная способность одномодового волокна составляет 10 Гбит/с. Его основные недостатки - высокая стоимость и высокая сложность монтажа. Одномодовое волокно применяется в основном в телефонии.

Многомодовое волокно имеет больший диаметр - 50 или 62,5 микрона. Этот тип оптоволокна чаще всего применяется в компьютерных сетях. Большее затухание во многомодовом волокне объясняется более высокой дисперсией света в нем, из-за которой его пропускная способность существенно ниже - теоретически она составляет 2,5 Гбит/с.

Для соединения оптического кабеля с активным оборудованием применяются специальные разъемы. Наиболее распространены разъемы типа SC и ST.

Монтаж соединителей на оптоволоконный кабель - очень ответственная операция, требующая опыта и специального обучения, поэтому не стоит заниматься этим в домашних условиях, не будучи специалистом.

  1. Расчет стоимости оборудования

Стоимость компонентов показана в таблице 4 (по данным интернет магазина «М-видео» в г. Балаково).

Таблица 4 стоимость оборудования

Из таблицы видно, что затраты на проектирование сети не превышают разумных пределов.

  1. Перспективы развития сети

ЛВС представленная в данной работе может развиваться и расширяться. На данном этапе для улучшения локальной сети могут быть предприняты следующие меры:

Подключение дополнительного сетевого сегмента на втором и третьем этажах;

Подключение дополнительных рабочих станций на любом участке сети;

Установка управляемых коммутаторов в наиболее нагруженные сегменты сети (непосредственно в компьютерные классы);

Разгрузка наиболее нагруженных сегментов сети путем разбиения ее на ветви;

Обновление программного обеспечения для повышения качества сети.

Заключение

В ходе работы была разработана локальная вычислительная сеть, состоящая из 38 рабочих станций и 1 сервера на основе технологии Fast Ethernet, самого распространенного типа сети в настоящее время, к достоинствам которого можно отнести простоту настройки, дешевизну компонентов. Звездообразная топология, используемая в проекте, обеспечивает возможность централизованного управления сетью, обеспечивает простоту поиска вышедшего из строя узла. Сеть построена с учетом будущего развития. В качестве операционной системы сервера выбрана Windows Server 2003 R2. Рассчитано необходимое количество сетевого оборудования, его цена приведены данные и расчеты используемого оборудования, затраты на построение составляют 66 539 руб. Составлен подробный план сети, где указаны все характеристики используемых компонентов. Задачи, заданные на проектирование, в целом выполнены. Работа имеет все необходимые данные и расчеты для построения сети.

Список литературы

  1. Актерский, Ю.Е. Сети ЭВМ и телекоммуникации: учебное пособие Ю.Е. Актерский. - СПб.: ПВИРЭ КВ, 2005. - 223 с.
  2. Арчибальд, Р.Д. Управление высокотехнологичными программами и проектами / - М.: ДМК Пресс, 2010. - 464 с.
  3. Балафанов, Е.К. Новые информационные технологии. 30 уроков информатики / Е.К. Балафанов, Б.Б. Бурибаев, А.Б. Даулеткулов. - Алма-Ата.: Патриот, 2004. - 220 с.
  4. Брезгунова, И.В. Аппаратные и программные средства персонального компьютера. Операционная система Microsoft Windows XP / - М: РИВШ, 2011. - 164 с.
  5. Брябрин В.М. Программное обеспечение персональных ЭВМ. - М.: Наука, 1990. 22 с.
  6. Велихов А.В., Строчников К.С., Леонтьев Б.К. Компьютерные сети: Учебное пособие по администрированию локальных и объединенных сетей / - М: Познавательная книга-Пресс, 2004 - 320 с.
  7. Воройский, Ф.С. Информатика. Новый систематизированный толковый словарь-справочник (Введение в современные информационные и телекоммуникационные технологии в терминах и фактах) / Ф.С. Воройский -- 3-е изд., перераб. и доп. -- М.: ФИЗМАТЛИТ, 2003. -- 760 с
  8. Гиляревский, Р.С. Информационный менеджмент. Управление информацией, знаниями, технологией - М.: Профессия, 2009. - 304 с.
  9. Граничин, О.Н. Информационные технологии в управлении / - М.: Бином, 2011. - 336 с.
  10. Гук М. Аппаратные средства локальных сетей. Энциклопедия - СПб.: Питер, 2000. -576с.
  11. Додд, А.З. Мир телекоммуникаций. Обзор технологий и отрасли / А.З. Додд. - М.:Олимп-Бизнес, 2005. - 400 с.
  12. Дэн Холме, Нельсон Рест, Даниэль Рест. Настройка Active Directory. Windows Server 2008. Учебный курс Microsoft / - М: Русская редакция, 2011 - 960 с.
  13. Журин А. Самоучитель работы на компьютере. MS Windows XP. Office XP/ А. Журин. - М.: Корона - Принт, 2009. - 370 с.
  14. Заика, А. Компьютерные сети / А. Заика, М.: Олма-Пресс, 2006. - 448 с.
  15. Закер Крэйг. Планирование и поддержка сетевой инфраструктуры Microsoft Windows Server 2003 /- М: Русская редакция, 2005 - 544 с.
  16. Кангин, В.В. Аппаратные и программные средства систем управления / - М.: Бином. Лаборатория знаний, 2010. - 424 с.

Скачать: У вас нет доступа к скачиванию файлов с нашего сервера.

г. Москва

Настоящая Политика конфиденциальности персональных данных (далее – Политика конфиденциальности) действует в отношении всей информации, которую сайт «Sorex Group», расположенном на доменном имени www..sorex.group, может получить о Пользователе во время использования сайта, программ и продуктов ООО «СОРЭКС».

1. ОПРЕДЕЛЕНИЕ ТЕРМИНОВ

1.1. В настоящей Политике конфиденциальности используются следующие термины:
1.1.1. «Администрация сайта Sorex Group (далее – Администрация) » – уполномоченные сотрудники на управления сайтом и приложением, действующие от имени ООО «СОРЭКС», которые организуют и (или) осуществляет обработку персональных данных, а также определяет цели обработки персональных данных, состав персональных данных, подлежащих обработке, действия (операции), совершаемые с персональными данными.
1.1.2. «Персональные данные» — любая информация, относящаяся к прямо или косвенно определенному или определяемому физическому лицу (субъекту персональных данных): анкетные данные, данные о гео-локации, фото и аудио-файлы, созданные посредством сайта Sorex Group.
1.1.3. «Обработка персональных данных» — любое действие (операция) или совокупность действий (операций), совершаемых с использованием средств автоматизации или без использования таких средств с персональными данными, включая сбор, запись, систематизацию, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передачу (распространение, предоставление, доступ), обезличивание, блокирование, удаление, уничтожение персональных данных.
1.1.4. «Конфиденциальность персональных данных» — обязательное для соблюдения Оператором или иным получившим доступ к персональным данным лицом требование не допускать их распространения без согласия субъекта персональных данных или наличия иного законного основания.
1.1.5. «Пользователь сайта или сайта Sorex Group (далее — Пользователь)» – лицо, имеющее доступ к Сайту или Приложению, посредством сети Интернет.
1.1.7. «IP-адрес» - уникальный сетевой адрес узла в компьютерной сети, построенной по протоколу IP.

2. ОБЩИЕ ПОЛОЖЕНИЯ

2.1. Использование Пользователем сайта Sorex Group означает согласие с настоящей Политикой конфиденциальности и условиями обработки персональных данных Пользователя.
2.2. В случае несогласия с условиями Политики конфиденциальности Пользователь должен прекратить использование сайта Sorex Group.
2.3. Настоящая Политика конфиденциальности применяется только к сайту Sorex Group.
2.4. Администрация не проверяет достоверность персональных данных, предоставляемых Пользователем Sorex Group.

3. ПРЕДМЕТ ПОЛИТИКИ КОНФИДЕНЦИАЛЬНОСТИ

3.1. Настоящая Политика конфиденциальности устанавливает обязательства Администрации сайта по неразглашению и обеспечению режима защиты конфиденциальности персональных данных, которые Пользователь предоставляет по запросу Администрации сайта.
3.2. Персональные данные, разрешённые к обработке в рамках настоящей Политики конфиденциальности, предоставляются Пользователем путём заполнения регистрационной формы на сайте Sorex Group и
включают в себя следующую информацию:
3.2.1. фамилию, имя Пользователя;
3.2.2. контактный телефон Пользователя;
3.2.3. адрес электронной почты (e-mail) Пользователя;
3.3. Администрация защищает Данные, предоставляемые пользователемю.
3.4. Любая иная персональная информация неоговоренная выше, подлежит надежному хранению и нераспространению, за исключением случаев, предусмотренных в п.п. 5.2. и 5.3. настоящей Политики конфиденциальности.

4. ЦЕЛИ СБОРА ПЕРСОНАЛЬНОЙ ИНФОРМАЦИИ ПОЛЬЗОВАТЕЛЯ

4.1. Персональные данные Пользователя Администрация сайта может использовать в целях:
4.1.1. Идентификации Пользователя, зарегистрированного в приложении.
4.1.2. Установления с Пользователем обратной связи, включая направление уведомлений, запросов, касающихся использования Сайта, оказания услуг, обработки запросов и заявок от Пользователя.
4.1.5. Подтверждения достоверности и полноты персональных данных, предоставленных Пользователем.
4.1.6. Уведомления Пользователя сайта Sorex Group о новых событиях.
4.1.7. Предоставления Пользователю эффективной клиентской и технической поддержки при возникновении проблем связанных с использованием сайта Sorex Group.

5. СПОСОБЫ И СРОКИ ОБРАБОТКИ ПЕРСОНАЛЬНОЙ ИНФОРМАЦИИ

5.1. Обработка персональных данных Пользователя осуществляется без ограничения срока, любым законным способом, в том числе в информационных системах персональных данных с использованием средств автоматизации или без использования таких средств.
5.2. Пользователь соглашается с тем, что Администрация вправе передавать персональные данные третьим лицам в рамках рабочего процесса – выдачи призов или подарков Пользователю.
5.3. Персональные данные Пользователя могут быть переданы уполномоченным органам государственной власти Российской Федерации только по основаниям и в порядке, установленным законодательством Российской Федерации.
5.4. При утрате или разглашении персональных данных Администрация информирует Пользователя об утрате или разглашении персональных данных.
5.5. Администрация принимает необходимые организационные и технические меры для защиты персональной информации Пользователя от неправомерного или случайного доступа, уничтожения, изменения, блокирования, копирования, распространения, а также от иных неправомерных действий третьих лиц.
5.6. Администрация совместно с Пользователем принимает все необходимые меры по предотвращению убытков или иных отрицательных последствий, вызванных утратой или разглашением персональных данных Пользователя.

6. ОБЯЗАТЕЛЬСТВА СТОРОН

6.1. Пользователь обязан:
6.1.1. Предоставить информацию о персональных данных, необходимую для использования сайтом Sorex Group.
6.1.2. Обновить, дополнить предоставленную информацию о персональных данных в случае изменения данной информации.
6.2. Администрация обязана:
6.2.1. Использовать полученную информацию исключительно для целей, указанных в п. 4 настоящей Политики конфиденциальности.
6.2.2. Обеспечить хранение конфиденциальной информации в тайне, не разглашать без предварительного письменного разрешения Пользователя, а также не осуществлять продажу, обмен, опубликование, либо разглашение иными возможными способами переданных персональных данных Пользователя, за исключением п.п. 5.2. и 5.3. настоящей Политики Конфиденциальности.
6.2.3. Принимать меры предосторожности для защиты конфиденциальности персональных данных Пользователя согласно порядку, обычно используемого для защиты такого рода информации в существующем деловом обороте.
6.2.4. Осуществить блокирование персональных данных, относящихся к соответствующему Пользователю, с момента обращения или запроса Пользователя или его законного представителя либо уполномоченного органа по защите прав субъектов персональных данных на период проверки, в случае выявления недостоверных персональных данных или неправомерных действий.

7. ОТВЕТСТВЕННОСТЬ СТОРОН

7.1. Администрация, не исполнившая свои обязательства, несёт ответственность за убытки, понесённые Пользователем в связи с неправомерным использованием персональных данных, в соответствии с законодательством Российской Федерации, за исключением случаев, предусмотренных п.п. 5.2., 5.3. и 7.2. настоящей Политики Конфиденциальности.
7.2. В случае утраты или разглашения Конфиденциальной информации Администрация не несёт ответственность, если данная конфиденциальная информация:
7.2.1. Стала публичным достоянием до её утраты или разглашения.
7.2.2. Была получена от третьей стороны до момента её получения Администрацией сайта.
7.2.3. Была разглашена с согласия Пользователя.

8. РАЗРЕШЕНИЕ СПОРОВ

8.1. До обращения в суд с иском по спорам, возникающим из отношений между Пользователем приложения и Администрацией, обязательным является предъявление претензии (письменного предложения о добровольном урегулировании спора).
8.2 Получатель претензии в течение 30 календарных дней со дня получения претензии, письменно уведомляет заявителя претензии о результатах рассмотрения претензии.
8.3. При не достижении соглашения спор будет передан на рассмотрение в судебный орган в соответствии с действующим законодательством Российской Федерации.
8.4. К настоящей Политике конфиденциальности и отношениям между Пользователем и Администрацией сайта применяется действующее законодательство Российской Федерации.

9. ДОПОЛНИТЕЛЬНЫЕ УСЛОВИЯ

9.1. Администрация вправе вносить изменения в настоящую Политику конфиденциальности без согласия Пользователя.
9.2. Новая Политика конфиденциальности вступает в силу с момента ее размещения на Сайте www.sorex.group, если иное не предусмотрено новой редакцией Политики конфиденциальности.
9.3. Все предложения или вопросы по настоящей Политике конфиденциальности следует сообщать через электронную почту, указанную на сайте.
9.4. Действующая Политика конфиденциальности размещена на странице по адресу www.sorex.group /politicy.pdf

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то