Программирование микроконтроллеров для чайников stm32. Начинаем изучать Cortex-M на примере STM32

Однажды, заехав в очередную съемную квартиру, я столкнулся с определенным неудобством, которое достаточно сильно напрягало: выключатель света в основной комнате оказался за шкафом-стенкой, который был прикручен к стене, и его перестановка была невозможна т.к. на это требовалось значительно много времени и сил. Решить данную проблему хотелось очень сильно и в голову пришла одна мысль: сделать дистанционный пульт для управления освещением!

Именно с идеи создания собственного пультика для управления светом в комнате и началось моё увлечение электроникой, микроконтроллерами и различными радиоустройствами.

После этого я начал изучать данную тему, знакомиться с основами электроники, примерами устройств, узнавать, как люди реализуют подобного рода устройства. Поискав информацию на тему того, с чего можно было бы начать изучение микроконтроллеров я узнал о том, что такое Arduino, с чем их едят, о том, как с ними работать. Легкое решение выглядело весьма привлекательно, ведь насколько я понял на тот момент, код собирается на раз-два. Но сделав вывод, что я не узнаю, что творится внутри микроконтроллера за рамками Arduino-скетчей я решил поискать более интересный вариант, который подразумевал глубокое изучение и погружение в дебри микроконтроллерной техники.

В компании, в которой я работаю, имеется отдел разработки, и я решил обратиться к инженерам чтобы они направили меня на путь истинный и показали с чего можно было бы начать решение своей задачи. Меня решительно отговорили от изучения Arduino и у меня в руках оказалась неведомая и непонятная зеленая платка на которой виднелись надписи, буковки, разные электронные компоненты.

Всё это для меня на тот момент показалось непостижимо сложным, и я даже пришел в некоторое смятение, но от реализации поставленной задачи отказываться не собирался. Так я познакомился с семейством микроконтроллеров STM32 и платой STM32F0-Discovery, после изучения которых мне хотелось бы сваять свой девайс под нужные мне цели.

К моему большому удивлению, такого большого комьюнити, статей, примеров, различных материалов по STM не было в таком же изобилии как для Arduino. Конечно, если поискать найдется множество статей «для начинающих» где описано, как и с чего начать. Но на тот момент мне показалось, что все это очень сложно, не рассказывались многие детали, интересные для пытливого ума новичка, вещи. Многие статьи хоть и характеризовались как «обучение для самых маленьких», но не всегда с их помощью получалось достичь требуемого результата, даже с готовыми примерами кода. Именно поэтому я решил написать небольшой цикл статей по программированию на STM32 в свете реализации конкретной задумки: пульт управления освещением в комнате.

Почему не AVR/Arduino?

Предвосхищая высказывания о том, что неопытному новичку бросаться сразу же в изучение такого сложного МК как STM32 было бы рановато - я расскажу, почему я решил пойти именно этим путём, не вникая и не знакомясь с семейством процессоров от Atmel и даже не рассматривая Arduino как вариант.

Во-первых, решающую роль сыграло отношение цена-функционал, разницу видно даже между одним из самых дешевых и простых МК от ST и достаточно «жирной» ATMega:


После того, что я увидел значительные различия между ценой и возможностями AVR и STM32 – мною было принято решение, что AVR использовать в своей разработке я не буду =)

Во-вторых, я предварительно для себя старался определить набор умений и навыков, которые бы я получил к моменту, когда я достигну требуемого результата. В случае если бы я решил использовать Arduino – мне было бы достаточно скопировать готовые библиотеки, накидать скетч и вуаля. Но понимание того, как работают цифровые шины, как работает радиопередатчик, как это всё конфигурируется и используется – при таком раскладе мне бы не пришло бы никогда. Для себя я выбрал самый сложный и тернистый путь, чтобы на пути достижения результата – я бы получил максимум опыта и знаний.

В-третьих, любой STM32 можно заменить другим STM32, но с лучшими характеристиками. Причем без изменения схемы включения.

В-четвертых, люди, занимающиеся профессиональной разработкой больше склонны к использованию 32-разрядных МК, и чаще всего это модели от NXP, Texas Instruments и ST Microelectronics. Да и мне можно было в любой момент подойти к своим инженерам из отдела разработки и разузнать о том, как решить ту или иную задачу и получить консультацию по интересующим меня вопросам.

Почему стоит начинать изучение микроконтроллеров STM32 с использования платы Discovery?

Как вы уже поняли, знакомство и изучение микроконтроллера STM32 мы начнем с Вами, уважаемые читатели, с использования платы Discovery. Почему именно Discovery, а не своя плата?

Что нам понадобится для разработки помимо платы Discovery?

В своей работе с платой Discovery нам понадобится еще ряд незаменимых вещей, без которых мы не сможем обойтись:

Приступим к первоначальной настройке и подготовке IDE к работе!

После того, как скачается установочный файл нашей IDE можно приступать к установке. Следуя указаниям инсталлятора проведите процесс установки. После того, как скопируются все файлы, необходимые для работы появится окно установщика софтовых пакетов для разработки Pack Installer . В данном установщике содержатся низкоуровневые библиотеки, Middleware, примеры программ, которые регулярно пополняются и обновляются.


Для начала работы с нашей платой нам необходимо установить ряд пакетов необходимых для работы и необходимо найти микроконтроллер, с которым мы будем работать. Так же можно воспользоваться поиском вверху окна. После того, как мы нашли наш МК кликаем на него и во второй половине окна и нам необходимо установить следующий перечень библиотек:
  1. Keil::STM32F0xx_DFP – полноценный пакет программного обеспечения для конкретного семейства микроконтроллеров, включающий в себя мануалы, даташиты, SVD-файлы, библиотеки от производителя.
  2. ARM::CMSIS – пакет Cortex Microcontroller Software Interface Standard, включающий в себя полный набор библиотек от ARM для поддержки ядра Cortex.
  3. Keil::ARM_Compiler – последняя версия компилятора для ARM.
После установки требуемых паков можно перейти к настройке IDE и нашего отладчика/программатора. Для этого нам необходимо открыть главное окно Keil и создать новый проект.


Для этого необходимо перейти в меню Project -> New uVision Project и выбрать папку, в которую сохраним наш проект.

После Keil спросит нас какой МК будет использоваться в проекте. Выбираем нужный нам МК и нажимаем ОК .


И вновь появится, уже знакомое нам, окно в котором мы можем подключить интересующие нас модули к проекту. Для нашего проекта понадобится два модуля:
  1. Ядро библиотеки CMSIS , в котором объявлены настройки, адреса регистров и многое другое из того что необходимо для работы нашего МК.
  2. Startup-файл , который отвечает за первоначальную инициализацию МК при старте, объявление векторов и обработчиков прерываний и многое другое.
Если все зависимости у подключаемых удовлетворены – менеджер будет нам сигнализировать об этом зеленым цветом:


После того как мы нажмем клавишу ОК мы можем приступать к созданию нашего проекта.

Для того, чтобы сконфигурировать параметры проекта и настроить наш программатор нужно правым кликом по Target 1 открыть соответствующее меню.


В главном меню проекта настраиваем параметр Xtal в значение 8.0 MHz . Данный параметр отвечает за частоту работы кварцевого осциллятора нашего МК:


Далее переходим к настройке нашего программатора/дебагер. Кликаем в этом же окне на вкладку Debug и выбираем в поле Use параметр ST-Link Debugger и переходим в настройки:


В настройках мы должны увидеть модель нашего ST-Link установленного на плате, его серийный номер, версию HW и IDCODE МК который будем прошивать:

Для удобства можно настроить параметр, отвечающий за то, чтобы МК сбрасывался автоматически после перепрошивки. Для этого нужно поставить галочку в поле Reset and Run .


После этого нужно настроить еще одну опцию, которая позволит нам писать русскоязычные комментарии к коду наших проектов. Нажимаем кнопку Configuration и в открывшемся меню в поле Encoding выбираем Russian Windows-1251 .


Всё. Наша IDE и программатор готовы к работе!

В Keil имеется удобный навигатор по проекту, в котором мы можем видеть структуру проекта, необходимые для работы справочные материалы, в т. ч. те, которые мы уже скачали к себе на компьютер до этого (схема Discovery, datasheet, reference manual), список функций, использованных в проекте и шаблоны для быстрой вставки разных языковых конструкций языка программирования.


Переименуем папку в структуре проекта с Source Group 1 на App/User , таким образом обозначив то, что в данной папке у нас будут располагаться файлы пользовательской программы:


Добавим основной файл программы через навигатор проекта, выполнив команду Add New Item To Group “App/User” .


Необходимо выбрать из предложенного списка C File (.c) и назначить ему имя main.c :


Созданный файл автоматически добавится в структуру проекта и откроется в главном окне программы.

Что ж, теперь мы можем приступить к созданию нашей программы.

Первым делом, необходимо подключить к нашему исполняемому файлу заголовочный документ нашего семейства микроконтроллеров. Добавим в файл main.c строки следующего содержания, данная программа заставить попеременно моргать наши светодиоды:

/* Заголовочный файл для нашего семейства микроконтроллеров*/ #include "stm32f0xx.h" /* Тело основной программы */ int main(void) { /* Включаем тактирование на порту GPIO */ RCC->AHBENR |= RCC_AHBENR_GPIOCEN; /* Настраиваем режим работы портов PC8 и PC9 в Output*/ GPIOC ->MODER = 0x50000; /* Настраиваем Output type в режим Push-Pull */ GPIOC->OTYPER = 0; /* Настраиваем скорость работы порта в Low */ GPIOC->OSPEEDR = 0; while(1) { /* Зажигаем светодиод PC8, гасим PC9 */ GPIOC->ODR = 0x100; for (int i=0; i<500000; i++){} // Искусственная задержка /* Зажигаем светодиод PC9, гасим PC8 */ GPIOC->ODR = 0x200; for (int i=0; i<500000; i++){} // Искусственная задержка } }
После того, как мы написали нашу программу, настала пора скомпилировать код и загрузить прошивку в наш МК. Чтобы скомпилировать код и загрузить можно воспользоваться данным меню.

Я очередной выпускник некоего московского вуза (не буду уточнять какого, но средненького). Полгода назад нам сообщили, что пора писать диплом. На тот момент я только-только начал осваивать микроконтроллеры и давалось мне это не то, чтобы нелегко, но со скрипом, который производит холодильник, когда ты, в одиночку, пытаешься аккуратно сдвинуть его, не повредив драгоценный ламинат (в моем случае линолеум).

Мое обучение началось, когда я два года назад заинтересовался темой микроконтроллеров и инженер, у которого поинтересовался насчет них, выдал мне плату 300х200мм и сказал, что в ней стоит контроллер STM32F217ZGT6 и на этой плате есть все необходимое для обучения. «В общем, освоишь ее - все остальное покажется фигней» (он, правда, не сказал, что для моргания светодиодом надо настроить SPI, о котором на тот момент я даже не слышал). Спустя три не очень напряженных месяца бесплотных попыток, осознания слабости навыков программирования и огромного количества прочитанных статей пришлось все же раскошелится на STM32VLDISCOVERY и способом копирования программ и экспериментов с ними дело наконец-то пошло, но все равно медленно.

За полтора года успел поработать разработчиком, искал вакансии, где работают с STM32 (так как считаю, что сейчас это наиболее перспективные микроконтроллеры своего класса), нахватался опыта и когда дело дошло до диплома, вспомнил о своих наболевших мозолях. Идея с темой пришла мгновенно: «Отладочная плата на STM32 и (полноценный) обучающий курс (для самых маленьких) к ней».

Именно по этому захотел написать цельный и законченный курс, чтобы так сказать другие не мучились и самому разобраться. Так что придя в институт и понимая, что для быстрого освоения и понимания нужен стимул (а точнее - хороший такой пинчище), я стал бить себя пяткой в грудь (рыть себе могилу), что не только напишу обучающий курс (в нашем универе пришлось назвать его методическим пособием), но и макет работающий предоставлю. Тему приняли, задание написал (могилу вырыл, надгробие заказал), дело было за малым, все написать и разработать (лечь в могилу, закопаться и поставить надгробие).

Жизнь показала, что времени у меня было отнюдь не полгода, но все же все время, отведенное на диплом, почти закончилось, совсем скоро защита, но как не удивительно все не только готово, но и почти на 100% протестировано (на живых людях в том числе).

На выходе получилось следующее:

1. Сам курс (методическое пособие по-научному)

Вкратце о нем можно сказать, что на мой взгляд и по отзывам тестировщиков он полноценный, но немного суровый и не доработанный. Так как я решил, что не буду писать учебник по программированию на СИ, следовательно, и в курсе отсутствуют объяснения операторов, оттого и сказали, что местами курс суров. По поводу недоработанности честно скажу, я не все успел отладить к сдаче, чтобы об этом писать не только здесь, но и в методическом пособии к сдаче. Так же считаю, что можно лучше, но об этом чуть позже.

2. Отладочная плата на контроллере STM32F103RET6

Здесь все немного лучше, чем в первом пункте, плата разработана, заказана (из-за обстоятельств заказывать пришлось срочно) в Резоните, компоненты заказаны, спаяна ручками (честно скажу, никакое видео не передаст ощущения первой пайки LQFP64) и протестирована (большее ее часть заработала сразу же). Но это макет и, конечно, не обошлось без накладок: проводков, переходников и других различных «костылей», но заказать вторую ревизию я, к несчастью, не успею, да наверно и не стал бы, для защиты диплома, уверен и этого хватит. Так что ниже я расскажу более подробно об этой отладочной плате.

Придя на первую работу в качестве разработчика электроники, я столкнулся с одним интересным мнением и, как оказалось, оно весьма распространено. Это мнение звучало примерно так: «Вот я программист и программирую микроконтроллеры, схемотехнику не знаю и знать не хочу, паять, кстати, тоже не умею». Пообщавшись с группой программистов вне фирмы, понял, что человек с моей работы далеко не одинок в своем мнении и хоть я его и не поддерживаю, понять и уважать мнение окружающих стоит, тем более это отлично вписывалось в тогдашнюю концепцию отладочной платы «все на борту». В связи с этим плата получилось достаточно «жирненькая», получила название STM32SB (SB-StudyBoard) V1.0b. Ниже разберем, что в нее вошло.

1. Микроконтроллер
Исходя из того, что я работал с микроконтроллером STM32F103RET6, он и был выбран для проекта.

2. Схема питания и аппаратный USB контроллера
В этом микроконтроллере есть встроенный USB, который было решено вывести на отдельный разъем.

3. Спикер
Было решено ввести для освоения ШИМ модуляции и обучению написанию мелодий.

4. Цифровой индикатор и сдвиговый резистор
Для одновременного освоения динамической индикацией и сдвиговым регистром было решено их совместить.

5. Светодиоды
Светодиоды, что может быть лучше? Только трехцветные светодиоды, на которых можно освоить плавную смену цветов.

6. ЖК-дисплей
Стандартный ЖК-дисплей на 2 строки по 16 символов для освоения параллельного интерфейса.

7. Клавиатура
Матричная клавиатура, это нужно знать и уметь.

8. Расширитель портов ввода-вывода
Много портов ввода-вывода не бывает, а тут еще и I2C освоить можно.

9. Электронный термометр
Датчик температуры по 1-Wire, полезная вещь и ценный опыт работы с ним может пригодиться.

10. Электронный потенциометр
На этой вещице можно освоить полноценный SPI и попробовать сделать замеры изменения напряжения через АЦП.

11. Реле
Хоть это и на уровне поморгать светодиодом, но все же приятно услышать знакомый щелчок, правда?

12. Ключевые транзисторы
Так же на уровне моргания светодиодом, но вдруг кому принцип не понятен.

13. Дублирование свободных пинов на внешних выводах
Ну это естественная конструкция для любой отладочной платы, вдруг все, что в ней есть никому не пригодилось, а подключить, что то свое все же нужно.

14. Преобразователь WIFI-UART(esp8266)
В схеме преобразователь участвует как разъем, также он указан и здесь. Используется уже довольно нашумевший модуль esp8266.

15. Преобразователь USB-UART
USB это всегда круто, сдесь используется чип CP2102.

16. JTAG и SWD
Ну куда же без этих вещей.

Такой широкий набор внешних устройств даст возможность освоить большинство приемов и попробовать поработать с большинством интерфейсов, не заморачиваясь закупкой элементов и не отходя от стола, что согласуется с концепцией не только «все на борту», но и «для самых маленьких» (не умеющих паять).

Конечно, не обошлось без накладок, но, как говорит один знакомый инженер, «мастерство инженера измеряется в количестве перерезанных дорожек на первой итерации платы».

Вот список моих «косяков», того, чего я не заметил, забыл или даже не знал при разработке этой платы:

1. Понял, что пины SWD расположены с странном порядке и хоть работе платы это не мешает. Услышал, на мой взгляд, правильное мнение, что их стоит располагать так, как они расположены на STM32VLDISCOVERY, чтобы избежать недоразумений у нового пользователя.

2. Так подключать одноцветные светодиоды, как на данной плате, не стоит, по причине того, что для моргания ими необходимо отремапить JTAG, но получился неожиданный для меня эффект индикации процесса загрузки прошивки.

3. Я разработал свой логотип для этой платы, который хотел перевести в PCB и разместить на плате, но забыл.

4. Для экономии места во второй ревизии платы я бы разместил некоторые не используемые пользователем SMD компоненты на нижней стороне платы.

5. Понял, что для более удобной разводки цепей с кварцевыми резонаторами было бы удобно заменить их на SMD.

6. Забыл подписать, где JTAG и SWD, так же у них не показано, как их подключать и если для JTAG и его разъемом BH-20 все не так сложно, то с SWD ситуация несколько опасней.

7. При разработке футпринта ЖК-дисплея вышел казус и отверстия оказались слишком малы для болтов М3.

8. У преобразователя CP2102 перепутаны выводы RX и TX. Так как я привык, что в документации приводится пример подключения относительно микроконтроллера, а не внешнего устройства, пришлось перерезать таки 2 дорожки.

9. На данной плате расстояние между гребенками выводов не нормировано по дюймам, в связи с этим есть проблема для подключения к беспаечной макетной плате методом втыкания в нее.

10. Вышла накладка с резисторами ограничения тока в цепи индикации включения реле, номинал оказался слишком большой для того, чтобы реле могло коммутироваться.

11. Ну и, как водится, «хорошая мысля приходит опосля». Так, уже после получения платы я понял, что стоило сделать размер ее подходящий хоть под какой-нибудь корпус - видимо придется доработать во второй ревизии.

12. Изначально был заложен маленький цифровой индикатор, так как занимал не большую площадь и был доступен в магазинах, однако оказалось, что на самом деле он везде доступен при заказе от 520 штук, так что пришлось ваять переходник на стандартный цифровой индикатор.

Напоследок покажу вам 3D модель этой платы:

И для сравнения фотографии ее же, как она получилась «в живую», вид с верху:

И вид с боку, чтоб было видно побольше «костылей»:

Извините, но весь проект до сдачи диплома выкладывать мне бы не хотелось, но после этой работы у меня встал вопрос, а стоит ли данный проект развивать? Меня посетила идея написать цикл статей, посвященных обучению, где был бы представлен такой вот полноценный курс по этой отладочной плате, где все написано простыми словами и объяснено на пальцах. Хотелось бы услышать от вас в комментариях насколько это было бы полезно и необходимо на настоящее время.

Спасибо за внимание!

В последние годы 32 разрядные микроконтроллеры (МК) на основе процессоров ARM стремительно завоёвывают мир электроники. Этот прорыв обусловлен их высокой производи тельностью, совершенной архитектурой, малым потреблением энергии, низкой стоимостью и развитыми средствами программирования.

КРАТКАЯ ИСТОРИЯ
Название ARM является аббревиатурой Advanced RISC Machines, где RISC (Reduced Instruction Set Computer) обозначает архитектуру процессоров с сокращённым набором команд. Подавляющее число популярных МК, а пример семейства PIC и AVR, также имеют архитектуру RISC, которая позволила увеличить быстродействие за счёт упрощения декодирования инструкций и ускорения их выполнения. Появление совершенных и производительных 32 разрядных ARMмикроконтроллеров позволяет перейти к решению более сложных задач, с которыми уже не справляются 8 и 16 разрядные МК. Микропроцессорная архитектура ARM с 32 разрядным ядром и набором команд RISC была разработана британской компанией ARM Ltd, которая занимается исключительно разработкой ядер, компиляторов и средств отладки. Компания не производит МК, а продаёт лицензии на их производство. МК ARM – один из быстро развивающихся сегментов рынка МК. Эти приборы используют технологии энергосбережения, поэтому находят широкое применение во встраиваемых системах и доминируют на рынке мобильных устройств, для которых важно низкое энергопотребление. Кроме того, ARM микроконтроллеры активно применяются в средствах связи, портативных и встраиваемых устройствах, где требуется высокая производительность. Особенностью архитектуры ARM является вычислительное ядро процессора, не оснащённое какими либо дополнительными элементами. Каждый разработчик процессоров должен самостоятельно до оснастить это ядро необходимыми блоками под свои конкретные задачи. Такой подход хорошо себя зарекомендовал для крупных производителей микросхем, хотя изначально был ориентирован на классические процессорные решения. Процессоры ARM уже прошли несколько этапов развития и хорошо известны семействами ARM7, ARM9, ARM11 и Cortex. Последнее делится на подсемейства классических процессоров CortexA, процессоров для систем реального времени CortexR и микропроцессорные ядра CortexM. Именно ядра CortexM стали основой для разработки большого класса 32 разрядных МК. От других вариантов архитектуры Cortex они отличаются, прежде всего, использованием 16разрядного набора инструкций Thumb2. Этот набор совмещал в себе производительность и компактность «классических» инструкций ARM и Thumb и разрабатывался специально для работы с языками С и С++, что существенно повышает качество кода. Большим достоинством МК, построенных на ядре CortexM, является их программная совместимость, что теоретически позволяет использовать программный код на языке высокого уровня в моделях разных производителей. Кроме обозначения области применения ядра, разработчики МК указывают производительность ядра CortexM по десятибалльной шкале. На сегодняшний день самыми популярными вариантами являются CortexM3 и CortexM4. МК с архитектурой ARM производят такие компании, как Analog Devices, Atmel, Xilinx, Altera, Cirrus Logic, Intel, Marvell, NXP, STMicroelectronics, Samsung, LG, MediaTek, MStar, Qualcomm, SonyEricsson, Texas Instruments, nVidia, Freescale, Миландр, HiSilicon и другие.
Благодаря оптимизированной архитектуре стоимость МК на основе ядра CortexM в некоторых случаях даже ни же, чем у многих 8разрядных приборов. «Младшие» модели в настоящее время можно приобрести по 30 руб. за корпус, что создаёт конкуренцию предыдущим поколениям МК. МИКРОКОНТРОЛЛЕРЫ STM32 Рассмотрим наиболее доступный и широко распространённый МК семейства STM32F100 от компании STMicroelectronics , которая является одним из ведущих мировых производителей МК. Недавно компания объявила о начале производства 32битного МК, использующего преимущества индустриального
ядра STM32 в недорогих приложениях. МК семейства STM32F100 Value line предназначены для устройств, где не хватает производительности 16разрядных МК, а богатый функционал «обычных» 32разрядных приборов является избыточным. Линейка МК STM32F100 базируется на современном ядре ARM CortexM3 с периферией, оптимизированной для применения в типичных приложениях, где использовались 16разрядные МК. Производительность МК STM32F100 на тактовой частоте 24 МГц превосходит большинство 16разрядных МК. Данная линейка включает приборы с различными параметрами:
● от 16 до 128 кбайт флэшпамяти программ;
● от 4 до 8 кбайт оперативной памяти;
● до 80 портов ввода вывода GPIO;
● до девяти 16разрядных таймеров с расширенными функциями;
● два сторожевых таймера;
● 16канальный высокоскоростной 12разрядный АЦП;
● два 12разрядных ЦАП со встроенными генераторами сигналов;
● до трёх интерфейсов UART с поддержкой режимов IrDA, LIN и ISO7816;
● до двух интерфейсов SPI;
● до двух интерфейсов I2С с поддержкой режимов SMBus и PMBus;
● 7канальный блок прямого доступа к памяти (DMA);
● интерфейс CEC (Consumer Electronics Control), включённый в стандарт HDMI;
● часы реального времени (RTC);
● контроллер вложенных прерываний NVIC.

Функциональная схема STM32F100 представлена на рисунке 1.

Рис. 1. Архитектура МК линейки STM32F100

Дополнительным удобством является совместимость приборов по выводам, что позволяет, при необходимости, использовать любой МК семейства с большей функциональностью и памятью без переработки печатной платы. Линейка контроллеров STM32F100 производится в трёх типах корпусов LQFP48, LQFP64 и LQFP100, имеющих, соответственно, 48, 64 и 100 выводов. Назначение выводов представлено на рисунках 2, 3 и 4. Такие корпуса можно устанавливать на печатные платы без применения специального оборудования, что является весомым фактором при мелкосерийном производстве.


Рис. 2. МК STM32 в корпусе LQFP48 Рис. 3. МК STM32 в корпусе LQFP64


Рис. 4. МК STM32 в корпусе LQFP100

STM32F100 – доступный и оптимизированный прибор, базирующийся на ядре CortexM3, поддерживается развитой средой разработки МК семейства STM32, которая содержит
бесплатные библиотеки для всей пе риферии, включая управление двига телями и сенсорными клавиатурами.

СХЕМА ВКЛЮЧЕНИЯ STM32F100C4
Рассмотрим практическое использование МК на примере самого простого прибора STM32F100C4, который, тем не менее, содержит все основные блоки линейки STM32F100. Принципиальная электрическая схема включения STM32F100C4 представлена на рисунке 5.


Рис. 5. Схема включения МК STM32F100C4

Конденсатор С1 обеспечивает сброс МК при включении питания, а конденсаторы С2-С6 фильтруют напряжение питания. Резисторы R1 и R2 ограничивают сигнальный ток выводов МК. В качестве источника тактовой частоты используется внутренний генератор, поэтому нет необходимости применять внешний кварцевый резонатор.


Входы BOOT0 и BOOT1 позволяют выбрать способ загрузки МК при включении питания в соответствии с таб лицей. Вход BOOT0 подключён к шине нулевого потенциала через резистор R2, который предохраняет вывод BOOT0 от короткого замыкания при его использовании в качестве выход ного порта PB2. С помощью соединителя J1 и одной перемычки можно из менять потенциал на входе BOOT0, определяя тем самым способ загрузки МК – из флэшпамяти или от встроенного загрузчика. При необходимости загрузки МК из оперативной памяти аналогичный соединитель с перемычкой можно подключить и к входу BOOT1.
Программирование МК осуществляется через последовательный порт UART1 или через специальные программаторы – отладчики JTAG или STLink. Последний входит в состав популярного отладочного устройства STM32VLDISCOVERY , изображённого на рисунке 6. На плате STM32VLDIS COVERY 4контактный разъём программатора – отладчика STLink – имеет обозначение SWD. Автор статьи предлагает программировать МК через последовательный порт UART1, поскольку это значительно проще, не требует специального оборудования и не уступает в скорости JTAG или ST Link. В качестве управляющего устройства, способного формировать команды и отображать результаты работы про граммы МК, а также в качестве программатора можно использовать любой персональный компьютер (ПК), имеющий последовательный COM порт или порт USB с преобразователем USBRS232.

Для сопряжения COMпорта ПК с МК подойдет любой преобразователь сиг налов RS232 в уровни логических сигналов от 0 до 3,3 В, например, микросхема ADM3232. Линия передачи TXD последовательного порта компьютера, после преобразователя уровней, должна подключаться к входу PA10 микроконтроллера, а линия приёмника RXD, через аналогичный преобразователь, – к выходу PA9.

При необходимости использования энергонезависимых часов МК, к нему следует подключить элемент питания типа CR2032 с напряжением 3 В и кварцевый резонатор на частоту 32768 Гц. Для этого МК оснащён выводами Vbat/GND и OSC32_IN/OSC32_OUT. Предварительно вывод Vbat необходимо отключить от шины питания 3,3 В.

Оставшиеся свободными выводы МК можно использовать по необходимости. Для этого их следует подключить к разъёмам, которые расположены по периметру печатной платы для МК, по аналогии с популярными устройствами Arduino и отладочной платой STM32VLDISCOVERY .


Рис. 6. Отладочное устройство STM32VLDISCOVERY


Схема электрическая принципиальная STM32VLDISCOVERY.

Таким образом, в зависимости от назначения и способа применения МК, к нему можно подключать необходимые элементы, чтобы задействовать другие функциональные блоки и пор ты, например, ADC, DAC, SPI, I2C и т.п. В дальнейшем эти устройства будут рас смотрены подробнее.

ПРОГРАММИРОВАНИЕ
Сегодня многие компании предлагают средства для создания и отладки программ микроконтроллеров STM32. К их числу относятся Keil от ARM Ltd, IAR Embedded Workbench for ARM, Atol lic TrueStudio, CooCox IDE, GCC и Eclipse IDE. Разработчик может выбрать про граммные средства по своему пред почтению. Ниже будет описан инструментарий Keil uVision 4 от компании Keil , который поддерживает огромное число типов МК, имеет развитую систему отладочных средств и может быть использован бесплатно с ограничениями размера генерируемого кода 32 кбайт (что, фактически, максимально для рассматриваемых МК).

Простой и быстрый старт с CooCox CoIDE.

Итак приступим. Идем на официальный сайт CooCox и качаем последнюю версию CooCox CoIDE . Для скачивания необходимо зарегистрироваться, регистрация простая и бесплатная. Затем инсталлируем скачанный файл и запускаем.

CooCox CoIDE — среда разработки, на базе Eclipse, которая помимо STM32 поддерживает кучу других семейств микроконтроллеров: Freescale, Holtek, NXP, Nuvoton, TI, Atmel SAM, Energy Micro и др. С каждой новой версией CoIDE список МК постоянно пополняется. После успешной установки CoIDE запускаем:

Появится стартовое окно Step 1, в котором необходимо выбрать производителя нашего микроконтроллера. Нажимаем ST и переходим к Step 2 (выбор микроконтроллера), в котором необходимо выбрать конкретную модель. У нас STM32F100RBT6B, поэтому нажимаем на соответствующую модель:

Справа, в окне Help отображаются краткие характеристики каждого чипа. После выбора нужного нам микроконтроллера переходим к третьему шагу Step 3 — к выбору необходимых библиотек для работы:

Давайте создадим простейший проект для мигания светодиодом, как это принято для изучения микроконтроллеров.

Для этого нам понадобится библиотека GPIO, при включении которой, CoIDE попросит создать новый проект. На это предложение нажимаем Yes, указываем папку где будет храниться наш проект и его название. При этом, CoIDE подключит к проекту 3 другие, необходимые для работы библиотеки, а также создаст всю необходимую структуру проекта:

Чем еще хорош CoIDE, это тем, что в нем есть возможность загружать примеры прямо в среду разработки. В вкладке Components вы можете видеть, что почти к каждой библиотеке есть примеры, нажимаем на GPIO (with 4 examples) и видим их:

Туда можно добавлять и свои примеры. Как видно на скриншоте выше, в примерах уже присутствует код для мигания светодиодом GPIO_Blink. Можно нажать кнопку add и он добавиться в проект, но как подключаемый файл, поэтому мы сделаем по другому просто скопируем весь код примера в файл main.c. Единственное, строку void GPIO_Blink(void) замените на int main(void). Итак, нажимаем F7 (или в меню выбираем Project->Build), чтобы скомпилировать проект и… не тут то было!

Среде нужен компилятор GCC, а у нас его нет. Поэтому идем на страничку GNU Tools for ARM Embedded Processors , справа выбираем тип вашей ОС и качаем последнюю версию тулчайна. Затем запускаем файл и инсталируем gcc toolchain. Далее, в настройках CoIDE укажем правильный путь к тулчайну:

Опять нажимаем F7 (Project->Build) и видим, что компиляция прошла успешно:

Осталось прошить микроконтроллер. Для этого при помощи USB подключаем нашу плату к компьютеру. Затем, в настройках дебаггера необходимо поставить ST-Link, для этого в меню выбираем Project->Configuration и открываем вкладку Debugger. В выпадающем списке выбираем ST-Link и закрываем окно:

Попробуем прошить МК. В меню выбираем Flash->Program Download (или на панели инструментов щелкаем по соответствующей иконке) и видим, что МК успешно прошит:

На плате наблюдаем мигающий светодиод, видео или фото я думаю приводить нет смысла, т.к. все это видели.

Также, в CoIDE работают различные режимы отладки, для этого нажимаем CTRL+F5 (или в меню Debug->Debug):

На этом все. Как видите, настройка среды CoIDE и работа с ней очень проста. Надеюсь данная статья подтолкнет вас в изучении очень перспективных и недорогих микроконтроллеров STM32.

ST-LINK/V2 позволяет программировать и отлаживать контроллеры STM32 и STM8, и поддерживается такими популярными средами разработки как Keil uVision, IAR EWARM, CoIDE, IAR EWSTM8 и другими. Оригинальный программатор стоит около 50$ (в чайне видел такой же за 35$). Также у этого программатора куча китайских клонов, различающихся степенью урезаности (отсутствием компонентов), вплоть до свистков за 7$. Кроме того, программатор распаян на платах STM*Discovery, опять же в урезанной версии и умеющий работать только с STM32 или только с STM8 в зависимости от того, какая дискавери.

Но иногда проще и интереснее сделать программатор самому, особенно если для этого не нужно много усилий. Все детали мне обошлись меньше чем в 5$ в местном магазине радиодеталей. Прошить сам программатор можно по интерфейсу UART (например с помощью любого преобразователя USB- UART).

Что умеет программатор/отладчик ST-LINK-V2:

  • Прошивка и отладка STM32 по интерфейсу SWD (пины SWCLK и SWDIO) + RST (не обязательно)
  • Необязательный пин SWO для последовательного терминала с внешним STM32 без дополнительных UART-ов и т.д. (Можно выполнять printf/scanf на STM32 с помощью программатора)
  • Прошивка и отладка STM8 по интерфейсу SWIM
  • Выдача внешнего питания 3.3В от программатора
  • Подключение по mini-usb

Для контроллеров STM32 и STM8 у меня уже есть программатор Versaloon , но его недостаток в том, что он не умеет отлаживать STM8 (только прошивает) и не поддерживается популярными средами разработки. Вообще по конструкции ST-LINK/V2 очень похож на versaloon. В программаторе используется тот же микроконтроллер STM32F103C8, ну и плюс минимальная обвязка. Основу схемы я взял из статьи Highlander-а в сообществе easyelectronics. Highlander поделился всей информацией, которая нужна для сборки программатора, за что ему огромное спасибо.

Поддерживаемые чипы

Программатор может использоваться для прошивки микросхем STM32:

  • STM32F100xx, STM32F101xx, STM32F102xx, STM32F103xx, STM32F105xx, STM32F107xx, STM32F2xxx, STM32F4xxx,
  • STM32L15xx6, STM32L15xx8,STM32L15xxB, STM32L151xC, STM32L151xD, STM32L152xC, STM32L152xD, STM32L162xD,
  • STM32TS60,
  • STM32W108C8, STM32W108xB, STM32W108xC, STM32W108xZ
  • STM8AF51x, STM8AF52x, STM8AF61x, STM8AF62x,STM8AH51x, STM8AH61x,
  • STM8S003K3, STM8S003F3, STM8S005C6, STM8S005K6, STM8S007C8, STM8S103xx, STM8S105xx, STM8S207xx, STM8S208xx, STM8S903F3, STM8S903K3,
  • STM8L101xx, STM8L15x, STM8L16x,
  • STM8TL52x4,STM8TL53x4

Проект

Схему я перерисовал в eagle, резисторы и конденсаторы у меня в корпусе 0805 (которые лежали в магазине). Также я заменил сборки стабилитронов на одиночные стабилитроны, которые удалось купить. Кроме того по причине ненадобности я убрал возможность переключения выходного напряжения между 5В и 3.3В, оставил только 3.3В. Из интерфейсов программирования STM32 я оставил только SWD, убрав громоздкий JTAG(ни разу его не использовал для Cortex-M3 и не думаю что когда- нибудь буду).

В результате схема выглядит так:

Необходимые компоненты:

Количество Описание Номинал Корпус Комопненты
9 Конденсатор 0.1u 0805 C1-C3, C5, C8-C10, C12,C13
1 Резистор 1.5k 0805 R3
1 Резистор 10 0805 R12
2 Резистор 100k 0805 R6, R11
2 Конденсатор электролит, тантал 10u EIA3528, CASE B C4, C11
2 2-х пиновые штырьки 0.1" 1x2 1X02 JP1, JP2
2 Конденсатор 20p 0805 C6, C7
8 Резистор 22 0805 R4, R5, R13-R18
3 Резистор 220 0805 R7-R9
1 Регулятор напряжения LM1117 3V3 Fixed SOT223 IC2
2 Резистор 4.7k 0805 R1, R2
2 Резистор 510 0805 R19, R20
7 SMD-Стабилитрон 5V1 SOD80C VD1-VD7
1 Резистор 680 0805 R10
1 Стандартный кварц HC49UV 8 MHz HC49U-V Y1
1 Разъем BH-10 или штырьки 5x2 BH-10 2X5 JP3
1 Индуктивность BLM18AG121SN1D 0805 L1
1 Светодиод Green 3 мм LED1
1 Светодиод Red 3 мм LED2
1 ST STM32F101/103 48pin LQFP-48 STM32F103C8T6 LQFP-48 IC1
1 Mini-USB "B" коннектор 5 пинов USB-MINIB-5PIN USB-MINIB JP4

Вместо индуктивности можно на крайний случай просто запаять перемычку, или резистор в 0 Ом. Регулятор напряжения должен быть любой в корпусе SOT223 на 3.3 В фиксированный, например у меня LD1117-3.3. Вместо STM32F103C8T6(64K flash) можно также взять более дорогой STM32F103CBT6 (128K flash). Электролиты конденсаторы можно брать в диапазон 4.7-47мкФ.

В принципе из схемы можно также убрать стабилитроны и поменять корпус компонентов на 0603 и в результате уменьшить форм-фактор до маленького свистка на подобии Versaloon Nano. Ну а я ограничился платой, вставляемой в дешевый пластиковый корпус 57х38х19:

Карта запайки компонентов:

Распиновка разъема:

Разъем может быть обжат под цветной шлейф, так, чтобы цвета совпадали с теми что на картинке. Тогда концы шлейфа можно зацепить на контакты BLS и подключать их по картинке. Однако удобнее сделать шлейф- переходник на 4-х пиновое SWIM-гнездо HU-4 (под штекер WH-4 на плату с целевым контроллером STM8) и HU-5 для SWD.

Конструирование

Плата хоть и двухсторонняя, но достаточно простая в изготовлении. Две, лазерно распечатанные стороны платы на листе фотобумаги (я использую фотобумагу плотностью 120г/м2) сопоставляются на свету и скрепляются степлером. Затем обезжиренный кусочек двухстороннего текстолита аккуратно вставляется в этот конверт, и утюжится при достаточной температуре (чтобы тонер не поплыл и пленка фотобумаги не запекалась важно не перегреть):


Неудачные места можно попробовать зарисовать водостойким маркером, но если картридж принтера хороший, температура утюга подобрана правильно, и плата была обезжирена, то результат должен получиться не хуже чем у меня:


После травления платы можно начинать сверлить:

  • Для переходных я использовал сверла 0.5мм;
  • для 4х отверстий под светодиоды - 0.7мм;
  • отверстия под разъем BH-10, двух штырьков джампера, двух крепежных отверстий под USB - 1мм;
  • для двух боковых крепежных отверстий - 3 мм

Чтобы не повредить площадки, отверстия лучше надсверливать с одной стороны, а затем досверливать с другой.

После сверления, при помощи обычной наждачной шкурки были сформированы контуры платы:


Лужение платы я выполнил паяльником, смазав плату обычным глицерином. Для запайки переходных хорошо подошла медная жила, изъятая из телефонного провода, обзываемого в народе "лапшой". После запайки можно слегка пройтись шкуркой по заостренным отроскам.


Если вы хотите сделать корпус для устройства, то самое время этим заняться. Для начала прикладываем плату, как указанно ниже на фото и сверлим поверх существующих обведенные отверстия. Затем переворачиваем эту половинку корпуса и вставляем в нее разъемы.


Вставленные разъемы нужно обвести канцелярским ножом или чем-то подобным. После обведения можно убрать разъемы и прорезать отверстия. Для светодиодов можно просто просверлить 3-х миллиметровые отверстия. Также для крепежных болтов М3 нужно подобрать или изготовить стойки(я отрезал по кусочку толстой изоляции)



После примерки корпуса можно выполнить запайку всех компонентов нижнего слоя, прорезать отверстие для разъема USB и выполнить примерку снова.


Если все подходит, можно запаивать верхний слой и помещать все окончательно в корпус:

Также можно скотчем приклеить небольшую наклейку с подписью пинов разъёма (лучше цветную):

Прошивка программатора

Для прошивки нужен UART интерфейс с компьютером с уровнями TTL. Я использовал вот такой самодельный преобразователь USB-UART. Если же у вас в компьютере есть RS232, то можно обойтись несложным переходником в TTL на каком-нибудь MAX232. А вообще всяких USB-UARTO-в сейчас в продаже очень много и цена на уже готовые преобразователи не превышает 2$.

Прошивка может быть выполнена из Windows с помощью утилиты Flash Loader Demonstrator (она есть в архиве). Пользователям Linux придется запустить виртуальную систему в Virtualbox (в виртуальную систему можно пробросить как преобразователи USB-UART, так и RS232 порт).

Перед началом прошивки прогрмматора возможно понадобится выпаять резистор R20 (который соединяет красный светодиод и линию U1_BL_TX). Мне выполнить прошивку без этого действия не удалось. Хотя подозреваю что это зависит от UART-а.

Итак последовательность действий по прошивке:

1. Установить на джампер Boot

2. Подключить землю, RX, TX UART-a. RX преобразователя нужно подключить к TX на разъеме программатора, а TX преобразователя соответственно к RX программатора. Если есть откуда, подключите питание к пину 3.3В на разъеме программатора (тогда при прошивке программатора можно будет не подключать его к USB). Подключить UART к компьютеру. Если питание к пину 3.3В не подключено, то нужно также подключить программатор к компьютеру, что бы запитать его. Посмотреть какой COMх порт занял ваш UART преобразователь.

3. Запустить Flash Loader Demonstrator. Выбрать COMx порт, остальные настройки оставить как есть:

4. Нажать Next. Если UART подключен правильно, питание подано, то должно появится такое окно:

Если появляется ошибка, то проверьте физический контакт. Опять повторюсь что на этом этапе может помешать светодиод, соединяющей линию TX с землей, по этому его стоит временно отключить выпаяв R20.

5. Нажимаем Next два раза. В следующем окне указываем путь к прошивке firmwareSTLinkV2.J16.S4.bin:

6. Опять нажимаем Next и ожидаем завершения прошивки. После успешного завершения программирования окно должно приобрести такой вид:

7. Отключаем преобразователь и питание с программатора.

8. Теперь самое главное: нужно обновить прошивку, иначе программатор не заработает. Для начала установим драйвер windriverst- link_v2_usbdriver.exe.

9. Подключаем программатор. Когда запустится мастер установки нового оборудования, выбираем «автоматический поиск драйверов».

10. Запускаем upgradeST-LinkUpgrade.exe(папка upgrade обязательно должна быть распакована). В открывшемся окне прожимаем Device Connect, Yes. Должно появится окно Upgrade is successful.

Микроконтроллеры для котят

Всем Мяу, котаны:)

Как-то раз от меня ушла кошка:(Ну и чем валерьянку лопать, я решил заняться делом, так сказать «на благо Родине». Давно уж хотел цифровыми устройствами заняться, да времени не было (сами понимаете, то спать, то с кошкой по крышам гулять), а тут как раз время-то и появилось. Ну-с начнём..)

Всё как обычно начинается с выбора. Ну вроде выбор-то небольшой PIC, да AVR. Последние мне как-то больше приглянулись. Нужен был ещё и USB программатор за неимением других портов на компьютере, от цены которого у меня чуть хвост не отвалился. Ещё Arduino есть - зверёк такой. Его и программировать по USB можно. Ну, думаю, "то что доктор прописал". В селе нашем его только через интернет-магазин достать можно. Нашёл, где по-выгодней, чуть не купил и... ОПА! Смотрю - STM32VL-Discovery. Что за зверь такой? Хм, STM32.. Что-то слышал краем уха.. А от характеристик усы дыбом, честно!

А лап-то у неё сколько!

Итак, попорядку:

  • У Arduino 14 цифровых портов ввода/вывода и 6 аналоговых входов. У STM32VL-Discovery 45 цифровых входа/выхода 10 из которых по желанию превращаются в аналоговые входы.
  • У Arduino 32 Кб для хранения программы и 2 Кб ОЗУ. У STM32VL-Discovery 64 Кб для хранения программ и 8 Кб ОЗУ.
  • У Arduino тактовая частота 16 МГц у STM32VL-Discovery же 24 МГц.
  • Любой микроконтроллер STM32 можно заменить другим STM32, но с лучшими характеристиками, без изменения схемы
  • STM32 можно программировать без программатора по COM порту (об этом чуть позже)
  • Цена Arduino на момент написания статьи ~1300 рублей, STM32VL-Discovery ~600 рублей. Это ж дешевле более чем в 2 раза!

А что дальше? В STM32VL-Discovery есть встроенный программатор/отладчик, который лёгким движением лапы (снятием перемычек) может программировать и отлаживать (отладка очень уж вещь полезная, но об этом чуть позже) микроконтроллеры STM32 за пределами платы. С Arduino такое не прокатит. То есть используя STM32VL-Discovery мы и деньги экономим и получаем большую производительность и свободу творчества:)

Да и сами микроконтроллеры STM32 выглядят привлекательней остальных:

STM32F100C4T6B ATtiny24A-SSU PIC16F688-I/SL STM32F103RET6 ATmega1284P-PU PIC18F4550-I/PT
Средняя цена, руб 60 65 60 240 330 220
Тактовая частота, МГц 24 20 20 72 20 48
Flash память, Кбайт 16 2 4 512 128 16
RAM, Байт 4096 128 256 65536 16384 2048
USART, шт 2 0 0 5 2 0
SPI, шт 1 1 0 3 1 1
АЦП, шт 16x12Bit 8x10Bit 8x10Bit 16х12Bit 8x10Bit 13x10Bit
ЦАП, шт 1x12Bit 0 0 2х12Bit 0 0
Количество линий ввода/вывода, шт 37 12 12 51 32 35

А ещё STM32 32-х разрядные, а это означает возможность работы с 32-х битными данными за один такт. AVR и PIC этим не похвастаются.

Ну что, котаны, убедил? Тогда начнём курс молодого бойца цифровика!)

Как оно работает? Из чего состоит? Что умеет?

Как известно, все коты очень любознательные, а радиокоты особенно!

Микроконтроллер - это микросхема сочетающая в себе функции процессора, периферии, имеющая ОЗУ, flash память. Как компьютер, только меньше!

Проведём аналогию: компьютером управляет операционная система, а микроконтроллером «прошивка», которую пишете Вы; операционная система компьютера хранится на жёстком диске, «прошивка» микроконтроллера в его flash памяти; функции ОЗУ схожи - хранение изменяющихся данных во время выполнения программы. А ещё у МК есть различные периферийные устройства, такие как АЦП и ЦАП например.

МК общается с внешним миром при помощи лап на его корпусе (не таких как у котов, конечно, а металлических). Но не все из них управляются программой, есть выводы питания, вывод сброса, выводы питания периферии, вывод резервного питания. А те, которые управляются программой делятся на группы называемые «порты». Все эти управляемые выводы называются 2-мя буквами и цифрой. Например PA1: P - порт, А - порт «А», 1 - номер вывода этого порта.

В программе порты конфигурируются либо на вход, либо на выход, по вашему желанию.

Выводы порта настроенного на вход могут быть в разных режимах, для каждого вывода он может быть своим:

  • Цифровой вход - вход, значение которого (логическая 1 или 0) можно считывать программой. Если напяжение на входе 0, то значение равно 0, если на входе напяжение равное напрядению питания, то значение входа 1. Третьего не дано. Можно сделать с подтягивающим резистором либо к питанию, либо к массе
  • Аналоговый вход - вход значение которого можно считывать программой, но значений может быть много - целых 4096. А точнее от 0 если на входе напяжение 0 относительно минуса питания микроконтроллера до 4095, если на входе напряжение равное напряжению питания. Все эти преобразования делает АЦП - аналогово-цифровой преобразователь, при помощи его можно например измерять напряжение на терморезисторе и узнавать температуру или измерять напяжение на фоторезисторе и узнавать яркость попадающего на него света... Ну много чего можно придумать, если фантазия есть:) Если питать микроконтроллер от 3В, то 0В = 0, а 3В = 4096, значит 3/4096=0.000732421, т.е. при изменении напяжения на входе на 0.000732421В значение входа в программе меняется на 1. Не так-то всё и сложно, да? Идём дальше
  • Цифровой вход в режиме альтернативной функции - вход для работы с периферией. Например вход для таймера или вход для какого-нибудь интерфейса. Из программы значение этого входа считать нельзя. В программе можно например считать данные полученные по этому выводу каким-нибудь интерфейсом.

А у порта настроенного на выход выводы могут быть в таких режимах:

  • Выход. Просто выход. Обычный цифровой выход. На выводе либо напрядение питания (логическая 1) либо на выводе нет напряжения (логическая 0). Всё просто.
  • Выход в режиме альтернативной функции - выход управляемый периферией. Этим выходом нельзя управлять из программы, но программой можно заставить управлять этим выводом например интерфейс.

Но не все выводы можно назначать «как захочется». Для того, что бы узнать, что можно, а что нельзя нужно посмотреть документацию (таблица 4) или воспользоваться программой MicroXplorer.

Перед использованием порта его нужно сначала тактировать - подавать на него тактовые импульсы, т.к. изначально они не подаются для экономии энергии. Можно выбрать разную частоту тактирования - больше частота - быстрее работают входы или выходы этого порта, но и больше потребление энергии.

Ещё есть выводы BOOT 0 и BOOT 1 . Эти выводы не относятся к портам, они служат для управления загрузкой микроконтроллера. Если во время подачи питания на выводе BOOT 0 логический ноль (вывод соединен с общей точкой), то микроконтроллер выполняет программу загруженную во flash память, т.е. Вашу прошивку. Если во время подачи питания на выводе BOOT 0 логическая еденица (вывод соединен с питанием микроконтроллера), а на выводе BOOT 1 логический ноль, то микроконтроллер выполняет не Вашу прошивку, а записанный на заводе загрузчик. Запомните это! Вы будете часто пользоваться этим в процессе работы с микроконтроллерами STM32! Иногда загрузка записанного с завода загрузчика - единственный способ записать/изменить прошивку микроконтроллера. Это бывает например при конфигурировании в прошивке выводов, к которым подключается программатор или при прошивке микроконтроллера без использования программатора. Так что настоятельно рекомендую при проектировании печатной платы эти выводы (или хотя бы BOOT 0) распологать в удобном месте.

Вот разобрались:) Теперь знаем что такое микроконтроллер, из чего он состоит. Сейчас узнаем ещё о некоторых премудростях и перейдём к самому интересному - практике!

Программа в микроконтроллере выполняется пошагово. Один такт процессора - один шаг программы.

Например пусть перемигивается красная и зелёная лампочки, пока НЕ нажата кнопка. Длительность каждой лампы - 5 секунд. Вот алгоритм:

  1. Проверяем, на входе с кнопкой есть напряжение? (кнопка замыкает вывод микроконтроллера на + питания)
  2. Если нет напряжения, то загорается красная лампочка на 5 секунд, зелёная тухнет, если есть напряжение, то начинаем всё сначала
  3. Снова проверяем
  4. Если нет напряжение, то загорается зелёная лампочка на 5 секунд, красная тухнет, если есть напряжение, то начинаем всё сначала
  5. Начинаем сначала

СТОП! А если я нажму кнопку, пока горит лампочка? То ничего не произойдёт! Потому что программа выполняется пошагово, а шаг с проверкой нажатия кнопки находится в момент переключения лампочек.
Вот именно для таких случаев есть такая вещь, как прерывания

Прерывания дают возможность прервать выполнение основной программы. Сделать это можно или внешним событием (нажатие кнопки, отпускание кнопки приём данных и пр.) или внутренним (по таймеру или пришло время кормить кота например). Когда происходит это самое прерывание, то начинает выполняться подпрограмма. Подпрограммы могут быть разные для разных видов прерываний, эти подпрограммы называются обработчики прерывния.

Когда этот самый обработчик прерывания закончит свою работу, основная программа начинает выполняться с того места, где была прервана.

Встаём на лапы!

Ну, котята, пора вставать на лапы! Надеюсь у Вас уже есть отладочная плата? Или хотя бы микроконтроллер? Надеюсь есть:) А если нет, то бежим в магазин! (и желательно не за колбасой. хотя...) Какое же это учение без практики?

Отлично на первых порах иметь отладочную плату, например STM32VL-Discovery, но если жаба душит или всё-таки нехватает на колбасу, то можно обойтись и одним микроконтроллером и преобразователем интерфейсов RS-232 ->UART (напр. MAX3232) или USB ->UART (напр. FT232RL). В этом случае в 100 рублей можно вполне уложиться, но придётся делать печатную плату и паять минимум 48 выводов шириной 0,3 мм с зазором 0,2 мм. Я предупреждал.

Сначала нужно естественно прикошачить отладочную плату или контроллер к компьютеру.

Если у Вас отладочная плата:

С отладочной платой, конечно проще. Берём шнурок Mini-USB и соединяем плату с компьютером, все драйверы должны поставиться автоматически. Увидеть STMicroelectronics STLink dongle в диспетчере устройств - хороший знак! Ну а если что-то пошло не так и ничего не вышло - не надо царапать диван, нужно просто зайти сюда и установить STM32 ST-LINK utility .

Ну а если Вы счастливый обладатель компьютера под управлением Windows 8, то перед проведением вышеописанных действий нужно сделать так: Параметры -> Изменение параметров компьютера -> Общие -> Особые варианты загрузки и выбрать параметр Отключение проверки подписи драйверов .

Если у Вас микроконтроллер:

Если у Вас один микроконтроллер, то у Вас должны быть прямые лапы. Но я в Вас не сомневаюсь!

Перед подключением микроконтроллера к компьютеру его нужно припаять к печатной плате. Для этого кроме микроконтроллера и прямых лап нужна как минимум печатная плата. А тут уж Ваше творчество.

Рабочий минимум на схеме ниже:

Но это неинтересный минимум.

Добавьте светодиодов и кнопок (не забудьте про выводы BOOT), например так

А вот с пайкой этой блохи могут возникнуть проблемы. Но я надеюсь, не возникнут. Я накошачился паять её своим любимым советским 25 Вт паяльником с шириной жала в 3/4 ширины контроллера. У меня больше проблем с изготовлением печатной платы... ну тут уж у каждого своя технология.

И переходник нужно сделать на UART по документации к той микросхеме, которую купили.

Соединяем выводы TxD и RxD на печатной плате с выводами RxD и TxD соответственно переходника. Не забываем про общую точку и питание всего этого.

Выбор и установка ПО

Пользоваться мы будем средой разработки CooCox IDE , но это не просто так, а по нескольким причинам:

  • Во-первых это свободно распространяемое ПО. А это значит, что Ваша карма будет чиста
  • На мой взгляд (да и не только на мой) эта среда разработки удобнее остаальных
  • Позволяет использовать отладку
  • Много примеров, которые можно загружать в среду разработки (полезно для котят и не только)

Среда разработки - это программа для написания кода, компилятор, отладчик в одном. Удобненько:) Но если какому-то суровому Челябинскому коту удобнее писать код (в блокноте например), компилировать и прошивать разными программами - я не против, тогда Вам пригодится STM32 ST-LINK utilit для загрузки прошивки в микроконтроллер. Хозяин барин, как говорится.

Эта среда разработки основана на многим известном Eclipse.

  1. Идём сюда
  2. Тыкаем Download through CoCenter (Recommend)
  3. Вводим адрес эл.почты (можно от балды, он там «для галочки»)
  4. После загрузки устанавливаем этот самый CoCenter
  5. В первой строчке, где написано CooCox CoIDE тыкаем Download
  6. После того, как загрузка закончится, то вместо Download будет Install . Сюда и жмём
  7. Идём сюда
  8. Справа в колонке Download скачиваем файл который .exe. Устанавливаем его.
  9. Открываем сам CooCox CoIDE , вкладка Project , Select Toolchain Path .
  10. Указываем путь к файлу arm-none-eabi-gcc.exe (это мы установили в п.8, путь приблизительно такой: D:Program Files (x86)GNU Tools ARM Embedded4.7 2013q1bin)
  11. Снова открываем CoIDE , нажимаем View -> Configuration , открываем вкладку Debugger и делаем так [фото]
  12. Радуемся, потому что теперь мы можем написать программу и прошить её в микроконтроллер! Чем мы и займёмся.

Если у Вас вариант без отладочной платы/программатора, то для загрузки программы в МК понадобится программка Flash Loader Demonstrator которая находится

Находим общий язык

Перед тем, как писать свою первую программу нужно найти с МК общий язык. Вряд ли он будет учить наш язык, по этому придется выучить (а может просто вспомнить) язык на котором мы будем общаться с МК, это Си. Понадобятся нам только основы (состав программы, функции, операторы). Если язык этот знаете, то можете сразу перейти к пункту «Первая программа», ну а незнающих я введу в курс дела.

Проект состоит из файлов с расширениями .c и .h . В первых находятся функции во вторых названия используемых функций и константы например. Так уж заведено. Самый главный файл, в котором находится код программы main.c . Для использования различных функций нужно подключать библиотеки с этими функциями. Подключаются они записью #include "название_библиотеки" ну библиотеки естественно должны быть в проекте. Подключают их в самом начале файла.

Функции - это своеобразная часть программы. Вообще программа состоит из одной или нескольких функций. Функция имеет вид:

тип_возвращаемой_переменной имя_функции (тип_переменной)
{
Тело функции
}

В функцию можно отправить какую-нибудь переменную, фунция её обработает и вернёт какое-нибудь значение. Очень удобно использовать функцию для повторяющихся действий, чем писать постоянно один и тот же кусок кода, можно просто отправлять переменную в функцию и получать обратно обработанное значение.

Перед тем, как использовать функцию, её нужно объявить в самом начале файла. Делают это в таком виде:

тип_возвращаемой_переменной имя_функции (тип_переменной);

Ах, да, забыл самое главное! В конце каждой строки должна быть точка с запятой!

Если функция ничего не возвращает (например временная задержка, она просто тянет кота за хвост время), то тип указывают void .

При запуске, первой всегда выполняется функция main() .

Ну с функциями вроде разобрались, понимание придёт только с практикой.

Выше я упоминал тип переменной . Все переменные могут быть разных типов, вот основные:

  • INT - переменная этого типа может быть только целым числом от -2147483648 до 2147483647
  • FLOAT - переменная этого типа число с точностью до 7 разрядов от ±1,5*10-45 до ±3,4*1033
  • DOUBLE - число с точностью до 16 разрядов от ±5*10-324 до ±1,7*10306
  • ULONG - тоже целое число, но от 0 до 18446744073709551615
  • LONG - целое от -9223372036854775808 до 9223372036854775807
  • CHAR - один символ
  • BOOL - логическая переменная. Она может иметь только 2 значения: истина (true) или ложь (false)

Строку (слово, предложение) можно представить как массив из символов типа char. Например:

char stroka = "Слово";

Здесь квадратных скобках - количество символов в строке, «stroka» - название массива.

Перед использованием переменной её нужно обязательно объявить. (просто указать тип переменной и имя)

  • + - сложение.
  • - - вычитание.
  • * - умножение.
  • / - деление.
  • = - присвоение переменной значения.

Например выражение a=b+c значит присвоить переменной a значение суммы значений переменных b и c .

  • ++ - инкремент. Увеличение значения переменной на 1
  • -- - декремент. Уменьшение значения переменной на 1

Например выражение a++ значит увеличить значение переменной a на 1 (то же самое, что и a=a+1 )

  • == - сравнение, знак «равно». (НЕ ПУТАТЬ С ПРИСВОЕНИЕМ)
  • != - сравнение, знак «не равно».
  • < - сравнение, знак «меньше».
  • <= - сравнение, знак «меньше или равно».
  • > - сравнение, знак «больше».
  • >= - сравнение, знак «больше или равно».

Например выражение a становится истинным, если значение переменной a меньше значения переменной b и ложным, если значения равны или a больше b . Выражение a==b истинно если a равно b и ложно, если a не равно b , НО выражение a=b истинно всегда , потому что это не сравнение, это присвоение переменной a значения переменной b .

  • % - остаток от деления

Например если a=5 , b=3 , то значение выражения a%b будет равно 2 (т.к. 5/3=1 (ост.2))

  • << - побитовый сдвиг влево. Не вдаваясь в подробности значение выражения a< на языке Си будет равно выражению a*2 b
  • >> - побитовый сдвиг вправо. Выражение a>>b в программе равносильно выражению a/2 b
  • & - логическое И .
  • | - логическое ИЛИ .
  • ~ - инвертирование.

Чуть не забыл рассказать про циклы. Основные:

while(условие) {

тело цикла

Тело цикла (всё что в фигурных скобках) выполняется, когда условие истинно (пока условие не станет ложным).

for (начальное_значение; цикл_выполняется_до, шаг) {

тело цикла

Начальное_значение - начальное значение счётчика

Цикл_выполняется_до - до достижения какого значения выполняется цикл

Шаг - с каким шагом счетчик считает

Например

for (i=0; i<10, i++) {

тело цикла

Здесь начальное значение переменной i равно 0, цикл выполняется, пока значение переменной i меньше 10, при каждом выполнении цикла к переменной i прибавляется 1. Так же можно изменять значение переменной прямо в цикле.

if (условие){

тело 1

} else {

тело 2

В усовном переходе «тело 1» выполняется, если условие истинно и выполняется «тело 2», если условие ложно. Ещё есть такой вариант:

if (условие 1){

} else if (условие 2) {

В этом случае «тело 1» выполняется, если истинно «условие 1», «тело 2» выполняется, если истинно «условие 2». Таких условий может быть сколько угодно, так же может быть одно else.

Условия могут быть простыми и составными: простые - одно логическое выражение, а составное - несколько логических выражений соединённых знаком & (условия истинно, когда все условия соединённые этим знаком истинны) или | (условие истинно, если хотябы одно условие соединённое этим знаком истинно).

Ещё полезная вещь - комментарии. Помогут разобраться в забытом проекте:) или просто что бы что-то не забыть. Комментировать можно или после знаков // и до конца строки или начинаются знаками /* и заканчиваются */ , в таком случае комментарий может быть любое количество строк. На размер программы комментарии не влияют.

Ну вот, из основного вроде всё. На первое время хватит (до написания следующей части статьи)

Первая программа

Не будем отступать от традиций (а то мало ли) и начнём с Hello World. А по пути будем продолжать знакомиться с микроконтроллером и так сказать получать опыт.

Открываем среду разработки:

Нажимаем Browse in Repository

Выбираем ST

Потом мы увидим список подключаемых библиотек.

Для нашей простенькой программы нам понадобится: CMSIS core , CMSIS Boot , RCC , GPIO .

Библиотеки CMSIS core и CMSIS Boot - системные, их нужно подключать обязательно

Библиотека RCC для работы с системой тактирования

Библиотека GPIO для работы с портами ввода-вывода

Теперь слева в окне Project открываем файл main.c .

Сначала нужно подключить наши библиотеки (CMSIS подключать не нужно).

Идём в самое начало программы и добавляем строчки:

#include "stm32f10x_gpio.h"
#include "stm32f10x_rcc.h"

void Delay(int i) {
for (; i != 0; i--);
}

Так. Тут по порядку, функция ничего не возвращает, по этому void , название функции Delay , сразу объявляем переменную i типа int . В фигурных скобках тело функции - цикл for . Это его строчная запись. Начальное значение i мы не изменяем, цикл выполняется, пока i не равна нулю (как i становится равна нулю, цикл прекращается, функция «выключаеся»). С каждым выполнением тела цикла (тактом) переменная i уменьшается на 1. Т.е. суть цикла - просто повториться количество раз равное i . Пока выполняется цикл время идёт, происходит задержка.

Какой порт ответственный за какой вывод можно посмотреть в документации к МК:

Для тактирования порта С добавляем строчку:

RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC , ENABLE);

Добавляем в прогармму строчку:

GPIO_InitTypeDef GPIO_Init1;

Этой строчкой мы объявили структуру GPIO_InitTypeDef - дали ей название GPIO_Init для использования в нашей программе далее.

Какие в этой структуре можно настроить параметры и какой вид они имеют, смотрим всё в том же stm32f10x_gpio.h :

Теперь чтобы настроить параметры выводов при помощи структуры нужно написать её название, поставить точку и появится окошечко в котором эти параметры указаны

Дважды щёлкаем по одному из них, и он появляется в строке, далее ставим = (присвоить) и прописываем значение из stm32f10x_gpio.h

Так же поступаем со всеми параметрами. Не забываем точку с запятой в конце каждой строки!

GPIO_Init(GPIOC , &GPIO_Init);

Теперь будем мигать! Мигать мы будем циклично, сделаем зацикливание в цикле while. Условие цикла будет 1. Еденица - всегда истина, нуль - всегда ложь.. такова се ля ви..

Чтобы подать ток на вывод нужно установить бит, чтобы выключить вывод нужно сбросить бит. Как это делать - всё в том же stm32f10x_gpio.h :

Делаем так:

while (1){

GPIO_SetBits(GPIOC, GPIO_Pin_9);

Delay (200000);

GPIO_ResetBits(GPIOC, GPIO_Pin_9);

Delay (200000);

1 всегда истина, значит цикл будет зацикливание.

GPIO_SetBits - функция установки бита

GPIO_ResetBits - функция сброса бита

Delay (200000) - на этой строчке выполнение программы переходит в функцию Delay , в ту самую, в которой цикл for . Число 200000 в скобках - передаётся в эту функцию, как переменная i . (помним строчку void Delay(int i) ?) и выполняется тот самый цикл в этой функции, все 200000 раз. Это быстро:) после окончания работы цикла for функция D elay заканчивает свою работу, т.к. она void , то она ничего не возвращает и программа продолжает выполняется дальше.

Т.к. while зациклен, то включение светодиода, задержка, выключение светодиода, задержка будут выполняться бесконечно циклично. Пока не выключится питание или не произойдёт прерывание (об этом в следующей статье).

Ну вот, первая программа готова. Теперь нажимаем F7, программа компилируется.

Теперь если у Вас отладочная плата, то подключаем её при помощи USB шнурка и нажимаем Download Code To Flash . Радуемся выполненной работе и полученным знаниям:)

А если у Вас не отладочная плата, то подключите к своей плате переходник сделаный ранее, а переходник к COM-порту компьютера. Далее соедините вывод BOOT 0 c плюсом питания микроконтроллера и включите питание микроконтроллера. Тем самым микроконтроллер войдет в режим прошивки. Вообще процедура прошивки не сложная. Нужно просто следовать указаниям приложения Flash Loader Demonstrator . Сначала указываем номер COM-порта, через который у Вас подключен микроконтроллер и скорость. Для воизбежании сбоев, скорость лучше выбрать поменьше

Если программа увидела Ваш микроконтроллер, то появится окно, в котором будет написано, сколько у него памяти

После нажатия «Next», Вы увидите страницу с адресацией памяти. Она нам не понадобится.

Следующий шаг самый ответственный. Можно выбрать очистку памяти или прошивку

Для прошивки выбираем Download to device и в поле Download from file выбираем компилированный.hex файл, который находится в папке CooCox -> CooIDE -> workspace -> имя_проекта -> имя_проекта -> Debug -> Bin . После снова нажимаем «Next».

После того, как увидим такое окно:

Отключаем питание микроконтроллера, закрываем Flash Loader Demonstrator , отключаем переходник, и включаем микроконтроллер в обычном режиме (когда при включении вывод BOOT 0 соединен с минусом питания микроконтроллера). Радуемся!

Итак, теперь мы знаем, чем микроконтроллеры STM лучше других, знаем как работает микроконтроллер, умеем прошивать микроконтроллер в отладочной плате и в своей плате, знаем основы языка Си, которые нужны для программирования STM32, получили опыт работы с микроконтроллером (надеюсь положительный) и самое главное, теперь Вы можете воплотить свои идеи цифровых устройств в жизнь (и поведать о них, на нашем любимом РадиоКоте)! Пусть пока ещё простенькие, но всё навёрстывается с опытом. А я постараюсь в следующих статьях рассказать об АЦП, ЦАП, прерываниях, использовании отладки и других полезностях.

Как вам эта статья?

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то