Программирование stm32 на си. Быстрое освоение микроконтроллеров STM32

Система тактирования STM32.

Сегодня речь пойдет о системе тактирования микроконтроллеров STM 32. Если вы ещё не знаете что такое такт, частота и вообще не затрагивали до этого системы тактирования, . Хоть по данной ссылке и рассматривается система тактирования микроконтроллера AVR , понятия определенные в уроке по ссылке, применимы и к системе тактирования микроконтроллеров STM 32.

Итак, приступим!

Рассматривать систему тактирования будем на примере микроконтроллера STM 32F 303VCT 6, который установлен в отладочной плате STM 32 F 3 DISCOVERY .

Взглянем на общую структуру системы тактирования:

Как мы видим, система тактирования STM 32, на порядок сложнее системы тактирования микроконтроллеров AVR, не смотря на то, что на рисунке отражена лишь основная её часть.

Давайте разбираться!

Рассматривать схему следует слева направо. Во-первых, мы должны выбрать основной источник тактирования контроллера. Выбирать будем между HSI и HSE.

HSE -Внешний высокочастотный генератор. Источником тактирования для него служит внешний тактовый сигнал (Input frequency ), который как мы видим по схеме, может быть от 4 до 32 МГц. Это может быть кварцевый резонатор, тактовый генератор и так далее.

HSI - Внутренний высокочастотный генератор. В микроконтроллерах STM 32 F 3 является RC цепочкой с частотой 8МГц. Точность значительно ниже внешнего генератора HSE.

Каждый из данных источников тактирования может быть соединен с PLL . Однако перед подачей на PLL сигнал с HSI будет уменьшен в 2 раза. Сигнал HSE в свою очередь, может подаваться на PLL без изменений, либо быть уменьшен в определенное количество раз, по желанию пользователя.

PLL Clock - Система Фазовой Автоподстройки Частоты (ФАПЧ). Позволяет умножить входной сигнал HSI или HSE в необходимое количество раз.

С PLL сигнал может быть подан на системную шину, максимальная частота которой 72МГц. Либо, на системную шину может быть подан сигнал HSE или HSI напрямую, то есть без преобразования PLL .

Системная тактовая частота SYSCLK , тактирует все основные шины микроконтроллера, через соответствующие делители, как мы видим на схеме выше. Следует учитывать, что максимальная тактовая частота некоторых шин ниже SYSCLK . Поэтому, перед подачей тактового сигнала SYSCLK на шину, следует поделить его соответствующим делителем. Если этого не сделать, микроконтроллер зависнет.

Для настройки тактирования можно прибегнуть к ручной правке регистров, либо воспользоваться библиотечными функциями. Мы воспользуемся библиотекой.

Настроим нашу отладочную плату STM 32 F 3 DISCOVERY на работу с тактовой частотой 72 МГц.

Создадим и настроим проект в Keil uVision . .

Добавим следующий код:

#include "stm32f30x_gpio.h" #include "stm32f30x_rcc.h" void InitRCC() { RCC_HSEConfig(RCC_HSE_ON); //Enable HSE while(RCC_GetFlagStatus(RCC_FLAG_HSERDY) == RESET) ; //Waiting for HSE //Set Flash latency FLASH->ACR |= FLASH_ACR_PRFTBE; FLASH->ACR &= (uint32_t)((uint32_t)~FLASH_ACR_LATENCY); FLASH->ACR |= (uint32_t)((uint8_t)0x02); RCC_PREDIV1Config(RCC_PREDIV1_Div1);//PREDIV 1 Divider = 1 RCC_PLLConfig(RCC_PLLSource_PREDIV1,RCC_PLLMul_9);//Set PREDIV1 as source for PLL,And set PLLMUL=9 RCC_PLLCmd(ENABLE);//Enable PLL while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET) ;//Waiting for PLL RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);//Set PLL as SYSCLK Soucre RCC_HSICmd(DISABLE);//Disable HSI } int main(void) { RCC_ClocksTypeDef RCC_Clocks; InitRCC(); RCC_GetClocksFreq (&RCC_Clocks); __NOP (); while (1) { } }

#include "stm32f30x_gpio.h"

#include "stm32f30x_rcc.h"

void InitRCC ()

RCC_HSEConfig (RCC_HSE_ON ) ; //Enable HSE

while (RCC_GetFlagStatus (RCC_FLAG_HSERDY ) == RESET ) ; //Waiting for HSE

//Set Flash latency

FLASH -> ACR |= FLASH_ACR_PRFTBE ;

FLASH -> ACR &= (uint32_t ) ((uint32_t ) ~ FLASH_ACR_LATENCY ) ;

FLASH -> ACR |= (uint32_t ) ((uint8_t ) 0x02 ) ;

RCC_PREDIV1Config (RCC_PREDIV1_Div1 ) ; //PREDIV 1 Divider = 1

RCC_PLLConfig (RCC_PLLSource_PREDIV1 , RCC_PLLMul_9 ) ; //Set PREDIV1 as source for PLL,And set PLLMUL=9

RCC_PLLCmd (ENABLE ) ; //Enable PLL

while (RCC_GetFlagStatus (RCC_FLAG_PLLRDY ) == RESET ) ; //Waiting for PLL

RCC_SYSCLKConfig (RCC_SYSCLKSource_PLLCLK ) ; //Set PLL as SYSCLK Soucre

RCC_HSICmd (DISABLE ) ; //Disable HSI

int main (void )

RCC_ClocksTypeDef RCC_Clocks ;

InitRCC () ;

RCC_GetClocksFreq (& RCC_Clocks ) ;

NOP () ;

while (1 )

В основной функции main , объявлена структура RCC _ ClocksTypeDef . Данная структура содержит в себе поля, отражающие текущую тактовую частоту определенных частей контроллера.

Затем в основной функции вызывается функция InitRCC ,которая настраивает тактирование контроллера. Рассмотрим её подробнее.

Командой RCC _ HSEConfig (RCC _ HSE _ ON ), мы включаем HSE .На его включение необходимо время, поэтому необходимо подождать пока не будет установлен флаг RCC _ FLAG _ HSERDY . Делаем мы это в цикле while (RCC _ GetFlagStatus (RCC _ FLAG _ HSERDY ) == RESET ) .

Затем мы производим настройку задержки флеш памяти. Это необходимо делать при работе системной шины на частотах свыше 36 МГц!

После настройки задержки выбираем предделитель PLL . Командой RCC _ PREDIV 1 Config (RCC _ PREDIV 1_ Div 1) мы устанавливаем предделитель на 1. Командой RCC _ PLLConfig (RCC _ PLLSource _ PREDIV 1, RCC _ PLLMul _9 ) выбирам HSE как источник частоты для PLL и выбираем умножение в 9 раз. Остается только влючить PLL командой RCC _ PLLCmd (ENABLE ), и ожидать установки флага RCC _ FLAG _ PLLRDY цикле while . Тем самым мы обеспечиваем необходимую временную задержку для включения PLL . После этого выбираем PLL как источник системной частоты SYSCLK командой RCC _ SYSCLKConfig (RCC _ SYSCLKSource _ PLLCLK ). Предделители шин трогать не будем, поэтому шины AHB ,APB 1,APB 2 будут работать на частотах 72,36 и 72 МГц соответственно.

Остается лишь выключить внутреннюю RC цепочку командой RCC _ HSICmd (DISABLE ).

После выполнения функции InitRCC , в основном цикле прошивки заполним структуру RCC _ ClocksTypeDef , что позволит нам узнать, правильно ли мы настроили систему тактирования. Делаем мы это командой RCC_GetClocksFreq (&RCC_Clocks).

Посмотреть значения тактовых частот контроллера можно в режиме отладки, установив точку останова на команде __ NOP () что означает, пустую команду. Данную команду часто добавляют для удобства отладки.

Подключаем отладочную плату STM32 F3 DISCOVERY , собираем прошивку, прошиваем плату и наконец, заходим в режим отладки, нажав кнопку Start /Stop debug session (Ctrl +F 5). Установив точку останова на функции __ NOP ,и добавив структуру RCC _Clocks в Watch ,запускаем исполнение прошивки, нажав F 5. В результате видим:

Частоты настроены правильно, и микроконтроллер теперь работает на частоте 72 Мгц.

Итак, как Вы поняли из сегодняшнего урока, система тактирования STM 32 достаточно мощна и гибка для удовлетворения потребностей Ваших проектов. Потратив время на её настройку - Вы достигнете прекрасных результатов!

Спасибо за внимание! Ваши вопросы как обычно в комментариях!

Любое копирование, воспроизведение, цитирование материала, или его частей разрешено только с письменного согласия администрации MKPROG .RU . Незаконное копирование, цитирование, воспроизведение преследуется по закону!

В последние годы 32 разрядные микроконтроллеры (МК) на основе процессоров ARM стремительно завоёвывают мир электроники. Этот прорыв обусловлен их высокой производи тельностью, совершенной архитектурой, малым потреблением энергии, низкой стоимостью и развитыми средствами программирования.

КРАТКАЯ ИСТОРИЯ
Название ARM является аббревиатурой Advanced RISC Machines, где RISC (Reduced Instruction Set Computer) обозначает архитектуру процессоров с сокращённым набором команд. Подавляющее число популярных МК, а пример семейства PIC и AVR, также имеют архитектуру RISC, которая позволила увеличить быстродействие за счёт упрощения декодирования инструкций и ускорения их выполнения. Появление совершенных и производительных 32 разрядных ARMмикроконтроллеров позволяет перейти к решению более сложных задач, с которыми уже не справляются 8 и 16 разрядные МК. Микропроцессорная архитектура ARM с 32 разрядным ядром и набором команд RISC была разработана британской компанией ARM Ltd, которая занимается исключительно разработкой ядер, компиляторов и средств отладки. Компания не производит МК, а продаёт лицензии на их производство. МК ARM – один из быстро развивающихся сегментов рынка МК. Эти приборы используют технологии энергосбережения, поэтому находят широкое применение во встраиваемых системах и доминируют на рынке мобильных устройств, для которых важно низкое энергопотребление. Кроме того, ARM микроконтроллеры активно применяются в средствах связи, портативных и встраиваемых устройствах, где требуется высокая производительность. Особенностью архитектуры ARM является вычислительное ядро процессора, не оснащённое какими либо дополнительными элементами. Каждый разработчик процессоров должен самостоятельно до оснастить это ядро необходимыми блоками под свои конкретные задачи. Такой подход хорошо себя зарекомендовал для крупных производителей микросхем, хотя изначально был ориентирован на классические процессорные решения. Процессоры ARM уже прошли несколько этапов развития и хорошо известны семействами ARM7, ARM9, ARM11 и Cortex. Последнее делится на подсемейства классических процессоров CortexA, процессоров для систем реального времени CortexR и микропроцессорные ядра CortexM. Именно ядра CortexM стали основой для разработки большого класса 32 разрядных МК. От других вариантов архитектуры Cortex они отличаются, прежде всего, использованием 16разрядного набора инструкций Thumb2. Этот набор совмещал в себе производительность и компактность «классических» инструкций ARM и Thumb и разрабатывался специально для работы с языками С и С++, что существенно повышает качество кода. Большим достоинством МК, построенных на ядре CortexM, является их программная совместимость, что теоретически позволяет использовать программный код на языке высокого уровня в моделях разных производителей. Кроме обозначения области применения ядра, разработчики МК указывают производительность ядра CortexM по десятибалльной шкале. На сегодняшний день самыми популярными вариантами являются CortexM3 и CortexM4. МК с архитектурой ARM производят такие компании, как Analog Devices, Atmel, Xilinx, Altera, Cirrus Logic, Intel, Marvell, NXP, STMicroelectronics, Samsung, LG, MediaTek, MStar, Qualcomm, SonyEricsson, Texas Instruments, nVidia, Freescale, Миландр, HiSilicon и другие.
Благодаря оптимизированной архитектуре стоимость МК на основе ядра CortexM в некоторых случаях даже ни же, чем у многих 8разрядных приборов. «Младшие» модели в настоящее время можно приобрести по 30 руб. за корпус, что создаёт конкуренцию предыдущим поколениям МК. МИКРОКОНТРОЛЛЕРЫ STM32 Рассмотрим наиболее доступный и широко распространённый МК семейства STM32F100 от компании STMicroelectronics , которая является одним из ведущих мировых производителей МК. Недавно компания объявила о начале производства 32битного МК, использующего преимущества индустриального
ядра STM32 в недорогих приложениях. МК семейства STM32F100 Value line предназначены для устройств, где не хватает производительности 16разрядных МК, а богатый функционал «обычных» 32разрядных приборов является избыточным. Линейка МК STM32F100 базируется на современном ядре ARM CortexM3 с периферией, оптимизированной для применения в типичных приложениях, где использовались 16разрядные МК. Производительность МК STM32F100 на тактовой частоте 24 МГц превосходит большинство 16разрядных МК. Данная линейка включает приборы с различными параметрами:
● от 16 до 128 кбайт флэшпамяти программ;
● от 4 до 8 кбайт оперативной памяти;
● до 80 портов ввода вывода GPIO;
● до девяти 16разрядных таймеров с расширенными функциями;
● два сторожевых таймера;
● 16канальный высокоскоростной 12разрядный АЦП;
● два 12разрядных ЦАП со встроенными генераторами сигналов;
● до трёх интерфейсов UART с поддержкой режимов IrDA, LIN и ISO7816;
● до двух интерфейсов SPI;
● до двух интерфейсов I2С с поддержкой режимов SMBus и PMBus;
● 7канальный блок прямого доступа к памяти (DMA);
● интерфейс CEC (Consumer Electronics Control), включённый в стандарт HDMI;
● часы реального времени (RTC);
● контроллер вложенных прерываний NVIC.

Функциональная схема STM32F100 представлена на рисунке 1.

Рис. 1. Архитектура МК линейки STM32F100

Дополнительным удобством является совместимость приборов по выводам, что позволяет, при необходимости, использовать любой МК семейства с большей функциональностью и памятью без переработки печатной платы. Линейка контроллеров STM32F100 производится в трёх типах корпусов LQFP48, LQFP64 и LQFP100, имеющих, соответственно, 48, 64 и 100 выводов. Назначение выводов представлено на рисунках 2, 3 и 4. Такие корпуса можно устанавливать на печатные платы без применения специального оборудования, что является весомым фактором при мелкосерийном производстве.


Рис. 2. МК STM32 в корпусе LQFP48 Рис. 3. МК STM32 в корпусе LQFP64


Рис. 4. МК STM32 в корпусе LQFP100

STM32F100 – доступный и оптимизированный прибор, базирующийся на ядре CortexM3, поддерживается развитой средой разработки МК семейства STM32, которая содержит
бесплатные библиотеки для всей пе риферии, включая управление двига телями и сенсорными клавиатурами.

СХЕМА ВКЛЮЧЕНИЯ STM32F100C4
Рассмотрим практическое использование МК на примере самого простого прибора STM32F100C4, который, тем не менее, содержит все основные блоки линейки STM32F100. Принципиальная электрическая схема включения STM32F100C4 представлена на рисунке 5.


Рис. 5. Схема включения МК STM32F100C4

Конденсатор С1 обеспечивает сброс МК при включении питания, а конденсаторы С2-С6 фильтруют напряжение питания. Резисторы R1 и R2 ограничивают сигнальный ток выводов МК. В качестве источника тактовой частоты используется внутренний генератор, поэтому нет необходимости применять внешний кварцевый резонатор.


Входы BOOT0 и BOOT1 позволяют выбрать способ загрузки МК при включении питания в соответствии с таб лицей. Вход BOOT0 подключён к шине нулевого потенциала через резистор R2, который предохраняет вывод BOOT0 от короткого замыкания при его использовании в качестве выход ного порта PB2. С помощью соединителя J1 и одной перемычки можно из менять потенциал на входе BOOT0, определяя тем самым способ загрузки МК – из флэшпамяти или от встроенного загрузчика. При необходимости загрузки МК из оперативной памяти аналогичный соединитель с перемычкой можно подключить и к входу BOOT1.
Программирование МК осуществляется через последовательный порт UART1 или через специальные программаторы – отладчики JTAG или STLink. Последний входит в состав популярного отладочного устройства STM32VLDISCOVERY , изображённого на рисунке 6. На плате STM32VLDIS COVERY 4контактный разъём программатора – отладчика STLink – имеет обозначение SWD. Автор статьи предлагает программировать МК через последовательный порт UART1, поскольку это значительно проще, не требует специального оборудования и не уступает в скорости JTAG или ST Link. В качестве управляющего устройства, способного формировать команды и отображать результаты работы про граммы МК, а также в качестве программатора можно использовать любой персональный компьютер (ПК), имеющий последовательный COM порт или порт USB с преобразователем USBRS232.

Для сопряжения COMпорта ПК с МК подойдет любой преобразователь сиг налов RS232 в уровни логических сигналов от 0 до 3,3 В, например, микросхема ADM3232. Линия передачи TXD последовательного порта компьютера, после преобразователя уровней, должна подключаться к входу PA10 микроконтроллера, а линия приёмника RXD, через аналогичный преобразователь, – к выходу PA9.

При необходимости использования энергонезависимых часов МК, к нему следует подключить элемент питания типа CR2032 с напряжением 3 В и кварцевый резонатор на частоту 32768 Гц. Для этого МК оснащён выводами Vbat/GND и OSC32_IN/OSC32_OUT. Предварительно вывод Vbat необходимо отключить от шины питания 3,3 В.

Оставшиеся свободными выводы МК можно использовать по необходимости. Для этого их следует подключить к разъёмам, которые расположены по периметру печатной платы для МК, по аналогии с популярными устройствами Arduino и отладочной платой STM32VLDISCOVERY .


Рис. 6. Отладочное устройство STM32VLDISCOVERY


Схема электрическая принципиальная STM32VLDISCOVERY.

Таким образом, в зависимости от назначения и способа применения МК, к нему можно подключать необходимые элементы, чтобы задействовать другие функциональные блоки и пор ты, например, ADC, DAC, SPI, I2C и т.п. В дальнейшем эти устройства будут рас смотрены подробнее.

ПРОГРАММИРОВАНИЕ
Сегодня многие компании предлагают средства для создания и отладки программ микроконтроллеров STM32. К их числу относятся Keil от ARM Ltd, IAR Embedded Workbench for ARM, Atol lic TrueStudio, CooCox IDE, GCC и Eclipse IDE. Разработчик может выбрать про граммные средства по своему пред почтению. Ниже будет описан инструментарий Keil uVision 4 от компании Keil , который поддерживает огромное число типов МК, имеет развитую систему отладочных средств и может быть использован бесплатно с ограничениями размера генерируемого кода 32 кбайт (что, фактически, максимально для рассматриваемых МК).

Простой и быстрый старт с CooCox CoIDE.

Итак приступим. Идем на официальный сайт CooCox и качаем последнюю версию CooCox CoIDE . Для скачивания необходимо зарегистрироваться, регистрация простая и бесплатная. Затем инсталлируем скачанный файл и запускаем.

CooCox CoIDE — среда разработки, на базе Eclipse, которая помимо STM32 поддерживает кучу других семейств микроконтроллеров: Freescale, Holtek, NXP, Nuvoton, TI, Atmel SAM, Energy Micro и др. С каждой новой версией CoIDE список МК постоянно пополняется. После успешной установки CoIDE запускаем:

Появится стартовое окно Step 1, в котором необходимо выбрать производителя нашего микроконтроллера. Нажимаем ST и переходим к Step 2 (выбор микроконтроллера), в котором необходимо выбрать конкретную модель. У нас STM32F100RBT6B, поэтому нажимаем на соответствующую модель:

Справа, в окне Help отображаются краткие характеристики каждого чипа. После выбора нужного нам микроконтроллера переходим к третьему шагу Step 3 — к выбору необходимых библиотек для работы:

Давайте создадим простейший проект для мигания светодиодом, как это принято для изучения микроконтроллеров.

Для этого нам понадобится библиотека GPIO, при включении которой, CoIDE попросит создать новый проект. На это предложение нажимаем Yes, указываем папку где будет храниться наш проект и его название. При этом, CoIDE подключит к проекту 3 другие, необходимые для работы библиотеки, а также создаст всю необходимую структуру проекта:

Чем еще хорош CoIDE, это тем, что в нем есть возможность загружать примеры прямо в среду разработки. В вкладке Components вы можете видеть, что почти к каждой библиотеке есть примеры, нажимаем на GPIO (with 4 examples) и видим их:

Туда можно добавлять и свои примеры. Как видно на скриншоте выше, в примерах уже присутствует код для мигания светодиодом GPIO_Blink. Можно нажать кнопку add и он добавиться в проект, но как подключаемый файл, поэтому мы сделаем по другому просто скопируем весь код примера в файл main.c. Единственное, строку void GPIO_Blink(void) замените на int main(void). Итак, нажимаем F7 (или в меню выбираем Project->Build), чтобы скомпилировать проект и… не тут то было!

Среде нужен компилятор GCC, а у нас его нет. Поэтому идем на страничку GNU Tools for ARM Embedded Processors , справа выбираем тип вашей ОС и качаем последнюю версию тулчайна. Затем запускаем файл и инсталируем gcc toolchain. Далее, в настройках CoIDE укажем правильный путь к тулчайну:

Опять нажимаем F7 (Project->Build) и видим, что компиляция прошла успешно:

Осталось прошить микроконтроллер. Для этого при помощи USB подключаем нашу плату к компьютеру. Затем, в настройках дебаггера необходимо поставить ST-Link, для этого в меню выбираем Project->Configuration и открываем вкладку Debugger. В выпадающем списке выбираем ST-Link и закрываем окно:

Попробуем прошить МК. В меню выбираем Flash->Program Download (или на панели инструментов щелкаем по соответствующей иконке) и видим, что МК успешно прошит:

На плате наблюдаем мигающий светодиод, видео или фото я думаю приводить нет смысла, т.к. все это видели.

Также, в CoIDE работают различные режимы отладки, для этого нажимаем CTRL+F5 (или в меню Debug->Debug):

На этом все. Как видите, настройка среды CoIDE и работа с ней очень проста. Надеюсь данная статья подтолкнет вас в изучении очень перспективных и недорогих микроконтроллеров STM32.

Данная статья, которая является еще одним "быстрым стартом" в освоении ARM-контроллеров, возможно поможет сделать первые шаги в освоении 32-битных контроллеров ARM на базе ядра Cortex-M3 - STM32F1xxx серии. Возможно данная статья (которых на эту тему появляется как грибов после дождя) станет для кого-то полезной.

Введение

Почему ARM?
1. Есть из чего выбрать (разными производителями сегодня выпускается более 240 ARM-контроллеров)
2. Низкая цена (например за 1$ можно получить 37хI / O, 16K Flash, 4K RAM, 2xUART, 10x12bitADC, 6x16bitPWM).

А начнем нашу работу с контроллеров фирмы ST Microelectronics. Контроллеры на основе ядра ARM Cortex-M3 характеризуются широким набором периферии, высоким уровнем рабочих характеристик, низкой цене
P.S. В самом начале создается впечатление, что ARM"ы это какие-то страшные (в пайке, разводке, программировании) существа. Но это только на первый взгляд:) и вы в этом сами убедитесь.

Итак, изучать ARMы будем на примере контроллеров STM32F1. Одновременно эта серия имеет несколько линеек:

  • Value line STM32F100 - 24 МГц CPU, motor control, CEC.
  • Access line STM32F101 - 36 МГц CPU, до 1 Mб Flash
  • USB access line STM32F102 - 48 МГц CPU with USB FS
  • Performance line STM32F103 - 72 МГц, до 1 Mб Flash, motor control, USB, CAN
  • Connectivity line STM32F105/107 - 72 МГц CPU, Ethernet MAC, CAN, USB 2.0 OTG

Также существует следующая классификация:

Контроллеры STM32 можно заставить загружаться с 3-х областей памяти (в зависимости от состояния ножек BOOT0 и BOOT1 при старте контроллера или после его сброса). Записать программу в память контроллера можно следующими способами:

1 способ:
Используя загрузчик (он уже записан в системную память) и USART1 (USART2 remaped): использует внутренний тактовый сигнал 8 МГц. Чтобы запустить встроенный загрузчик, зашитый в контроллер производителем, достаточно просто бросить на лапки контроллера TX1, RX1 сигнал с преобразователя RS232-3.3В (например на базе FT232RL) и выставить перед этим BOOT0 = 1 и BOOT1 = 0 жмем RESET и можем шить программу в контроллер. А зашивается она в программе Flash Loader Demonstartor от STM (для Windows).

PS. Если вы сидите под LINUX и не имеете отладочной платы типа дискавери, можно заливать прошивку в контроллер через всеми любимый rs-232 (собственно - через преобразователь rs-232-3,3В). Для этого нужно использовать python-скрипт (Ivan A-R) (для LINUX или MACOSX).
Для начала у вас должен быть установлен Python 2.6 версии и библиотека для работы с последовательным портом - PySerial library.
Теперь, чтобы запустить скрипт stmloader.py (из терминала, разумеется) нужно его немного подправить под свой компьютер: откроем его в текстовом редакторе.
Набираем в командной строке
~$ dmesg | grep tty
чтобы увидеть все последовательные порты ПК.
и после набора...
~$ setserial -g /dev/ttyS
мы узнаем путь к нашему 232-му порту. Если система ругается на setserial, установим его
~$ sudo apt-get install setserial
мы узнаем путь к нашему физическому порту (например, у меня - /dev/ttyS0). Теперь нужно записать этот путь в файл скрипта stm32loader.py вместо дефолтного «/dev/tty.usbserial-...». Набираем в терминале
~$ python stm32loader.py -h
...для вызова справки и заливаем прошивку в наш контроллер.

2 способ:
Через USB OTG, используя DFU-режим, требует внешнего кварца на 8 МГц, 14.7456 МГц или 25 МГц (этот загрузчик есть не у всех контроллерах с USB OTG надо внимательно смотреть на маркировку вашего контроллера)

3 способ:
JTAG/SWD. Ну и для тех, кто имеет демоплату типа Discovery или самопальный JTAG/SWD программатор, можно заливать код и уже отлаживать свой микроконтроллер этим способом. Для JTAG в микроконтроллере отведено 6 лапок (TRST, TDI, TMS, TCK, TDO, RST) + 2 на питание. SWD использует 4 сигнала (SWDIO, SWCLK SWO, RESET) и 2 на питание.

PS. В среде EAGLE я набросал несколько схем-заготовок для 48-ми, 64-х и 100-ногих контроллеров (папка eagle), а stm32loader содержит скрипт stm32loader.py

Я очередной выпускник некоего московского вуза (не буду уточнять какого, но средненького). Полгода назад нам сообщили, что пора писать диплом. На тот момент я только-только начал осваивать микроконтроллеры и давалось мне это не то, чтобы нелегко, но со скрипом, который производит холодильник, когда ты, в одиночку, пытаешься аккуратно сдвинуть его, не повредив драгоценный ламинат (в моем случае линолеум).

Мое обучение началось, когда я два года назад заинтересовался темой микроконтроллеров и инженер, у которого поинтересовался насчет них, выдал мне плату 300х200мм и сказал, что в ней стоит контроллер STM32F217ZGT6 и на этой плате есть все необходимое для обучения. «В общем, освоишь ее - все остальное покажется фигней» (он, правда, не сказал, что для моргания светодиодом надо настроить SPI, о котором на тот момент я даже не слышал). Спустя три не очень напряженных месяца бесплотных попыток, осознания слабости навыков программирования и огромного количества прочитанных статей пришлось все же раскошелится на STM32VLDISCOVERY и способом копирования программ и экспериментов с ними дело наконец-то пошло, но все равно медленно.

За полтора года успел поработать разработчиком, искал вакансии, где работают с STM32 (так как считаю, что сейчас это наиболее перспективные микроконтроллеры своего класса), нахватался опыта и когда дело дошло до диплома, вспомнил о своих наболевших мозолях. Идея с темой пришла мгновенно: «Отладочная плата на STM32 и (полноценный) обучающий курс (для самых маленьких) к ней».

Именно по этому захотел написать цельный и законченный курс, чтобы так сказать другие не мучились и самому разобраться. Так что придя в институт и понимая, что для быстрого освоения и понимания нужен стимул (а точнее - хороший такой пинчище), я стал бить себя пяткой в грудь (рыть себе могилу), что не только напишу обучающий курс (в нашем универе пришлось назвать его методическим пособием), но и макет работающий предоставлю. Тему приняли, задание написал (могилу вырыл, надгробие заказал), дело было за малым, все написать и разработать (лечь в могилу, закопаться и поставить надгробие).

Жизнь показала, что времени у меня было отнюдь не полгода, но все же все время, отведенное на диплом, почти закончилось, совсем скоро защита, но как не удивительно все не только готово, но и почти на 100% протестировано (на живых людях в том числе).

На выходе получилось следующее:

1. Сам курс (методическое пособие по-научному)

Вкратце о нем можно сказать, что на мой взгляд и по отзывам тестировщиков он полноценный, но немного суровый и не доработанный. Так как я решил, что не буду писать учебник по программированию на СИ, следовательно, и в курсе отсутствуют объяснения операторов, оттого и сказали, что местами курс суров. По поводу недоработанности честно скажу, я не все успел отладить к сдаче, чтобы об этом писать не только здесь, но и в методическом пособии к сдаче. Так же считаю, что можно лучше, но об этом чуть позже.

2. Отладочная плата на контроллере STM32F103RET6

Здесь все немного лучше, чем в первом пункте, плата разработана, заказана (из-за обстоятельств заказывать пришлось срочно) в Резоните, компоненты заказаны, спаяна ручками (честно скажу, никакое видео не передаст ощущения первой пайки LQFP64) и протестирована (большее ее часть заработала сразу же). Но это макет и, конечно, не обошлось без накладок: проводков, переходников и других различных «костылей», но заказать вторую ревизию я, к несчастью, не успею, да наверно и не стал бы, для защиты диплома, уверен и этого хватит. Так что ниже я расскажу более подробно об этой отладочной плате.

Придя на первую работу в качестве разработчика электроники, я столкнулся с одним интересным мнением и, как оказалось, оно весьма распространено. Это мнение звучало примерно так: «Вот я программист и программирую микроконтроллеры, схемотехнику не знаю и знать не хочу, паять, кстати, тоже не умею». Пообщавшись с группой программистов вне фирмы, понял, что человек с моей работы далеко не одинок в своем мнении и хоть я его и не поддерживаю, понять и уважать мнение окружающих стоит, тем более это отлично вписывалось в тогдашнюю концепцию отладочной платы «все на борту». В связи с этим плата получилось достаточно «жирненькая», получила название STM32SB (SB-StudyBoard) V1.0b. Ниже разберем, что в нее вошло.

1. Микроконтроллер
Исходя из того, что я работал с микроконтроллером STM32F103RET6, он и был выбран для проекта.

2. Схема питания и аппаратный USB контроллера
В этом микроконтроллере есть встроенный USB, который было решено вывести на отдельный разъем.

3. Спикер
Было решено ввести для освоения ШИМ модуляции и обучению написанию мелодий.

4. Цифровой индикатор и сдвиговый резистор
Для одновременного освоения динамической индикацией и сдвиговым регистром было решено их совместить.

5. Светодиоды
Светодиоды, что может быть лучше? Только трехцветные светодиоды, на которых можно освоить плавную смену цветов.

6. ЖК-дисплей
Стандартный ЖК-дисплей на 2 строки по 16 символов для освоения параллельного интерфейса.

7. Клавиатура
Матричная клавиатура, это нужно знать и уметь.

8. Расширитель портов ввода-вывода
Много портов ввода-вывода не бывает, а тут еще и I2C освоить можно.

9. Электронный термометр
Датчик температуры по 1-Wire, полезная вещь и ценный опыт работы с ним может пригодиться.

10. Электронный потенциометр
На этой вещице можно освоить полноценный SPI и попробовать сделать замеры изменения напряжения через АЦП.

11. Реле
Хоть это и на уровне поморгать светодиодом, но все же приятно услышать знакомый щелчок, правда?

12. Ключевые транзисторы
Так же на уровне моргания светодиодом, но вдруг кому принцип не понятен.

13. Дублирование свободных пинов на внешних выводах
Ну это естественная конструкция для любой отладочной платы, вдруг все, что в ней есть никому не пригодилось, а подключить, что то свое все же нужно.

14. Преобразователь WIFI-UART(esp8266)
В схеме преобразователь участвует как разъем, также он указан и здесь. Используется уже довольно нашумевший модуль esp8266.

15. Преобразователь USB-UART
USB это всегда круто, сдесь используется чип CP2102.

16. JTAG и SWD
Ну куда же без этих вещей.

Такой широкий набор внешних устройств даст возможность освоить большинство приемов и попробовать поработать с большинством интерфейсов, не заморачиваясь закупкой элементов и не отходя от стола, что согласуется с концепцией не только «все на борту», но и «для самых маленьких» (не умеющих паять).

Конечно, не обошлось без накладок, но, как говорит один знакомый инженер, «мастерство инженера измеряется в количестве перерезанных дорожек на первой итерации платы».

Вот список моих «косяков», того, чего я не заметил, забыл или даже не знал при разработке этой платы:

1. Понял, что пины SWD расположены с странном порядке и хоть работе платы это не мешает. Услышал, на мой взгляд, правильное мнение, что их стоит располагать так, как они расположены на STM32VLDISCOVERY, чтобы избежать недоразумений у нового пользователя.

2. Так подключать одноцветные светодиоды, как на данной плате, не стоит, по причине того, что для моргания ими необходимо отремапить JTAG, но получился неожиданный для меня эффект индикации процесса загрузки прошивки.

3. Я разработал свой логотип для этой платы, который хотел перевести в PCB и разместить на плате, но забыл.

4. Для экономии места во второй ревизии платы я бы разместил некоторые не используемые пользователем SMD компоненты на нижней стороне платы.

5. Понял, что для более удобной разводки цепей с кварцевыми резонаторами было бы удобно заменить их на SMD.

6. Забыл подписать, где JTAG и SWD, так же у них не показано, как их подключать и если для JTAG и его разъемом BH-20 все не так сложно, то с SWD ситуация несколько опасней.

7. При разработке футпринта ЖК-дисплея вышел казус и отверстия оказались слишком малы для болтов М3.

8. У преобразователя CP2102 перепутаны выводы RX и TX. Так как я привык, что в документации приводится пример подключения относительно микроконтроллера, а не внешнего устройства, пришлось перерезать таки 2 дорожки.

9. На данной плате расстояние между гребенками выводов не нормировано по дюймам, в связи с этим есть проблема для подключения к беспаечной макетной плате методом втыкания в нее.

10. Вышла накладка с резисторами ограничения тока в цепи индикации включения реле, номинал оказался слишком большой для того, чтобы реле могло коммутироваться.

11. Ну и, как водится, «хорошая мысля приходит опосля». Так, уже после получения платы я понял, что стоило сделать размер ее подходящий хоть под какой-нибудь корпус - видимо придется доработать во второй ревизии.

12. Изначально был заложен маленький цифровой индикатор, так как занимал не большую площадь и был доступен в магазинах, однако оказалось, что на самом деле он везде доступен при заказе от 520 штук, так что пришлось ваять переходник на стандартный цифровой индикатор.

Напоследок покажу вам 3D модель этой платы:

И для сравнения фотографии ее же, как она получилась «в живую», вид с верху:

И вид с боку, чтоб было видно побольше «костылей»:

Извините, но весь проект до сдачи диплома выкладывать мне бы не хотелось, но после этой работы у меня встал вопрос, а стоит ли данный проект развивать? Меня посетила идея написать цикл статей, посвященных обучению, где был бы представлен такой вот полноценный курс по этой отладочной плате, где все написано простыми словами и объяснено на пальцах. Хотелось бы услышать от вас в комментариях насколько это было бы полезно и необходимо на настоящее время.

Спасибо за внимание!

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то