Прошивка atmega 328. ATmega. Прошивка ATmega через USBasp и avrdude. Создаем Arduino ISP программатор из любой платы Ардуино

Сигнализатор отключения с резервным питанием

Схема сигнализатора отключения электроэнергии, рис.1, не только издает звуковой сигнал при отключении энергии, но и посредством электромагнитного реле может включить источник резервного питания. В этой схеме сигнализатора применен тот же генератор прерывистого сигнала, но плюс к нему, схема дополнена электромагнитным реле, которое одним из контактов подключено между диодами VD1 и VD2.

Рис.1

Сигнализатор отключения электроэнергии

При наличии напряжения в электросети контакты этого реле притянуты. При пропадании тока, конденсатор С6 резко разряжается, в результате чего напряжение на реле падаете оно размыкает контакты. Наличие в схеме диода VD2 предотвращает быстрый разряд конденсаторов С1 и С2 сквозь обмотку реле.

Схемы автоматической защиты трехфазного двигателя при пропадании фазы

Трехфазные электродвигатели при случайном отключении одной из фаз быстро перегреваются и выходят из строя, если их вовремя не отключить от сети. Для этой цели разработаны различные системы автоматических защитных отключающих устройств, однако они либо сложны, либо недостаточно чувствительны, рис.2

Рис.2

Защитные устройства можно условно разделить на релейные и диоднотранзисторные. Релейные в отличие от диодно-транзисторных более просты в изготовлении.
В обычную систему запуска трехфазного двигателя введено дополнительное реле Р с нормально разомкнутыми контактами Р1. При наличии напряжения в трехфазной сети обмотка дополнительного реле Р постоянно находится под напряжением и контакты Р1 замкнуты. При нажатии кнопки «Пуск» через обмотку электромагнита магнитного пускателя МП проходит ток и системой контактов МП1 электродвигатель подключастся к трехфазной сети.
При случайном отключении от сети провода А реле Р будет обесточено, контакты Р1 разомкнутся, отключив от сети обмотку магнитного пускателя, который системой контактов МП1 отключит двигатель от сети. При отключении от сети проводов В к С обесточивается непосредственно обмотка магнитного пускателя. В качестве дополнительного реле Р используется реле переменного тока типа МКУ-48.

Защита от тока

Бытовые электрические приборы - стиральные машины, электромясорубки, электрокамины, - как правило, работают от сети переменного тока напряжением 220 В. В случае пробоя изоляции на металлическом корпусе такой установки может оказаться опасное для жизни человека напряжение. Для защиты от поражения электрическим током бытовые приборы следует заземлять, особенно если они используются в помещениях с повышенной опасностью.

Повышенную опасность представляют ванные комнаты во время стирки белья в стиральной машине. Причем возможность поражения электрическим током значительно возрастает, если пол в помещении токопроводящий, влажность воздуха превышает 75%.

У большинства установленных в квартирах розеток третий, заземляющий провод, как правило, отсутствует. Поэтому там где его нет, в качестве защитной меры от возможного поражения током в случае его утечки или пробоя изоляции на корпус рекомендуется устанавливать автоматические отключающие устройства рис.3.


Рис.3

Потребитель электрической энергии, содержащий обмотку L 1, включают в сеть с помощью двухполюсного неполярного разъема (обычных вилки и розетки). От выпрямителя, собранного по мостовой схеме на диодах VD 1- VD 4, питается реле К1, имеющее две размыкающие контактные пары К1.1 и К1.2. Последовательно с общей обмоткой реле включен тиристор VS 1. Его управляющий электрод соединен через резистор R 2 с коллектором транзистора VT 1. Эмиттер транзистора подключен к положительному полюсу выпрямителя, а база через высокоомный резистор R 1 соединена с металлическим корпусом электроприбора.

Работает устройство следующим образом. Когда исправный электроприбор включен в сеть, обмотка реле не получает питание, поскольку тиристор закрыт. Через размыкающие контакты К1.1 и К1.2 ток проходит по обмотке потребителя L 1. В случае пробоя изоляции ток протекает от фазного или «нулевого» провода через один из диодов выпрямителя, переход «эмиттер - база» транзистора, резистор R 1, металлический корпус электроприбора, а затем через место пробоя изоляции и часть обмотки L 1 поступает на провод с напряжением противоположной полярности. В результате транзистор открывается, и в его коллекторной цепи начинает протекать ток. Через резистор R 2 он поступает на управляющий электрод тиристора и далее на «минус» выпрямителя. Срабатывает реле и размыкает свои контактные пары, отключая электроприбор от сети. При этом через переход «эмиттер - база» VT 1 ток не проходит, и транзистор закрывается. Однако тиристор продолжает оставаться открытым, поскольку обмотка реле играет роль сглаживающего фильтра, и через VS 1 протекает постоянный ток, величина которого достаточна для удержания тиристора в открытом состоянии. Поэтому после срабатывания автомата реле остается задействованным до тех пор, пока электроприбор не будет отключен от сети.

Защитное устройство отключает электроустановку при пробое изоляции в любой точке обмотки потребителя L 1. Срабатывает оно и при малейшем токе утечки.

Резистор R 1 должен иметь сопротивление 1,5 - 2 Мом. Если одной рукой прикоснуться к заземленному металлическому предмету, а другой - к корпусу бытового прибора, оборудованного данным защитным устройством, то через человека проходит ток меньше 1 мА, что вполне безопасно. Тут же срабатывает автоматическая защита и отключает электроприбор от сети.

Для проверки работы устройства корпус электроприбора кратковременно соединяют отрезком провода с заземленной конструкцией - реле при этом должно сработать.

Карачев Н.

Защита аппаратуры при включении


Рис.4

В источниках питания мощной аппаратуры на транзисторах и микросхемах в фильтрах питания обычно используют конденсаторы, емкость которых превышает 10000 мкФ. Переходные процессы, возникающие при включении такой аппаратуры (в частности, зарядка этих конденсаторов), могут привести к выходу ее из строя. По этой причине в источники питания, в последнее время, вводят устройства, которые ограничивают ток в первичной обмотке сетевого трансформатора в первый момент после включения аппаратуры и предотвращают тем самым нежелательные эффекты.

Возможный вариант выполнения подобного устройства приведен на рисунке 4. Оно состоит из ограничительных резисторов и узла, замыкающего эти резисторы по истечению некоторого времени.

Бросок тока при включении аппаратуры до значения 5А ограничивают резисторы R 4- R 7. Использование здесь нескольких резисторов обусловлено лишь конструктивными соображениями. Их можно заменить на один резистор сопротивлением 40 Ом и мощностью рассеивания не менее 20 Вт или на другую последовательно - параллельную комбинацию соединения резисторов, обеспечивающую такие же сопротивление и мощность рассеивания.

Выбор номинала ограничительного резистора - это решение противоречивой задачи. С одной стороны, желательно иметь большое сопротивление, поскольку уменьшаются перегрузки в цепях источника питания при включения устройства и требуемая мощность рассеивания этого резистора, но с другой - сопротивление должно быть не очень большим, чтобы второй бросок тока, возникающий при замыкании ограничительного резистора, не был больше первоначального броска тока при включении устройства. Приведенные здесь параметры ограничительного резистора близки к оптимальным для аппаратуры, потребляющей от сети мощности 150…200 Вт.

При включении аппаратуры одновременно начинается процесс зарядки конденсаторов С2 и С3. Когда напряжение на них достигнет напряжения срабатывания реле К1 и оно сработает, то своими контактами замкнет резисторы R 4- R 7 и восстановит тем самым нормальный режим работы источника питания. Время задержки включения аппаратуры зависит в первую очередь от емкости конденсаторов С2 и С3, сопротивления резистора R 3, напряжения срабатывания реле К1 и составляет доли секунды.

В устройстве было использовано реле с напряжением срабатывания 24 В. Оно должно иметь контакты, обеспечивающие включение сетевой аппаратуры (220 В и ток несколько ампер),с которой будет использоваться это защитное устройство.

Мост, использованный в оригинале конструкции, рассчитан на рабочее напряжение 250 В и ток 1,5 А. Конденсаторы С3 и С4 можно заменить на один с емкостью 1000 мкФ.

Obvod zpozneneho startu.

« Amaterske Radio » , 1997,

A7-8, s.24

Защита электродвигателя от неполнофазного режима

Устройство защиты электродвигателя от неполнофазного режима, показанная на рис.5, реагирует на прерывания в подаче на трехфазный электродвигатель напряжения любой из трех фаз.


Рис.5

Нажатием на кнопку S 1 подают напряжение на катушку магнитного пускателя КМ1, включающего электродвигатель М1. Надежное срабатывание пускателя при его катушки, рассчитанной на 380 В переменного напряжения, меньшим по амплитуде пульсирующим напряжением обеспечивается за счет значительной постоянной составляющей последнего.

Одновременно со срабатыванием пускателя напряжение поступает на анод и управляющий электрод тиристора VS 1. Теперь конденсатор С1 подзаряжается через периодически открывающийся тиристор, напряжение на нем остается достаточным для удержания пускателя КМ1 в сработавшем состоянии. В случае пропадания напряжения любой из фаз тиристор прекращает открываться, конденсатор быстро разряжается и пускатель отключает двигатель от сети.

Яковлев В.

г. Шостка, Укранина

Аварийный выключатель

Много неприятностей доставляют перебои в электроснабжении. Особенно плохо то, что в момент подачи напряжения могут быть очень опасные скачки, которые, в лучшем случае, вызывают сбои процессора телевизора или DVD - плейера переводя их в включенный режим, а в худшем повреждают блок питания.


Рис.6

На рис.6 представлена схема аварийного реле, которое при отключении электроснабжения отключает аппаратуру от сети. А подача питания на аппаратуру происходит не одновременно с возобновлением электроснабжения, а только после нажатия пользователем кнопки S 1.

В основе схемы старое реле КУЦ-1 от систем дистанционного управления телевизоров типа «УСЦТ».

Узел защиты электрооборудования при авариях в электросети

Многие, хотя бы раз жизни, попадали в такую ситуацию, когда вместо однофазного напряжения 220 В переменного тока в квартиры вдруг начинало поступать двухфазное 380 В. Если такое такое событие не было замечено в первые секунды и квартирная электропроводка не имеет устройств защиты от перенапряжения, то вся включенная домашняя техника выходит из строя. Сам факт того, что в нормальной ситуации потенциал "нулевого” провода относительно "земли” не превышает нескольких вольт, а при аварии в трехфазных сетях конечного электроснабжения достигает 220 В и более, позволяет сделать простое устройство для защиты аппаратуры, схема на рис.7.


Рис.7

Если через электросчетчик проходят 220 В плюс-минус процентов 30, катушка мощного электромагнитного реле К1 обесточена. Через свободнозамкнутые контакты реле на нагрузки поступает номинальное напряжение питания.

Допустим, случилась авария и в результате «нулевой провод» оказался фазным. Так как вход «Заземление» защитного устройства, собранного по схеме 1, имеет надежное электрическое соединение с почвой, то на катушке реле появится напряжение 160…250 В переменного тока, что приводит к размыканию его контактов и обесточиванию нагрузок. Включенные встречно-последовательно стабилитроны VD 1, VD 2 устраняют возможное легкое гудение реле при нормальном электроснабжении. Резистор R 1 ограничивает ток через обмотку реле К1. Неоновая лампа тлеющего разряда HL 1 светится при аварии. Конденсатор С1 препятствует возникновению дуги при размыкании контактов реле.

Кашкаров А.

Подавляющее большинство бытовых электроприборов не имеют защитного заземления. Международный стандарт требует установки дополнительной клеммы заземления в сетевых вилках и розетках, но даже их наличие не обеспечивает безопасность при пользовании электроприбором.

Использования в качестве заземляющей линии нулевой провод категорически запрещено, так как обрыв линии может привести к появлению на нулевом проводе сетевого напряжения.
Предохранители электросети и автоматические защитные устройства могут и не сработать при небольшом токе утечки, но достаточном для поражения человека: к примеру автоматы в электрощитах срабатывают от тока выше пяти ампер, а поражающий ток для человека составляет одну десятую ампера.

В бытовых розетках нет разграничения между фазой и нулём.
Эксплуатация бытовых электроприборов без заземления во влажных и токопроводящих помещениях категорически запрещено, ввиду возможного поражения электротоком.
Повреждения изоляции подводящей электропроводки или внутренние замыкания электросети на корпус прибора грозит замыканием линии и её возгоранием.
Избежать электротравм поможет автоматическое устройство, которое отключит неисправный электроприбор раньше чем сработает защита сети, как только на корпусе появится напряжение утечки.

Блок схема устройства защиты от тока утечки состоит:
1. Транзисторный триггер
2. Тиристорное релейное устройство
3. Трансформаторы тока утечки
4. Выпрямитель питания устройства
5. Светодиодная сигнализация сети и включения
6. Стабилизатор питающего напряжения

Защитное устройство электрически не связано с нагрузкой и выполнено как переходник.
Работа устройства основана на контроле тока в цепях питания нагрузки.

Напряжение на обмотках трансформатора Т1,Т2, созданное протекающим током нагрузки электроприбора, алгебраически суммируется и при одинаковых уровнях равно нулю. Превышение тока в одной из цепей (утечка) питания нагрузки создаёт разность магнитных полей и напряжение разности токов поступает на триггер электронного устройства.

Конденсатор С2 на входе выпрямительного моста VD1 устраняет возможные срабатывания схемы устройства от помех сети питания нагрузки.
Выпрямленное напряжение с моста VD1 через подстроечный резистор R1 поступает на базу транзистора VT1 транзисторного триггера.
Усиленное транзистором VT1 напряжение рассогласования в триггерном режиме переключит транзистор VT1 в открытое состояние, а транзистор VT2 в закрытое состояние.
Резистор R3 позволяет установить чувствительность триггера на транзисторах VT1,VT2 в зависимости от их характеристик усиления.
Тиристор VS1 откроется и включит реле К1, которое контактами К1.1 разомкнёт цепь питания нагрузки.

Используя режим работы тиристора в цепях постоянного тока, блокировку после подачи напряжения управления - оставляет нагрузку в отключенном состоянии. После выявления пробоя или утечки на корпус электроприбора, устройство включают повторно.

Стабилизированная схема питания устройства защиты от тока утечки состоит из силового трансформатора Т3, с вторичным напряжением 12 Вольт 0,1Ампер, выпрямительного моста VD3,сглаживающего конденсатора С3,С6 и аналогового стабилизатора на микросхеме DA1.
Индикация включения устройства выполнена на светодиоде красного свечения HL1.

Регулировку схемы устройства заключается в установке чувствительности транзисторного триггера.
При отключенном от схемы трансформаторов Т1,Т2 установить резистор R3 в положение предопределяющее включение реле К1,то есть чтобы оно сработало и вернуть движок резистора в режим отключения триггера.
Эпюры режима переключений можно отследить по включению светодиода HL2, свечение его указывает на включенное состояние нагрузки, потухание - что нагрузка отключена (аварийное состояние).

Концы обмоток трансформаторов Т1,Т2 соединить последовательно так, чтобы при подключении нагрузки (временно в виде настольной лампы) переменное напряжении на конденсаторе С2 было равно нулю. Создав искусственную утечку, подав переменное напряжение величиной 1-5 вольт через ограничивающий резистор 100 Ом, от любого сетевого трансформатора с напряжением 5-12 вольт проследить отключение нагрузки. Трансформаторы Т1,Т2 при этом отключать не следует.

Наименование

Замена

Примечание

Стабилизатор

Транзистор

Транзистор

Тиристор

Резистор подстр.

Диод. мост

Резисторы

Трансформатор

РЭС 47,РЭС59

Трансформаторы тока Т1,Т2 представляю собой ферритовые кольца 2000НМ- диаметр 18 мм, с намотанными обмотками 96 витков ПЭЛ -2 диаметром 0,1 мм, токовые провода питания электроприбора пропущены через внутреннее отверстие ферритового кольца.

Для защиты потребителей мощностью более 200 ватт нагрузку электроприбора следует подключить через пускатель нулевой или первой величины, катушку пускателя запитать от сети через нормально - замкнутые контакты реле К1(1-2).

Монтажная схема устройства защиты от тока утечки собирается в пластмассовую коробку БП-1 с розеткой для подключения нагрузки электроприбора, светодиоды выносятся на внешнюю панель корпуса, трансформаторы тока Т1,Т2 закреплены навесом.

Ранее производил прошивку МК средствами Arduino IDE, на эту тему есть отдельная статья . Время идет, пора переходить на более тонкие инструменты, в частности C и avrdude. Программируем, собираем, прошиваем.

Задача

Тестовую программу мигания светодиодом на C, скомпилировать в файл прошивки и загрузить результат в МК ATmega 328 P.

Решение

Разработку, прошивку и дальнейшее описание буду вести на Debian 9 , но все необходимые компоненты есть и под Windows.

Подготовка окружения

Первым делом подготовим окружение, как писал выше: разработка на C , компиляция прошивки средствами avr-gcc , загрузка прошивки средствами avrdude , через программатор USBasp .

Для установки необходимого собрал следующий набор:

# apt-get install avr-libc gcc-avr binutils-avr avrdude

В Debian драйвера для USBasp устанавливать не надо, они есть в составе ядра. Для Windows необходимо скачать и установить драйвер с сайта разработчика fischl.de .

Подключение оборудования

На данном этапе не должно вызвать вопросов, но для порядка опишу подключение. Подключаем микроконтроллер к программатору USBasp : выводы SCK , MISO , MOSI , RESET , VCC . Так же не забываем к выходу D0 через резистор 220 Ом подключить анод светодиода, катод к GND .

Написание кода

На данный момент нет разницы в чем будет написан код, для себя выбрал Atom . Создаем файл с расширением .c , например main.c , в котором напишем код мигания светодиодом:

#define F_CPU 16000000UL // Частота работы МК от внешнего кварца #include #include void main() { DDRD = 0xFF; // Все выводы порта D как выход PORTD = 0x00; // На всех выводах установим 0 while (1) { PORTD |= (1 << PD0); // Включаем светодиод _delay_ms(1000); // Ждем 1 секунду PORTD &= ~(1 << PD0); // Выключаем светодиод _delay_ms(1000); // Ждем 1 секунду } }

Первой строкой явно указываю частоту с которой должен работать МК, т.к. у меня подключен внешний кварцевый резонатор на 16 МГц. Остальное ясно из комментариев.

Компиляция кода

Для компиляции будем пользоваться двумя командами(полного описания команд и их ключей приводить не буду, ибо каждая из них повод для отдельных статей и они легко находятся в интернете):

avr-gcc — производит компиляцию C в объектный файл.

К данной команде используем ключи:

  • -mmcu ATmega 328P ;
  • -DF_CPU для указания частоты с которой работает МК.
avr-gcc -g -Os -mmcu=atmega328p -DF_CPU=16000000UL main.c -o main.o

main.o

avr-objcopy — производит преобразование объектного файла в hex .

Avr-objcopy -O ihex main.o main.hex

После выполнения команды в каталоге появится файл main.hex . Файл прошивки готов, необходимо загрузить его на МК.

Внимание avrdude

Воспользуемся утилитой avrdude , к данной команде используем ключи:

  • -c для указания программатора, в данном случае USBasp ;
  • -p для указания типа МК, в данном случае ATmega 328P ;
  • -U ключ для указания с каким типом памяти мы работаем, что именно делаем, и указываем файл источник/приемник. В данном случает производится запись во flas-память МК из файла main.hex .

Мне понравилось описание ключей и примеров на сайте ph0en1x.net .

Avrdude -c usbasp -p atmega328p -U flash:w:main.hex

После выполнения команды МК оживает и начинает выполнять заложенные в код алгоритмы.

Изменение FUSE-битов

!!! Внимание Настоятельно рекомендую перед выполнением команды avrdude ознакомиться с описанием ключей и все операции производить только после проверки написанного, во избежание окиричивания МК. Все дальнейшие расчеты на свой страх и риск!

Но не все так гладко. В коде между включением и выключением указана задержка в 1 секунду, а на практике светодиод горит более 10 секунд. Вооружился секундомером, замер показал 16 секунд. Получается МК работает на частоте 1 МГц , вместо 16 МГц .

Чтение документации показало, что необходимо МК указать на какой частоте он должен работать при подключении внешнего кварцевого резонатора. Для ATmega 328P указывается 3 байтами: lock , lfuse , hfuse .

Для расчета значений этих байтов есть калькуляторы фьюзов, обязательно необходимо проверить получившиеся значения с документацией! Для себя собрал следующую команду:

Avrdude -c usbasp -p atmega328p -U lock:w:0xFF:m -U lfuse:w:0xFF:m -U hfuse:w:0xD9:m

После выполнения команды МК начал работать на положенной ему частоте.

10.01.2018 3478

Данное руководство пошагово описывает процесс записи/обновления загрузчика (прошивки) в микроконтроллер на плате «Cosmo Black Star» (аналог Ардуино) посредством использования внутрисхемного программатора AVRISP mkII и AVR Studio 4.

  1. Загрузите и установите на своем компьютере AVR Studio 4
  2. Подключите к компьютеру программатор (AVRISP mkII) посредством USB-кабеля (тип A-B)
  3. Подключите программатор посредством 6-ти жильного шлейфа к ISP разъему на плате

    ISP разъем расположен рядом с кнопкой сброса. Обратите внимание на красную полоску на шлейфе, он указывает ориентацию на 1 pin (смотрите маркировку на плате). 1 pin и красная полоска должны быть с одной стороны.

    Когда программатор не подключен к микроконтроллеру, а также когда на микроконтроллер не подается питание, второй индикатор на программаторе расположенный рядом со шлейфом, показывает индикацию красным светом.
  4. Подключите к гнезду питания на плате штекер от внешнего источника и подайте на плату напряжение 7-12 вольт

    На плате «Cosmo» должен загореться POWER индикатор зеленого цвета.

    Обратите внимание, что при подаче на микроконтроллер питания на программаторе второй индикатор сменил цвет с красного на зеленый.
  5. Установите соединение с микроконтроллером

    Для этого запустите на вашем компьютере AVR Studio . В главном меню программы раскройте вкладку «Tools » и далее выберите Program AVR → Connect

    В открывшемся диалоге выберите в левой части программатор AVRISP mkII , а затем в правой части укажите порт USB . После этого жмите по кнопке «Connect »

  6. Укажите опции прошивки

    При установлении соединения с микроконтроллером в AVR Studio откроется диалоговое окно, на вкладках которого нужно будет указать опции прошивки.

Смотрите Тестируем универсальный транзистор тестер на 328. ОБЗОР ESR МЕТРА НА ATMEGA328P. Прошивка транзистора тестера ESR LCR T4 на базе AT328P на версию 1. A328, у другого продавца, не та что пришла сломанная ОБЗОР ESR МЕТРА НА ATMEGA328P. Тестер транзисторов ESR метр и измеритель RLC Версия прошивки прибора 2. Обзор тестера всех компонентов T T. Электроника это просто 1 год. ESR тестер M328 прошивка и обзор Смотрите видео Прошивка микроконтроллера AT328 для транзистор тестера в

Транзистор тестер с E на контроллере A328P! Транзистор тестер на 328 прошивка. 12к на Транзистор Тестер ESR LCR M328Серега Фокус. Поэтому удалось переделать прошивку Маркуса для работы на китайском тестере! Прошивка микроконтроллера AT328 для транзистор тестера. Затем она потянулась 328 транзистор тестер прошивка прошивва женщине и. Приехал ко мне с Али транзистортестер, которым можно измерять чуть. Y Прошивка микроконтроллера AT328 для транзистор тестера. Всегда можно обновить прошивку на сайте M R и KH K ОБЗОР ESR МЕТРА НА ATMEGA328P. Транзистор тестер на AT328 Измерительные Устройства, Транзисторы

Гц, транзистор тестер на 328 прошивка. Обзор ESR тестер на макетке 1# Обзор ESR тестер на макетке Прошивка микроконтроллера AT328 для транзистор тестераЭлектроника. Обзор тестера всех компонентов T T после замены прошивки на к. Прошивка контроллера ATMEGA328P для ESR тестера. Транзистор Тестер на A328 Русская Прошивка обновить 328 транзистор. Обзор транзистортестераP K. Прошивка Транзистор Тестер на A328. Транзистор тестер с E на контроллере A328P! Тестер полупроводников на A улучшенный

Файлы печатных плат и прошивку тестера полупроводников версии на AT328 и. Случайно на увидел новый. Транзистор Тестер на A328 Прошивка. Z55 корпус для 3 печати в группе Транзистор Тестер прошивка 1. 12к на Транзистор Тестер ESR LCR. 07, название на дисплее.Прошивка A328 M328 Транзистор Тестер. Транзистор Тестер прошивка 1

Программатор микроконтроллера AT328 для транзистор тестера. Или дайте ссылку на новую последнюю прошивку, но с проверкой кварцев Транзистор тестер на ATMEGA328P.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то