Простая защита от кз на 2 ампера. Блок питания с защитой. Принцип работы защиты по току

Потенциометр — это переменный резистор, который при повороте ручки изменяет свое сопротивление.

Что требуется для проекта:

  • Arduino UNO или любой другой аналог
  • Макетная плата
  • Потенциометр
  • Светодиод
  • Резистор 220 Ом

Схема подключения на макетной плате.

Для того, чтобы регулировать яркость светодиода, подключим его к разъему, который поддерживает ШИМ, в нашем случае это цифровой пин 3. Разъемы VCC и GND потенциометра подключаем к рельсе питания и земли макетной платы. Разъем A0 подключаем к аналоговому пину A0.

После удачной сборки схемы загружаем данный скетч:

#define LED 3 #define POT A0 void setup() { pinMode(LED, OUTPUT); //настройка пина в режим выхода pinMode(POT, INPUT); //настройка пина в режим входа } void loop() { //заявляем целочисленные переменные int turn, brightness; //считываем в turn напряжение потенциометра, его значения //будут варьироваться от 0 до 1023 turn = analogRead(POT); //в переменную brightness записываем значение turn, //деленное на 4. Будет принимать значения от 0 до 255 brightness = turn / 4; //включаем светодиод с яркостью, равной значению brightness analogWrite(LED, brightness); }

Теперь попробуем написать код для этой же схемы, но на чистом СИ в среде AtmelStudio 7. Выглядеть это будет так.

#include int main(void) { //Настроим нужные нам пины МК на входы и выходы. DDRC = 0<

Теперь попробуем разобраться с этими двумя примерами. Дело в том, что среда Arduino задумывалась для быстрого старта начинающим. Если надо помигать светодиодом или пощелкать реле, то это можно осуществить за считанные минуты. Среда Arduino полностью изолированна от железа микроконтроллера и поэтому в ней все осуществляется через функции, которые написаны разработчиками данного софта. Эти функции и их внутренности сокрыты в недрах программы. Обычному пользователю остается только вызывать нужные функции для настроек аппаратных узлов МК. Казалось бы это намного упрощает программирование. В принципе это так и есть. Поэтому среда и платы Arduino очень популярны среди начинающих любителей проектов на МК. Однако есть и минусы, например те, кто программируют Arduino, не могут запрограммировать микроконтроллеры, которые не поддерживает среда Arduino IDE. Например, запрограммировать любую модель МК Attiny AVR представляется уже невозможным. Да и другие модели Atmega, которых нет в платах Arduino, тоже остаются за бортом. В принципе если проекты не особо сложные, так побаловатся, то и среды Arduino достаточно. Если же надо что то большое и сложное, то тут конечно рулит чистый СИ. Но тогда придется разбираться в регистрах МК, в том как работают те или иные узлы МК. Надо читать документацию, изучить и понимать сам СИ. Однако если у вас уже есть опыт написание скетчей в среде Arduino, то со временем разобраться в СИ тоже будет возможно.

Теперь попробуем рассмотреть код на СИ и поймем что это не так страшно.

К примеру строка #include
подключает заголовочный файл в котором выбирается наш нужный МК. Среда AtmelStudio 7 делает это автоматически при создании нового проекта.

DDRC = 0<PORTC= 0<DDRD = 1< PORTD = 0<

Эти строки настраивают нужные нам выводы платы Arduino на вход или на выход. PC0 это то же что и А0 на плате, этот вывод надо настроить на вход, так как к ней подключаетя потенциометр. И с этого вывода будет считываться значение АЦП.

Регистром ADMUX и ADCSRA настраиваем сам узел АЦП в нужный нам режим. В частности настраиваем так что АЦП будет автоматически постоянно считывать значение с вывода А0 и сохранять это значение в регистре ADCH .

В МК есть аппаратные таймеры, это тоже такие узлы которые дают возможность работать с ШИМ выводами, например ШИМ вывод ~3 к которому подключен светодиод, принадлежит внутреннему Timer2 . В Atmega 328 есть еще Timer0 и Timer1 . Так вот с помощью регистров TCCR2A и TCCR2B , настроим наш Timer2 на режим FAST_PWM , это дает нам возможность работать с выводом ~3 платы Arduino. Ну и в главном цикле программы сразу передаем значение из АЦП в наш Timer2 . Делается это одной строчкой OCR2B=ADCH .

Вопрос только в том как залить в нашу ардуину код написанный на СИ в AtmelStudio? Сделать это можно с помощью прямо из среды AtmelStudio. Правда перед этим надо из платы ардуино этим же программатором считать и сохранить загрузчик. Иначе потом плата ардуино не сможет работать со средой Arduino. В любое время можно обратно программатором вернуть загрузчик на место.

На предыдущих уроках мы познакомились с простейшими схемами — сборкой и . Сегодня собираем модель с потенциометром (переменным резистором) и светодиодом. Такая модель может использоваться для управления роботом.

Потенциометр — это переменный резистор с регулируемым сопротивлением. Потенциометры используются в робототехнике как регуляторы различных параметров — громкости звука, мощности, напряжения и т.п. В нашей модели от поворота ручки потенциометра будет зависеть яркость светодиода. Это также одна из базовых схем.

Видео-инструкция сборки модели:

Для сборки модели нам потребуется:

  • плата Arduino (или аналоги);
  • Breadboard;
  • 6 проводов и/или перемычек “папа-папа”;
  • светодиод;
  • потенциометр (переменный резистор);
  • резистор на 220 Ом;
  • среда Arduino IDE, которую можно скачать с сайта Arduino .

Что понадобится для подключения потенциометра и светодиода на Arduino?

Схема подключения модели Arduino с потенциометром и светодиодом:

Схема подключения модели Arduino с потенциометром и светодиодом

Для работы этой модели подойдет следующая программа (программу вы можете просто скопировать в Arduino IDE):

// даём имена пинов со светодиодом
// и потенциометром
#define led 9
#define pot A0
void setup()
{
// пин со светодиодом - выход
pinMode(led, OUTPUT);
// пин с потенциометром - вход
pinMode(pot, INPUT);
}
void loop()
{
// объявляем переменную x
int x;
// считываем напряжение с потенциометра:
// будет получено число от 0 до 1023
// делим его на 4, получится число в диапозоне
// 0-255 (дробная часть будет отброшена)
x = analogRead(pot) / 4;
// выдаём результат на светодиод
analogWrite(led, x);
}

Так выглядит собранная модель Arduino потенциометра со светодиодом:

Модель Arduino с потенциометром и светодиодом в собранном виде

На этом третий урок “Arduino для начинающих” закончен. Продолжение следует!

Посты по урокам:

  1. Первый урок: .
  2. Второй урок: .
  3. Третий урок: .
  4. Четвертый урок: .
  5. Пятый урок: .
  6. Шестой урок: .
  7. Седьмой урок: .
  8. Восьмой урок: .
  9. Девятый урок:

Ардуино идеально подходит для управления любыми устройствами. Микропроцессор ATmega с помощью программы-скетча манипулирует большим количеством дискретных выводов, аналогово-цифровых входов/выводов и ШИМ-контроллерами.

Благодаря гибкости кода микроконтроллер ATmega широко используется в модулях различной автоматики, в том числе на его основе возможно создать контроллер управления светодиодным освещением.

Принцип управления нагрузкой через Ардуино

Плата Ардуино имеет два типа портов вывода: цифровой и аналоговый (ШИМ-контроллер). У цифрового порта возможно два состояния – логический ноль и логическая единица. Если подключить к нему светодиод он либо будет светиться, либо не будет.

Аналоговый выход представляет собой ШИМ-контроллер, на который подаётся сигнал частотой около 500Гц с регулируемой скважностью. Что такое ШИМ-контроллер и принцип его работы можно найти в интернете. Через аналоговый порт возможно не только включать и выключать нагрузку, а и изменять напряжение (ток) на ней.

Синтаксис команд

Цифровой вывод:

pinMode(12, OUTPUT); — задаём порт 12 портом вывода данных;
digitalWrite(12, HIGH); — подаём на дискретный выход 12 логическую единицу, зажигая светодиод.

Аналоговый вывод:

analogOutPin = 3; – задаём порт 3 для вывода аналогового значения;
analogWrite(3, значение); – формируем на выходе сигнал с напряжением от 0 до 5В. Значение – скважность сигнала от 0 до 255. При значении 255 максимальное напряжение.

Способы управления светодиодами через Ардуино

Напрямую через порт можно подключить лишь слабый светодиод, да и то лучше через ограничительный резистор. Попытка подключить более мощную нагрузку выведет его из строя.

Для более мощных нагрузок, в том числе светодиодных лент, используют электронный ключ – транзистор.

Виды транзисторных ключей

  • Биполярный;
  • Полевой;
  • Составной (сборка Дарлингтона).
Способы подключения нагрузки
Через биполярный транзистор Через полевой транзистор Через коммутатор напряжения

При подаче высокого логического уровня (digitalWrite(12, HIGH);) через порт вывода на базу транзистора через цепочку коллектор-эмиттер потечет опорное напряжение на нагрузку. Таким образом можно включать и отключать светодиод.

Аналогичным образом работает и полевой транзистор, но поскольку у него вместо «базы» сток, который управляется не током, а напряжением, ограничительный резистор в этой схеме необязателен.

Биполярный вид не позволяет регулировать мощные нагрузки. Ток через него ограничен на уровне 0,1-0,3А.

Полевые транзисторы работают с более мощными нагрузками с током до 2А. Для ещё более мощной нагрузки используют полевые транзисторы Mosfet с током до 9А и напряжением до 60В.

Вместо полевых можно использовать сборку Дарлингтона из биполярных транзисторов на микросхемах ULN2003, ULN2803.

Микросхема ULN2003 и принципиальная схема электронного коммутатора напряжения:

Принцип работы транзистора для плавного управления светодиодной лентой

Транзистор работает как водопроводный кран, только для электронов. Чем выше напряжение, подаваемое на базу биполярного транзистора либо сток полевого, тем меньше сопротивление в цепочке эмиттер-коллектор, тем выше ток, проходящий через нагрузку.

Подключив транзистор к аналоговому порту Ардуино, присваиваем ему значение от 0 до 255, изменяем напряжение, подаваемое на коллектор либо сток от 0 до 5В. Через цепочку коллектор-эмиттер будет проходить от 0 до 100% опорного напряжения нагрузки.

Для управления светодиодной лентой arduino необходимо подобрать транзистор подходящей мощности. Рабочий ток для питания метра светодиодов 300-500мА, для этих целей подойдет силовой биполярный транзистор. Для большей длины потребуется полевой транзистор.

Схема подключения LED ленты к ардуино:

Управление RGB лентой с помощью Andurino

Кроме однокристальных светодиодов, Ардуино может работать и с цветными LED. Подключив выводы каждого цвета к аналоговым выходам Ардуино можно произвольно изменять яркость каждого кристалла, добиваясь необходимого цвета свечения.

Схема подключения к Arduino RGB светодиода:

Аналогично построено и управление RGB лентой Arduino:

Аrduino RGB контроллер лучше собирать на полевых транзисторах.

Для плавного управления яркостью можно использовать две кнопки. Одна будет увеличивать яркость свечения, другая уменьшать.

Скетч управления яркостью светодиодной ленты Arduino

int led = 120; устанавливаем средний уровень яркости

void setup() {
pinMode(4, OUTPUT); устанавливаем 4й аналоговый порт на вывод
pinMode(2, INPUT);

pinMode(4, INPUT); устанавливаем 2й и 4й цифровой порт на ввод для опроса кнопок
}
void loop(){

button1 = digitalRead(2);

button2 = digitalRead(4);
if (button1 == HIGH) нажатие на первую кнопку увеличит яркость
{
led = led + 5;

analogWrite(4, led);
}
if (button2 == HIGH) нажатие на вторую кнопку уменьшит яркость
{
led = led — 5;

analogWrite(4, led);
}

При удержании первой или второй кнопки плавно изменяется напряжение, подаваемое на управляющий контакт электронного ключа. Тогда и произойдет плавное изменение яркости.

Модули управления Ардуино

Для создания полноценного драйвера управления светодиодной лентой можно использовать модули-датчики.

ИК-управление

Модуль позволяет запрограммировать до 20 команд.

Радиус сигнала около 8м.

Цена комплекта 6 у.е.

По радиоканалу

Четырёхканальный блок с радиусом действия до 100м

Цена комплекта 8 у.е.

Позволяет включать освещение еще при приближении к квартире.

Бесконтактное

Датчик расстояния способен по движению руки увеличивать и уменьшать яркость освещения.

Радиус действия до 5м.

Цена модуля 0,3 у.е.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то