Регулятор напряжения и тока на кт825г. Три простые схемы регулятора тока для зарядных устройств. Для схемы "Регулятор напряжения с индикатором"

Защитите ваш сундучок от посторонних глаз без запоминания кодовой комбинации или использования ключа. Ваше лицо и будет служить ключом для открытия сундучка!

В данном проекте показано, как использовать микрокомпьютер Raspberry Pi и камеру Pi для открытия сундучка с помощью технологии распознавания лица.

Программная часть данного проекта основывается на алгоритме, который представлен в библиотеке OpenCV computer vision library . Raspberry Pi является идеальной платформой для данного проекта, поскольку обладает достаточной вычислительной мощностью для запуска OpenCV и имеет небольшие габаритные размеры, позволяющие вместится в любом месте.

Данный проект средний по сложности. В нем выполняется компилирование и установка программного обеспечения на микрокомпьютере Raspberry Pi. Если у вас есть опыт создания подобных вещей, и вы не имеете проблем при использовании командной строки, тогда вы полностью готовы пройти все этапы данного проекта. Вы также можете обратиться к справочным материалам Adafruit learning system при возникновении каких-либо проблем.

Шаг #1: Подготовка сундучка

  • Просверлите отверстие диаметром 7/16 дюйма в верхней части сундучка для вставки камеры Pi.
  • Просверлите отверстие большего диаметра сзади сундучка для вставки нажимной кнопки и силовых кабелей.

Шаг #2: Изготовления защелки

  • Установите штифт в передней части сундучка, который будет захватываться защелкой при повороте сервопривода.
  • Изготовьте небольшой каркас для поддержки Pi и защелки сервопривода. Сервопривод прикрепляется к каркасу с помощью деревянной пластины и винтов с головкой под шлиц.
  • Изготовьте защелку из двух деревянных пластин, склеенных под прямым углом и прикрепленных к качалке сервопривода.

Шаг #3: Завершение работы с сундучком

  • Проверьте правильность соприкосновения каркаса, Pi и защелки в верхней части сундучка. Убедитесь в том, что защелка сервопривода поворачивается вниз и захватывает штифт внутри передней части сундучка.
  • Установите штифты, которые проходят через верхнюю часть сундучка, для поддержки каркаса.
  • Устраните дефекты в сундучке с помощью рашпиля и наждачной бумаги, и далее заморите деревянную поверхность по своему желанию.

Шаг #4: Подключение электронных компонентов

  • Подключите сигнальную линию сервопривода к выводу GPIO 18 на Raspberry Pi. Питание и земля для сервопривода должны подключаться к питающим выводам аккумулятора.
  • Подключите один вывод нажимной кнопки к выводу Pi GPIO 25, и через резистор 10 кОм к выводу напряжения питания 3.3 В Pi. Подключите второй вывод нажимной кнопки к земляному выводу Pi.
  • Соедините вместе земляные выводы аккумулятора и Pi.
  • Установите Pi камеру через отверстие в верхней части сундучка и подсоедините кабель к микрокомпьютеру Pi.

Шаг #5: Компилирование OpenCV

  • На данном этапе необходимо установить последнюю версию OpenCV на Raspberry Pi. К сожалению, сначала нужно скомпилировать OpenCV из исходного кода, поскольку старая двоичная версия не содержит алгоритмы распознавания лица, используемые в проекте. Компилирование OpenCV на Pi занимает около 5 часов.
  • Подайте питание на микрокомпьютер Pi и подключитесь к нему через сеанс работы с терминалом.
  • Выполните следующие команды для установки взаимозависимостей OpenCV:

sudo apt-get update && sudo apt-get install build-essential cmake pkg-config python-dev libgtk2.0-dev libgtk2.0 zlib1g-dev libpng-dev libjpeg-dev libtiff-dev libjasper-dev libavcodec-dev swig

  • Выполните следующие команды для загрузки и разархивирования исходного кода для последней версии OpenCV:

wget http://downloads.sourceforge.net/project/opencvlibrary/opencv-unix/2.4.7/opencv-2.4.7.tar.gz && tar zxvf opencv-2.4.7.tar.gz

  • Выполните следующие команды для подготовки компиляции исходного кода OpenCV:

cd opencv-2.4.7 && cmake -DCMAKE_BUILD_TYPE=RELEASE -DCMAKE_INSTALL_PREFIX=/usr/local -DBUILD_PERF_TESTS=OFF -DBUILD_opencv_gpu=OFF -DBUILD_opencv_ocl=OFF

  • Выполните данную команду для запуска компиляции OpenCV (примите во внимание, что компиляция занимает около 5 часов):
  • После завершения компиляции OpenCV, выполните данную команду для установки Pi:

Шаг #6: Пробное распознавание лица

  • На данном этапе мы опробуем алгоритмы распознавания лица, которые позволят открывать сундучок.
  • Загрузите программное обеспечение для данного проекта с депозитария github repository (сноска: https://github.com/tdicola/pi-facerec-box).
  • Разархивируйте архив и скопируйте содержимое в директорий на Pi.
  • Во время сеанса работы с терминалом на Pi просмотрите директорий и выполните следующую команду для запуска пробного скрипта:

sudo python capture-positives.py

  • Во время работы скрипта вы можете нажать кнопку, располагаемую на сундучке, для фотографирования с помощью камеры Pi. Скрипт попытается определить одно лицо в захваченном изображении и сохранить его как правильно отснятый кадр в поддиректории./training/positive.
  • Каждый раз при захвате изображения, кадр записывается в файл capture.pgm. Вы можете просмотреть его в графическом редакторе, чтобы определить, как камера Pi выполняет захват и определяет изображение вашего лица.
  • Используйте кнопку для захвата 5 или более изображений вашего лица для получения правильных результатов. Попытайтесь получить изображения с разных углов, при различном освещении и т.д. На фотографиях вы видите полученные мной изображения лица.
  • Если вам интересно, вы можете просмотреть директорий./training/negative, в котором размещаются изображения из базы данных распознавания лиц AT&T, которые можно использовать как примеры людей, которые не должны иметь доступ к открытию сундучка.
  • После получения правильных изображений запустите следующие команды для обработки правильных и неправильных пробных изображений, и для проверки алгоритма распознавания лица (примите во внимание, что данная пробная операция занимает около 10 минут):

python train.py

Шаг #7: Конфигурирование сервопривода

  • На данном этапе необходимо определить значения ширины импульсов сервопривода для запирания и отпирания защелки.
  • При подаче питания на микрокомпьютер Raspberry Pi и сервопривод защелки, подключитесь к Pi в сессии работы с терминалом. Убедитесь в том, что сундучок открыт так, что вы можете видеть перемещение сервопривода без заклинивания.
  • Выполните следующую команду для запуска интерактивной сессии Python как суперпользователь (необходимо иметь доступ к выводам GPIO и возможность перемещения сервопривода):

sudo python

  • В командной строке Python >>>, введите данную команду для загрузки библиотеки RPIO servo library:

from RPIO import PWM

  • Далее введите следующую команду:

servo = PWM.Servo()

  • В заключении выполните данную команду для перемещения защелки сервопривода в центральное положение:

servo.set_servo(18, 1500)

  • Параметр 1500 для установки функции set_servo определяет ширину импульса для привода в микросекундах. Крайние значения находятся в диапазоне от 1000 до 2000.
  • Попытайтесь выполнить функцию set_servo с различными значениями ширины импульса, пока не получите значения, при которых происходит правильное закрытие и открытие защелки, как показано на фотографиях.
  • Не забывайте, что вы можете снять качалку сервопривода и прикрепить повторно для надлежащей ориентации защелки на сервоприводе.
  • Как только значения будут подобраны, откройте config.py в текстовом редакторе с правами суперпользователя и измените следующие значения:
  • Установите LOCK_SERVO_UNLOCKED равным значению ширины импульса для разблокировки положения защелки – отпирание. На моем железе надлежащее значение 2000.
  • Установите LOCK_SERVO_LOCKED для определения блокировки положения защелки – запирание. В моем случае это значение 1100.

Шаг #8: Запуск программного обеспечения

  • После проверки распознавания лица и калибровки сервопривода, можно запустить программный код!
  • При подаче питания на микрокомпьютер Raspberry Pi и сервопривод защелки, подключитесь к Pi в сессии работы с терминалом и просмотрите корневой директорий проекта.
  • Выполните следующую команду для запуска программного кода (будьте внимательны, поскольку сразу произойдет запирание сундучка):

sudo python box.py

  • После загрузки пробных данных (это занимает несколько минут), направьте камеру на ваше лицо и нажмите кнопку для попытки распознавания лица.
  • Если сундучок распознает ваше лицо, сработает сервопривод и отопрет защелку. Если ваше лицо не распознано, на терминале отобразится сообщение, насколько ваше лицо было близко к пробному изображению.
  • Для распознавания лица необходимо, чтобы захваченное изображение совпало с пробным, с достоверностью 2000 или менее. Если ваше лицо совпадает с данными пробного изображения, но достоверность невысокая, вы можете изменить порог достоверности в config.py (под настройкой POSITIVE_THRESHOLD). Если распознавание все еще не достоверное, тогда загрузите больше надлежащих захваченных изображений и запустите пробное распознавание еще раз. Алгоритм распознавания лица в данном проекте сильно зависит от освещения лица, поэтому попытайтесь иметь тот же источник освещения, что и при пробных попытках (или добавьте несколько дополнительных изображений при различных условиях освещенности).
  • После раскрытия сундучка повторно нажмите кнопку для его закрытия. Для этого операция распознавания лица не требуется.
  • Если сундучок плохо открывается и не распознает ваше лицо, тогда выполните шаги конфигурации сервопривода для ручного перемещения сервопривода в положение отпирания с помощью команды set_servo.

На рисунке приведена схема удвоителя напряжения, способного обеспечить в нагрузке ток до 2 А. В основе преобразователя - генератор импульсов на логическом элементе QD1.1, охваченном цепью обратной связи R1C1R2, задающей частоту генерации. Вырабатываемые им импульсные сигналы в противофазе поступают на входы логических элементов DD1.3 и DD1.4. управляющих мощными ключевыми транзисторами VT1 и VT2. Для исключения возможности короткого замыкания источника питания во час их переключения на вторые входы элементов DD1.3 (через инвертор DD1.2) и DD1.4 поступают импульсы, задержанные примерно на четверть периода интегрирующие цепью R3C2. Благодаря этому, открывающие импульсы: (отрицательной относительно эмиттеров полярности) на базах транзисторов оказываются разнесенными во времени, и сквозной ток через оба транзистора исключается.Если открыт транзистор VT2, конденсатор СЗ заряжается через диод VD1 до напряжения источника питания. Т160 схема регулятора тока Через полпериода открывается транзистор VT1, конденсатор СЗ оказывается включенным последовательно с источником, и конденсатор С4 через диод VD2 заряжается практически до удвоенного напряжения питания.Отечественный аналог ИМС СD4093- отсутствует, однако в описанном преобразователе можно использовать ИМС К561ТЛ1, транзисторы серии и диоды серии КД202. Для снижения уровня пульсации при максимальных токах нагрузки емкость конденсаторов СЗ и С4 желательно увеличить до 10 мкф и, кроме того, параллельно конденсатору С4 включить пленочный или керамический емкостью 0,1...1 мкф.Stephenson P. Cheap voltage doubler.- Wireless World. 1983, Vol. 89. N 1573, р. 59.(Радио 2-85, с.61)...

Для схемы "Зарядное устройство для 3-6-вольтовых аккумуляторов"

Предлагаемое зарядное устройство разработано для зарядки стабильным током в первую очередь шахтерских аккумуляторов, именуемых в народе "коногонкой". Саморазряд у этих аккумуляторов очень большой. А это означает, что уже через месяц, более того без нагрузки тот самый аккумулятор надобно заряжать. Устройство несложно доработать и для зарядки 12-вольтовых аккумуляторов, подходит оно (без доработки) и для зарядки 6-вольтовых аккумуляторов. Схема зарядного устройства очень проста (см. рисунок). Выпрямитель и трансформатор на схеме не показаны. Вторичная обмотка обеспечивает ток в нагрузке более 3 А при напряжении 12 В. Выпрямитель мостового типа на диодах Д242А, фильтрующий конденсатор - 2000 мкФх50 В (К50-6). Полевой транзистор типа КП302Б (2П302Б, КП302БМ) с начальным током стока 20-30 мА. Стабилитрон VD1 типа Д818 (Д809). Транзистор типа с любой буквой. Его можно сменить схемой Дарлингтона, например, КТ818А и КТ814А и т.д. Фазоимпульсный регулятор мощности на кмоп Резистор R1 типа МЛТ-0,25; резистор R2 типа ППЗ-14, но полностью подойдет и с графитовым покрытием; R3 - проволочный (нихром - 0,056 Ом/см). Транзистор VT2 размещен на ребристом теплоотводе с охлаждающей поверхностью приблизительно 700 см. Электролитический конденсатор С1 любого типа. Конструктивно схема выполнена на печатной плате, расположенной вблизи транзистора VT2. Чтобы заряжать и 12-вольтовые аккумуляторы, следует предусмотреть вероятность увеличения на 6 В переменного напряжения на вторичной обмотке сетевого транзистора зарядного устройства. Данную схему использовали так же, как приставку к блоку питания (подойдет и не стабилизированный источник напряжения). Достоинство данной схемы - не боится коротких замыканий по выходу, поскольку представляет собой фактически генератор стабильного тока. Величина этого тока зависит в первую очередь от смещения, которое устан...

Для схемы "Транзисторный регулятор напряжения"

В нескольких номерах журнала "Радиоаматор" были напечатаны схемы регуляторов сетевого на тиристорах, но такие устройства имеют ряд существенных недостатков, ограничивающих их возможности. Во-первых, они вносят довольно заметные помехи в электрическую сеть, что нередко отрицательно сказывается на работе телевизоров, радиоприемников, магнитофонов. Во-вторых, их можно применять только для менеджмента нагрузкой с активным сопротивлением (электролампой, нагревательным элементом) и нельзя использовать одновременно с нагрузкой индуктивного характера (электродвигателем, трансформатором). Между тем все эти проблемы легко решить, собрав электронное устройство, в котором роль регулирующего элемента выполнял бы не тиристор, а мощный транзистор. Такую конструкцию я и предлагаю, причем ее может повторить любой, более того неопытный радиолюбитель, затратив при этом минимум времени и средств. Транзисторный регулятор напряжения содержит мало радиоэлементов, не вносит помех в электрическую сеть и работает на нагрузку как с активным, так и с индуктивным сопротивлением. Его можно использовать для регулировки яркости свечения люстры или настольной лампы, температуры нагрева паяльника или электроплитки, электрокамина, скорости вращения электродвигателя, вентилятора, электродрели или напряжения на обмотке трансформатора. ...

Для схемы "Универсальный блок питания низкого напряжения"

На практике очень часто для питания различных устройств требуются от 3 до 12 В. Описанный блок питания позволяет получать следующего ряда: 3; 4,5(5); 9; 12 В при токе нагрузки до 300 мА. Имеется вероятность оперативно изменять полярность выходного напряжения. ...

Для схемы "ПРЕОБРАЗОВАТЕЛЬ НАПРЯЖЕНИЯ"

ЭлектропитаниеПРЕОБРАЗОВАТЕЛЬ С.Сыч225876, Брестская обл., Кобринский р-н, п.Ореховский, ул.Ленина, 17 -1. Предлагаю простую и надежную схему преобразователя напряжения для менеджмента варикапами в различных конструкциях, который вырабатывает 20 В при питании от 9 В. Выбран вариант преобразователя с умножителем напряжения, поскольку он считается самым экономичным. Кроме того, он не создает помех радиоприему. На транзисторах VT1 и VT2 собран генератор импульсов, близких к прямоугольным. На диодах- VD1...VD4 и конденсаторах С2...С5 собран умножитель напряжения. Резистор R5 и стабилитроны VD5, VD6 образуют параметрический стабилизатор напряжения. Конденсатор С6 на выходе является ВЧ-фильтром. Ток потребления преобразователя зависит от напряжения питания и количества варикапов, а также от их типа. Устройство желательно заключить в экран для снижения помех от генератора. Правильно собранное устройство работает сразу и некритично к номиналам деталей....

Для схемы "Преобразователь напряжения 5 -> 230V"

ЭлектропитаниеПреобразователь 5 -> 230 V Микросхемы:DD1 - K155ЛA3 DD2 - K1554TM2Транзисторы:VT1 - VT3 - КТ698Г, VT2 - VT4 - КТ827Б, VT5- КТ863АРезисторы: R1 - 910,R2 - 1k,R3 - 1k,R4 -120 0.25 Bт, R5 - 120 0.25 Bт, R6 - 500 0.25 Вт, R7 - R8 - 56 Ом 2Вт, R9 - 1.5 kOm2ВтДиод VD5 - KC620А двапоследовательно Конденсаторы:С1 - 10H5 С2 - 22 мкФ х450ВТрансформатор:Т1 - двеобмотки по 10 вольт соединенных последовательноток 16А;одна обмотка на 220 вольт ток 1А, частота25кГц =Преобразователь напряжения 5 - 230V...

Для схемы "Регулятор напряжения с индикатором"

Устройство, представленное на рис.1, предназначено для плавного регулирования в маломощны нагрузках. С его помощью можно от одного источника питания, имеющего припас по мощности, питать второе дополнительное радиотехническое устройство. Например, источник питания на 15...20 В питает необходимую схему, а вам нужно дополнительно от него питать транзисторный приемник, у которого напряжение питания ниже (3...9 В). Схема выполнена на полевом эпитаксиально-планарном транзисторе с p-n-переходом и n-каналом КП903. При работе устройства использовано свойство вольтамперных характеристик данного транзистора при разных напряжениях между затвором и истоком. Семейство характеристик КП903А...В приведено в . Входное питающее напряжение данного устройства 15...20 В. Резистор R2 типа ППБ-ЗА номиналом 150 Ом. С его помощью можно устанавливать требуемое напряжение в нагрузке. Недостатком регулятора является подъем внутреннего сопротивления устройства при понижении рабочего напряжения. Дроздов схемы трансиверов На рис.2 изображена схема индикатора напряжения вышеописанного регулятора, собранного на полевом транзисторе КП103. Устройство предназначено для контроля напряжения в нагрузке. Подключение данного индикатора к устройству регулятора выполняется согласно приведенной схеме. В зависимости от буквенного индекса КП103 устанавливаемого в схему индикатора (рис.2) мы будем фиксировать (по моменту зажигания светодиода HL1 при повышении выходного напряжения) рабочее напряжение в нагрузке. Эффект фиксирования различных напряжений в нагрузке получается в результате того, что канальные транзисторы КП103 имеют различные напряжения отсечки в зависимости от буквенного индекса, например, для транзистора КП103Е - это 0,4-1,5 В, для КП103Ж - 0,5-2,2 В, для КП103И - 0,8-3 В и т.д.. Установив транзистор с необходимым буквенным...

Для схемы "Преобразователя постоянного напряжения 12 В в переменное 220 В"

ЭлектропитаниеПреобразователя постоянного 12 В в переменное 220 В Антон Стоилов Предлагается схема преобразователя постоянного напряжения 12 В в переменное 220 В, который при подключении к автомобильному аккумулятору емкостью 44 А-ч может питать 100-ваттную нагрузку в течение 2-3 часов. Он состоит из задающего генератора на симметричном мультивибраторе VT1, VT2, нагруженного на мощные парафазные ключи VT3-VT8, коммутирующие ток в первичной обмотке повышающего трансформатора TV. VD3 и VD4 защищают мощные транзисторы VT7 и VT8 от перенапряжений при работе без нагрузки. Трансформатор выполнен на магнитопроводе Ш36х36, обмотки W1 и W1" имеют по 28 витков ПЭЛ 2,1, a W2 - 600 витков ПЭЛ 0,59, причем сначала мотают W2, а поверх нее двойным проводом (с поставленной задачей достижения симметрии полуобмоток) W1. При налаживании триммером RP1 добиваются минимальных искажений формы выходного напряжения "Радио Телевизия Електроника" N6/98, с. 12,13....

В практике радиолюбителя нередко возникает ситуация, когда нужно отслеживать показания того или иного параметра. Предлагаю схему индикаторной светодиодной "линейки". В зависимости от входного светится большее или меньшее количество светодиодов, расположенных в линейку (один за другим).Диапазон допустимого напряжения - 4...12В, т.е. при входном напряжении 4 В будет пылать только один (первый) светодиод, а при 12 В - вся линейка.Возможности схемы можно легко расширить. Чтобы отслеживать переменное напряжение, довольно до резистора R1 установить диодный мост из маломощных диодов. Напряжение питания можно варьировать от 5 до 15 В, подобрав соответственно резисторы R2...R8. От питания схемы зависит в основном яркость светодиодов, входные же характеристики схемы при этом практически не изменяются. Электросхема насоса азовец Чтобы яркость светодиодов была одинаковой, следует подобрать резисторы следующим образом: где Iк max - ток коллектора VT1, мА; R3=2R2; R4=3R2; R5=4R2; R6=5R2; R7=6R2; R8=7R2.Таким образом, при применении транзистора КТ312А (lK max=30 мА) R2=33 Ома. Резистор R1 входит в делитель напряжения и регулирует режим работы транзистора VT1. Диоды VD1 ...VD7 можно сменить на КД103А, КД105, Д220, светодиоды HL1...HL8 - на АЛ102. Резистор R9 лимитирует ток базы транзистора VT1 и препятствует выходу из строя последнего при попадании на вход схемы большого напряжения.А.КАШКАРОВ, г.С.-Петербург....

Здравствуйте уважаемые читатели. Существует много схем, где с большим успехом используются замечательные мощные составные транзисторы КТ827 и естественно иногда возникает необходимость в их замене. Кода под рукой данных транзисторов не обнаруживается, то начинаем задумываться об их возможных аналогах.

Полных аналогов среди изделий иностранного производства я не нашел, хотя в интернете есть много предложений и утверждений о замене этих транзисторов на TIP142. Но у этих транзисторов максимальный ток коллектора равен 10А, у 827 он равен 20А, хотя мощности у них одинаковые и равны 125Вт. У 827 максимальное напряжение насыщения коллектор – эмиттер равно два вольта, у TIP142 – 3В, а это значит, что в импульсном режиме, когда транзистор будет находиться в насыщении, при токе коллектора 10А на нашем транзисторе будет выделиться мощность 20Вт, а на буржуйском – 30Вт, поэтому придется увеличивать размеры радиатора.

Хорошей заменой может быть транзистор КТ8105А, данные смотрим в табличке. При токе коллектора 10А напряжение насыщения у данного транзистора не более 2В. Это хорошо.

При неимении все этих замен я всегда собираю приблизительный аналог на дискретных элементах. Схемы транзисторов и их вид приведены на фото 1.

Собираю обычно навесным монтажом, один из возможных вариантов показан на фото 2.

В зависимости от нужных параметров составного транзистора можно подобрать транзисторы для замены. На схеме указаны диоды Д223А, я обычно применяю КД521 или КД522.

На фото 3 собранный составной транзистор работает на нагрузку при температуре 90 градусов. Ток через транзистор в данном случае равен 4А, а падение напряжения на нем 5 вольт, что соответствует выделяемой тепловой мощности 20Вт. Обычно такую процедуру я устраиваю полупроводникам в течении двух, трех часов. Для кремния это совсем не страшно. Конечно для работы такого транзистора на данном радиаторе внутри корпуса устройства потребуется дополнительный обдув.

Для выбора транзисторов привожу таблицу с параметрами.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то