Самодельный приемник кв наблюдателя inurl guestbook asp. Ламповый кв приемник наблюдателя. Ламповые модели высокой частоты

Для тех радиолюбителей, кого интересует только прием (наблюдение) любительских станций, наличие постоянно включенного мобильного (не обязательно стационарного) приемника - достаточно важная задача. Это связано, в том числе, и с определенной сложностью создания, а, главное, налаживания передающего тракта в условиях недостатка опыта и отсутствия многих необходимых измерительных приборов. Да, и имея под рукой промышленный импортный трансивер, мониторинг эфира для более опытных НАМ,ов приобретает важное значение. Услышал нужного корреспондента – включил базовый (стационарный) ТRХ… К слову, открытые широкополосные входы современных промышленных трансиверов, подчас дают такой шумовой «окрас» приема, что никакая DSP-обработка не помогает, да и для слуха не очень приятная нагрузка…

Он представляет собой конструкцию, доступную для повторения даже начинающими радиолюбителями. При изготовлении этого приемника ставилась задача создать недорогой аппарат с приемлемыми характеристиками, обладающий высокой повторяемостью и доступной для большинства радиолюбителей элементной базой. Данная конструкция не содержит каких–либо оригинальных схемных решений. Применены многие узлы, ранее предложенные другими авторами и хорошо зарекомендовавшие себя при массовом повторении. Базовыми явились схемные решения, примененные и описанные в конструкциях трансивера

На принципиальной схеме (рис.3) не изображен ГПД и цифровая шкала – применение синтезатора или «своего» ГПД с «другой» ЦШ может резко повысить сервисные удобства приемника. Так что здесь возможен творческий подход радиолюбителя. В авторском варианте применялся несколько измененный ГПД-02 от TRX «Дружба-М» (см. схему на рис.4) и

ЦШ А.Денисова .

Число диапазонов в примененном ДПФ от TRX

«Дружба-М» уменьшено до пяти. Принципы его построения и работы (как и многих других узлов) можно найти в первоисточнике .

В приемнике предусмотрено применение отключаемого УВЧ, что позволяет вести уверенный прием на ВЧ диапазонах. Тем же трехпозиционным S1 можно включить АТТ, ослабив сильный сигнал или помехи на -20 дБ.

Из других сервисных удобств: в наличии индицированная светодиодом расстройка, включаемая S2, что позволяет более точно и плавно подстроиться на cигнал SSB/CW.

Во многом качественная работа приемника определяется правильным подбором диодов в его двойных балансных смесителях (VD1 – VD4, VD7 – VD10). Диоды настоятельно рекомендуется применять, подобрав их согласно рекомендаций, изложенных в статье

. Оптимальным выбором следует считать диоды типа КД922 или КД514.

Во многих случаях альтернативным вариантом может оказаться применение готовых диодных микросборок с подобранными характеристиками. Например, часто рекомендуемых КДС523А, Б, или подобранных в сборку диодов (КДС523ВР). Однако, в целом ряде случаев, необходимо обязательно проверить эти сборки хотя бы самым простым способом, поскольку допустимый разброс в них может достигать 10% и это может негативно сказаться на работе смесителей и потребует добавления в схему смесителя балансировочных резисторов и/или емкостей, что в целом ни к чему, поскольку увеличивает потери в смесителе. А это всегда нежелательно.

Основная плата трансивера «Дружба-М» содержит два кварцевых фильтра – основной восьмикристальный и подчисточный с регулируемой полосой пропускания. В принципе, такой подход в построении основной платы возможен и в нашем приемнике, развернув второй каскад на прием. Для этого основной КФ включается между первым и вторым каскадом (с учетом замечаний по согласованию, изложенных выше); второй, подчисточный – между вторым и третьим. В нашем случае чисто по технологической причине (переделка осуществлялась уже готовой основной платы трансивера В.Кузнецова методом навесного монтажа и коррекцией печатных проводником ножом) оставлен самый простой вариант схемы – с 4-х кристальным КФ, выполненным из набора С.Тележникова (RV3YF) .

Прямоугольность такого КФ определенно хуже ЭМФ или пьезофильтра, поэтому избирательность по соседнему каналу приемника будет несколько хуже. Однако, при относительно высокой ПЧ (8865 кГц) намного проще обеспечить хорошую избирательность по зеркальному каналу. Для этого достаточно 2-х контурного ДПФ.

Во многих источниках рекомендуется применять 8-резонаторный КФ лестничного типа, как наиболее простой в изготовлении и настройке. Обычно, с 50-омными нагрузками его согласовывают при помощи широкополосных трансформаторов (как и в нашем случае - рис.1). При этом применение каскадов ПЧ на транзисторах средней мощности составляет 10-15 дБ на каскад (то же и у нас). При применении трех таких каскадов с учетом затухания в полосе прозрачности КФ (оно меньше, чем у ЭМФ), усиления по ПЧ вполне хватает для достижения высокой чувствительности (менее 0,5 мкВ).

Наиболее простой вариант, который применен в нашем приемнике - использование одинаковых кварцевых резонаторов на одну и ту же частоту (+/- 40 Гц) для конструкции фильтра по лестничной схеме и опорного генератора. Вход КФ (Rвх./вых.≈200 Ом) согласован с выходом каскада на VT3 точкой подключения к ШПТЛ (коллектор VT3) и резистором R28. Для согласования с входным сопротивлением каскада (на VT4), перед которыми включен КФ, и устойчивой его работы, применен резистивный аттенюатор (R32, R34).

Согласно данным источника фильтр можно представить, как типичный «нижний». Края среза фильтра в нашей конструкции при полосе 3,2 кГц будут 8861,6 - 8864,8 кГц. Для получения ВБП частота ОГ: 8861,6 - 0,3 = 8861,3 кГц, где 300 Гц это стандартный относ частоты ОГ от среза фильтра. Подстроить эту частоту можно с помощью коммутируемых индуктивности, включенной последовательно с резонатором Cr5.

Поскольку наш фильтр «типично нижний», то для приема НБП в схеме ОГ нужно просто исключить «удлиняющую» катушку (хотя возможен вариант включения конденсатора для получения НБП (8823,7 + 0,3 = 8824,0 кГц). Переключение полосы приема ВБП/НБП осуществляется автоматически при смене диапазона секцией переключателя S3.2.

Сигнал CW можно принимать при любой полосе приема, но при применении варианта схемы ОГ с конденсатором предпочтительнее сигнал СW принимать в положении НБП (включением конденсатора последовательно с кварцем можно снизить полосу приема до 800-900 Гц, но при этом усложнится коммутация – придется добавить еще один отдельный переключатель SSB-CW, или коммутировать с помощью реле). Этот вариант показан на рис.3.

В любом случае изменение частоты опорного генератора при НБП/ВБП придется учитывать при настройке частотомера (введение в банк величины ПЧ с учетом ее суммирования/вычитания).

В качестве УЗЧ приемника применена схема, рекомендуемая даташитом к микросхеме LM386, что обеспечивает более высокую стабильность ее работы. Как указывает С.Беленецкий (US5MSQ) , наименее «шумной» из 386-й серии, является микросхема LM386N-I («не хуже, чем любая другая из «наших» 174УН...»).

УЗЧ на LM386 можно выполнить и по более

популярной схеме , позволяющей получить усиление от 34 до 74 дБ, как это сделано, например, в приемнике «Малыш» С.Беленецкого . Согласно этой схемы выполнена и простейшая АРУ на VD5, VD6 и VT5 .

Перед УЗЧ можно применить любой пассивный (на R-L-C-элементах) ФНЧ. Например, промышленный Д-3.4 или самодельный (на основе ферритовых колец или магнитофонных головок - схем в интернете много). Так и простейшие активные ФНЧ, например, по схеме трансивера «Урал-(07 mini)-RD» А.Першина (RV3AE) , или несколько более сложный,

активный фильтр по схеме Б.Попова , многократно с хорошими результатами опробованный на различных типах ОУ, и ряд других.

Основные радиодетали для сборки приемника можно выписать у

С.Тележникова.

Все узлы приемника «Мотив-RX 2» экранированы луженной жестью или латунью и выполнены по-блочно. Установка резонаторов КФ выполнена согласно рекомендаций по

. Экран основной платы закреплен на резьбовой части транзисторов КТ606 и является, одновременно, теплоотводящим элементом – все-таки потребляемый ток достаточно большой и транзисторы при работе в схеме становятся теплыми. Для упрощения управления частотой ОГ (без применения реле и с целью укорочения проводников) его плату необходимо разместить поближе к переключателю S3.

Правильно собранный приемник с исправными деталями и установленными частотами ГПД начинает работать сразу. Напряжение высокой частоты ГПД и ОГ (оба после УВЧ), измеренное ламповым вольтметром ВК 7-9, составляет соответственно 0,7 и 1,2 В. При этом не следует пренебрегать и контролем работы приемника на слух – меняя уровень ВЧ напряжения при максимальном усилении можно добиться оптимального усиления, когда к шуму эфира начинает добавляться «белый шум», т.е., далее уровень ВЧ напряжения генераторов повышать нецелесообразно.

В. Поляков (RA3AAE)

Продолжая цикл статей по основам любительской радиосвязи, начатый в августовском номере журнала за прошлый год описанием простого передатчика с кварцевой стабилизацией на любительский диапазон 160 метров, предлагаем конструкцию простого гетеродинного радиоприемника на тот же диапазон. Приемник может заинтересовать как начинающих коротковолновиков-наблюдателей, так и более опытных радиоспортсменов. Благодаря своей экономичности и небольшим габаритам приемник особенно подходит для работы в полевых условиях.

Для приема сигналов радиолюбительских станций обычные массовые радиовещательные приемники непригодны без их настолько существенной модернизации, что проще построить приемник заново. Дело даже не в их низкой чувствительности и излишне широкой полосе пропускания, а в том, что они рассчитаны на прием амплитудно-модулированных (AM) сигналов. Любители же давно отказались от AM ввиду ее низкой эффективности и используют на коротких волнах (KB) исключительно телеграф (CW) или однополосную модуляцию (SSB) речевым сигналом. По этой причине и приемник должен проектироваться на совершенно иных принципах. В частности, в нем не нужен амплитудный детектор, а основное усиление целесообразно сделать на низких, звуковых частотах, где это гораздо проще и дешевле.

CW сигнал представляет собой короткие и длинные посылки немодулированной несущей частоты, лежащей в одном из радиолюбительских диапазонов, в нашем случае 1,8...2 МГц (160 метров). Чтобы сигнал зазвучал привычной мелодией азбуки Морзе, его высокую частоту необходимо преобразовать вниз, в диапазон 3Ч. Это делает установленный на входе приемника (рис. 1), сразу после входного фильтра Z1, преобразователь частоты, содержащий смеситель U1 и маломощный вспомогательный генератор - гетеродин G1.

Предположим, мы хотим принять CW сигнал на частоте 1900 кГц. Настроив гетеродин на частоту 1901 кГц, мы получим на выходе смесителя сигналы суммарной (3801 кГц) и разностной (1 кГц) частот. Суммарная частота нам не нужна, а сигнал разностной, звуковой частоты отфильтруем (Z2), усилим в УЗЧ А1 и подадим на телефоны BF1. Как видите, приемник действительно очень прост.

SSB сигнал представляет собой тот же звуковой, но со спектром, перенесенным в область радиочастот. На низкочастотных любительских диапазонах (160, 80 и 40 метров) спектр SSB сигнала еще и инвертирован (излучается нижняя боковая полоса, LSB). Это значит, что при несущей частоте SSB сигнала 1900 кГц его спектр простирается от 1897 до 1899,7 кГц, т. е. 1900 кГц - (0,3....3 кГц). Подавляемая верхняя боковая (USB) занимает полосу частот 1900,3...1903 кГц, как видно на спектрограмме (рис. 2). Излучаемая LSB выделена утолщенными линиями. Для приема этого сигнала достаточно настроить гетеродин точно на частоту 1900 кГц.

Гетеродинный приемник изобрели еще на заре радиотехники, ориентировочно в 1903 году, когда еще не было ни ламп, ни других усилительных приборов, но уже были антенны, телефоны и генераторы незатухающих колебаний (дуговые, электромашинные). Последующее десятилетие для слухового приема телеграфных сигналов применялись исключительно гетеродинные приемники. Затем были изобретены ламповый регенератор, или аудион (1913 г.), супергетеродин (1917 г.), кстати, получивший свое название от гетеродинного приемника, широко стали использовать AM, и о гетеродинных приемниках прочно и надолго забыли.

Возродили эту технику радиолюбители в 60-70-х годах прошлого века, доказав на практике, что приемник на трех-четырех транзисторах может принимать радиостанции всех континентов, работая не хуже больших многоламповых аппаратов. Но название стало другим - приемник прямого преобразования (Direct Conversion Receiver, DCR), чем подчеркивался факт непосредственного преобразования (именно преобразования, а не детектирования) частоты радиосигнала в низкую звуковую частоту.

Снова обращаясь к рис. 1, поясним назначение фильтров. Входной полосовой фильтр Z1 ослабляет мощные внеполосные сигналы служебных и радиовещательных станций, которые могут создавать помехи. Его полоса пропускания может равняться ширине любительского диапазона, а если она уже, фильтр делают перестраиваемым. Ослабляет он и побочные каналы приема, возможные на гармониках гетеродина. Фильтр Z2 - это ФНЧ, пропускающий только "телефонную" полосу звуковых частот ниже примерно 3 кГц. Самые же низкие частоты, ниже 300 Гц, достаточно ослабляются разделительными конденсаторами в УЗЧ.

Фильтр Z2 определяет селективность приемника: сигналы радиостанций, расположенных далее 3 кГц от частоты гетеродина, создают на выходе смесителя частоты выше 3 кГц, следовательно, будут эффективно отфильтрованы в ФНЧ. К селективности приемника добавляется и селективность телефонов, плохо воспроизводящих частоты выше 2,5...3 кГц, и естественная селективность человеческого слуха, прекрасно различающего тон сигналов и выделяющего полезный сигнал на фоне помех - ведь если частоты различаются в радиодиапазоне, после преобразования они будут различаться и в звуковом диапазоне. Ничего этого нет и в помине в AM приемниках с детектором - ему все равно, какие сигналы детектировать (на частоту он не реагирует), в результате все сигналы, прошедшие через радиотракт, создают помехи.

К недостаткам гетеродинного приемника относится двухполосный прием: в нашем примере приема CW сигнал помехи с частотой 1902 кГц также даст разностную частоту 1 кГц и будет принят. Иногда такую помеху удается устранить. Дело в том, что на сигнал с частотой 1900 кГц возможны две настройки - верхняя (частота гетеродина равна 1901 кГц) и нижняя (1899 кГц). Если помеха слышна при одной настройке, то, возможно, ее не будет при другой.

На SSB сигнал возможна только одна настройка - 1900 кГц, но все сигналы с частотами 1900... 1903 кГц будут создавать помехи (см. рис. 2) и устранить их нельзя. Этот недостаток существенен только при приеме в "pile-up", когда на близких частотах "сбились в кучу" множество станций, услышав, например, редкого "DX". При обычном же приеме, когда станций немного и между их частотами есть значительные промежутки, этот недостаток совершенно незаметен.

Принципиальная схема приемника показана на рис. 3. Входной сигнал от антенны через конденсатор связи С1 небольшой емкости поступает на двухконтурный полосовой фильтр. Первый контур фильтра L1C2C3C4.1 имеет относительно высокую добротность и, следовательно, узкую полосу пропускания, поэтому он перестраивается по частоте с помощью одной секции сдвоенного КПЕ С4.1. Второй контур L2C7 перестраивать нет необходимости, поскольку он сильно нагружен смесителем, его добротность ниже, а полоса пропускания шире, поэтому он не перестраивается и пропускает всю полосу частот 1,8...2 МГц.

Смеситель приемника собран на двух диодах VD1 и VD2, включенных встречно-параллельно. Через конденсатор С8 (он же входит и в ФНЧ) на смеситель подается напряжение гетеродина с отвода катушки L3. Гетеродин перестраивается в полосе частот 0,9...1 МГц другой секцией КПЕ - С4.2. Как видим, частота гетеродина вдвое ниже частоты сигнала, что необходимо по самому принципу действия смесителя. Работает он следующим образом. Для открывания кремниевых диодов необходимо напряжение около 0,5 В, а амплитуда гетеродинного напряжения, подаваемого на диоды, едва достигает 0,55...0,6 В. В результате диоды поочередно открываются только на пиках положительной и отрицательной полуволн гетеродинного напряжения, т. е. дважды за период.

Так происходит коммутация сигнальной цепи с удвоенной частотой гетеродина. Смеситель особенно удобен для гетеродинных приемников, поскольку сигнал гетеродина практически не излучается антенной, сильно ослабляясь входным фильтром, и не создает помех ни окружающим (этим грешили первые гетеродинные приемники, в которых гетеродин работал на частоте сигнала и подавить его излучение было нелегко), ни собственному приему.

Гетеродин выполнен по схеме "индуктивной трехточки" на транзисторе VT1. Его контур L3C6C5C4.2 включен в коллекторную цепь транзистора, а сигнал обратной связи поступает через конденсатор С9 в эмиттерную цепь. Необходимый ток смещения базы задается резистором R1, зашунтированным для токов высокой частоты конденсатором С10.

Преобразователь спроектирован так, что не требует кропотливой работы по подбору оптимального напряжения гетеродина на диодах смесителя. Этому способствует легкий режим работы гетеродина при малом напряжении коллектор-эмиттер транзистора (около 1,5 В) и малом коллекторном токе - менее 0,1 мА (обратите внимание на большое сопротивление резистора R2). В этих условиях гетеродин возбуждается легко, но как только амплитуда колебаний возрастет до примерно 0,55 В на отводе катушки, диоды смесителя открываются на пиках колебаний и шунтируют контур гетеродина, ограничивая дальнейший рост амплитуды.

ФНЧ приемника C8L4C11 - это простейший П-образный фильтр третьего порядка, обеспечивающий крутизну ската 18 дБ на октаву (двукратное увеличение частоты) выше частоты среза 3 кГц.

УЗЧ приемника двухкаскадный, он собран на малошумящих транзисторах VT2 и VT3 серии КТ3102 с высоким коэффициентом передачи тока. Для упрощения усилителя использована непосредственная связь между каскадами. Сопротивления резисторов выбраны так, что режим транзисторов по постоянному току устанавливается автоматически и мало зависит от колебаний температуры и питающего напряжения. Ток транзистора VT3, проходя через резистор R5, включенный в эмиттерную цепь, вызывает на нем падение напряжения около 0,5 В, достаточное для открывания транзистора VT2, база которого подключена через резистор R4 к эмиттеру VT3. В итоге, открываясь, транзистор VT2 понижает напряжение на базе VT3, предотвращая дальнейший рост его тока.

Другими словами, УЗЧ охвачен стопроцентной отрицательной обратной связью (ООС) по постоянному току, жестко стабилизирующей его режим. Этому способствуют относительно большое (по сравнению с общепринятыми) сопротивление коллекторной нагрузки VT1 - резистора R3 и малое - резистора R4. На переменном токе звуковых частот ООС не действует, поскольку они замыкаются через блокировочный конденсатор большой емкости С15. Последовательно с ним включен переменный резистор R6 - регулятор громкости. Вводя некоторое сопротивление, мы тем самым создаем и некоторую ООС, снижающую усиление. Такой способ регулирования громкости хорош тем, что регулятор установлен в цепи уже усиленного сигнала и не требует экранирования. К тому же вводимая ООС снижает и без того небольшие искажения сигнала в усилителе. Недостаток - громкость регулируется не до нуля, но обычно это и не нужно. Телефоны включаются в коллекторную цепь транзистора VT3 (через разъем XS3), червз их катушки протекает и переменный ток сигнала, и постоянный ток транзистора, что дополнительно подмагничивает телефоны и улучшает их работу. Налаживания УЗЧ не требует.

О деталях. Подбор их начинайте с головных телефонов. Нужны обычные телефоны электромагнитной системы с жестяными мембранами, обязательно высокоомные, с общим сопротивлением постоянному току 3,2...4,4 кОм (от телефонных аппаратов не годятся - они низкоомные). Автор использовал телефоны ТА-56м с сопротивлением каждого 1600 Ом (указывается на корпусе). Годятся также ТА-4, ТОН-2, ТОН-2м, еще выпускаемые заводом "Октава". В этом приемнике нельзя использовать миниатюрные наушники от плееров, имеющие низкую чувствительность.

Вилка включения телефонов заменяется стандартным круглым трех- или пятиштырьковым разъемом от звуковоспроизводящей аппаратуры. Между выводами 2 и 3 штырьковой части разъема устанавливают перемычку, которая служит для подключения батареи питания GB1. При отсоединении телефонов батарея будет отключаться автоматически. Бывший плюсовый вывод шнура телефонов соединяется со штырьком 2, это обеспечит сложение магнитных потоков, создаваемых током подмагничивания и постоянными магнитами телефонов.

Следующая ответственная деталь - КПЕ. Автору повезло - удалось найти малогабаритный сдвоенный КПЕ от переносного транзисторного приемника со встроенным шариковым верньером. Использовать КПЕ без верньера можно, прием CW станций при этом проблем не вызовет, а вот точная настройка на SSB станции будет затруднена, поскольку плотность настройки 400 кГц на оборот великовата. Подберите ручку настройки максимального диаметра или сконструируйте верньер самостоятельно, используя подходящий шкив и тросик. КПЕ с воздушным диэлектриком лучше, но годятся и малогабаритные КПЕ с твердым диэлектриком от транзисторных приемников. Часто они уже оснащены шкивами верньера. Емкость конденсатора некритична, необходимое перекрытие диапазона можно подобрать "растягивающими" конденсаторами СЗ, С5 (их емкости должны быть одинаковы) и С2, С6 (емкости также одинаковы).

Катушки приемника намотаны на стандартных трехсекционных каркасах, используемых в транзисторных приемниках. Если у каркасов четыре секции, ближняя к основанию секция не используется. Витки равномерно распределяются во всех трех секциях каркаса, намотка ведется "внавал". Каркасы оснащены ферритовыми под-строечниками диаметром 2,7 мм. Подойдет провод ПЭЛ диаметром 0,12- 0,15 мм, но желательно применить ПЭЛШО, а еще лучше - литцендрат, скрученный из нескольких (5-7) проводников ПЭЛ 0,07-0,1 или готовый литцендрат в шелковой оплетке, например, ЛЭШО 7x0,07.

Катушки L1 и L2 содержат по 70 витков, L3 - 140 витков с отводом от 40-го витка, считая от вывода, соединенного с общим проводом. Катушка ФНЧ L4 намотана на кольце К10x7x4 из феррита с магнитной проницаемостью 2000 и содержит 240 витков провода ПЭЛ или ПЭЛШО 0,07-0,1. Ее намотка при отсутствии опыта может вылиться в проблему (автор намотал ее менее чем за час). Используйте челнок, спаянный из двух отрезков медного провода длиной около 10 см. На концах провода слегка разводятся, образуя "вилочки", в которые и укладывается тонкий обмоточный провод. Его лучше сложить вдвое и намотать 120 витков, затем начало одного провода соединить с концом другого (для идентификации выводов нужен омметр). Образовавшийся средний вывод не используется.

Катушку L4 можно заменить первичной обмоткой выходного или переходного трансформатора от карманных приемников. Если ее индуктивность окажется слишком большой и частота среза ФНЧ понизится, что будет заметно на слух по ослаблению высших частот звукового спектра, емкость конденсаторов С8 и С11 следует несколько уменьшить. В крайнем случае, катушку можно заменить даже резистором сопротивлением 2,7...3,6 кОм. При этом емкость конденсаторов С8 и С11 надо уменьшить в 2...3 раза, селективность и чувствительность приемника несколько уменьшатся.

Конденсаторы, входящие в состав контуров, должны быть керамическими, слюдяными или пленочными, с хорошей стабильностью емкости. Здесь не годятся миниатюрные конденсаторы с ненормированным ТКЕ (температурным коэффициентом емкости), обычно они оранжевого цвета. Не бойтесь использовать старинные конденсаторы типов КТ, КД (керамический трубчатый либо дисковый) или КСО (слюдяной опрессованный). Менее строги требования к конденсаторам С8-С11, здесь подойдут любые керамические или металлобумажные (МБМ), кроме конденсаторов из низкочастотной керамики групп ТКЕ Н70 и Н90 (емкость последних может изменяться чуть ли не в 3 раза при колебаниях температуры). К остальным конденсаторам и резисторам особых требований не предъявляется. Емкость конденсатора С12 может лежать в пределах от 0,1 до 1 мкФ, С13 - от 50 мкФ и выше, С15 - от 20 до 100 мкФ. Переменный резистор регулятора громкости - любой малогабаритный, например, типа СПЗ-4.

В смесителе допустимо использовать практически любые кремниевые высокочастотные диоды, например, серий КД503, КД512, КД520- КД522. Кроме указанного на схеме транзистора КТ361Б (VT1) подойдет любой из серий КТ361, КТ3107. Транзисторы VT2, VT3 - любые кремниевые с коэффициентом передачи тока 150...200 и более.

Плоская шестивольтовая батарея питания взята от использованной кассеты фотоаппарата "Поляроид". Возможны и другие варианты: четыре гальванических элемента в последовательном соединении, батарея "Крона". Ток, потребляемый приемником, не превышает 0,8 мА, поэтому любого источника питания хватит надолго, даже при ежедневном длительном прослушивании эфира.

Конструкция приемника зависит от корпуса, который вам удастся подобрать. Автор использовал коробку для ниток из толстой пластмассы (см. фото приемника в «Радио», 2003, № 1) размерами 160x80x40 мм. Собственно, весь приемник монтируется на передней панели, одновременно служащей крышкой для коробки. Панель нужно вырезать из односторонне фольгированного гетинакса или стеклотекстолита. Желательно подобрать материал с красивой нефольгированной поверхностью (у автора - черный гетинакс). В панели сверлятся отверстия под гнезда антенны и заземления, КПЕ, регулятор громкости, затем фольга зачищается до блеска мелкой наждачной бумагой и промывается водой с мылом.

Разъем для телефонов устанавливают на нижней боковой стенке коробки (рис. 4). Батарею питания кладут на дно коробки и прижимают через картонную прокладку скобой из тонкой упругой латуни или жести, упирающейся в боковые стенки коробки. Выводы батареи делают из обычных монтажных проводов. Их зачищенные концы вставляют в окна, имеющиеся в картонном корпусе батареи, до установки батареи в приемник. Минусовый вывод припаивают к корпусу телефонного разъема, плюсовый - к гнезду 2. Разъем соединяют с платой приемника четырьмя свитыми проводниками достаточной длины.

Монтаж приемника навесной. Те детали, один вывод которых соединен с общим проводом, припаивают этим выводом (укороченным до минимальной длины) непосредственно к фольге. Тогда оставшийся вывод служит одновременно и монтажной стойкой, к которой припаивают, в соответствии со схемой, выводы других деталей. Один из соединяемых выводов рекомендуется даже изогнуть в виде колечка или монтажного лепестка. Если позволяет конструкция детали (конденсаторы типа КСО, оксидные), ее корпус полезно закрепить на плате каплей клея. Другими монтажными лепестками служат выводы КПЕ и регулятора громкости. Пружинящий вывод от роторных пластин КПЕ обязательно соединяют с фольгой платы отдельным проводником - это избавит от возможных скачков частоты при перестройке приемника, так как электрический контакт через подшипники отнюдь не самый лучший.

При установке катушки ФНЧ к плате припаивают короткий отрезок одножильного монтажного провода и сгибают его перпендикулярно плате. На него надевают последовательно толстую картонную или пластмассовую шайбу, катушку, еще одну такую же шайбу и закрепляют все каплей припоя. Верхний конец опорного провода должен быть изолирован, чтобы не образовалось короткозамкнутого витка. Если верхнюю шайбу сделать пошире, то на ней удобно закрепить выводы конденсаторов С8 и С11. Даже не сверля отверстий, вывод удается "проплавить" сквозь пластмассу паяльником.

Каркасы контурных катушек обычно имеют четыре вывода для установки на печатную плату. Три из них припаивают к фольге платы приемника, оставшийся используют для закрепления "горячего" вывода катушки и как монтажный лепесток. Расстояние между осями катушек L1 и L2 для получения оптимальной связи должно быть около 15 мм. Если приемник предполагается брать с собой в походы, когда нередко случается сырая погода, витки всех катушек лучше залить парафином. Для этого достаточно паяльника и огарка свечи. То же относится и ко всем картонным изолирующим деталям.

Примерное расположение деталей на плате приемника показано на рис. 5. Возможен и "приборный" вариант конструкции приемника (для домашнего пользования), когда передняя панель располагается вертикально, гнездо антенны - справа, а регулятор громкости - слева. В этом случае целесообразно разъем телефонов установить на передней панели слева, рядом с регулятором громкости, а корпус сделать из металла для защиты от наводок, создаваемых другой аппаратурой, стоящей на столе.

При других вариантах конструкции приемника следует соблюдать общие правила: входные цепи и контуры не располагать близко к гетеродину, лучше поместить их по разные стороны от КПЕ, корпус которого послужит естественным экраном; гетеродинную катушку не располагать близко к краю платы, чтобы исключить влияние рук на частоту; входные и выходные цепи УЗЧ разнести подальше, чтобы уменьшить вероятность его самовозбуждения. В то же время соединительные проводники должны быть короткими и пролагаться близко к металлизированной поверхности платы. Лучше вообще обходиться без соединительных проводников, используя только выводы деталей. Чем больше соединенного с общим проводом металла будет в конструкции, тем лучше. Легко убедиться по иллюстрациям, что в предлагаемой конструкции эти правила соблюдены.

Настройка приемника несложна и сводится к установке требуемой частоты гетеродина и настройке входных контуров по максимуму сигнала. Но прежде чем включать приемник, тщательно проверьте монтаж и устраните обнаруженные ошибки. В работоспособности УЗЧ убеждаются, прикоснувшись к одному из выводов катушки ФНЧ. В телефонах должно быть слышно громкое "рычание". В рабочем же режиме будет слабо прослушиваться шум от первого каскада.

Проверить работу гетеродина и установить его диапазон перестройки 0,9...1 МГц проще всего с помощью любого радиовещательного приемника со средневолновым диапазоном. В этом приемнике сигнал гетеродина будет прослушиваться как мощная радиостанция в паузах передачи. Приемник с магнитной антенной надо расположить рядом, а если у приемника имеется только гнездо для подключения внешней антенны (теперь такие приемники - редкость), то в него надо вставить отрезок провода, поднесенный к катушке гетеродина. В случае отсутствия генерации надо установить транзистор VT1 с большим коэффициентом передачи тока и/или впаять резистор R2 меньшего сопротивления. Уточнить градуировку шкалы вспомогательного приемника можно по сигналам местных радиостанций, частоты которых известны. В центре России - "Радио России" (873 кГц), "Свободная Россия" (918 кГц), "Радиоцерковь" (963 кГц), "Славянка" (990 кГц), "Резонанс" или "Народная волна" (1017 кГц).

Этими же сигналами можно воспользоваться и для градуировки шкалы нашего приемника. Методика такова: настраивают вспомогательный приемник на частоту радиостанции, включают настраиваемый приемник и изменяют частоту его гетеродина ручкой настройки и подстроечником катушки L3 до тех пор, пока сигнал гетеродина не наложится на сигнал станции. В громкоговорителе вспомогательного приемника будет слышен свист - биения двух сигналов Продолжая подстройку, понижают его тон до нулевых биений и отмечают точку на шкале - здесь частота настройки нашего приемника точно равна удвоенной частоте радиостанции. Если сигнал станции во вспомогательном приемнике совсем забивается сигналом нашего гетеродина, немного увеличивают расстояние между приемниками.

Последняя операция - настройка входных контуров. Подсоедините антенну длиной не менее 5 м, можно даже комнатную. Наверняка вы уже примете какие-нибудь сигналы. Поочередным вращением подстроечников катушек L1 и L2 добейтесь максимальной громкости приема. Окончательно подстроить входные контура удобнее на свободном от радиостанций участке диапазона, просто по максимуму шума зфира. Следует отметить, что подстройка контура L2C7 слегка влияет на частоту гетеродина, но при настройке по шуму это не имеет никакого значения. Убедиться в правильности настройки можно, подключая и отключая антенну: шум эфира должен во много раз превосходить внутренний шум приемника.

Результаты проверки работы приемника. Чувствительность его, измеренная с помощью генератора стандартных сигналов (ГСС), оказалась около 3 мкВ. Это не удивительно, если учесть высокое усиление УЗЧ (более 10 000) и наличие чувствительных телефонов. Смеситель приемника собственных шумов практически не вносит, а УРЧ в нем нет.

Слушать эфир предпочтительнее в вечернее и ночное время, когда диапазон 160 метров "открыт" (есть дальнее прохождение радиоволн). В дневное же время можно услышать только местные станции, если они работают (а любители, зная условия прохождения радиоволн, днем обычно и не выходят в эфир в этом диапазоне).

Не имея в данное время антенны на диапазон 160 метров, автор испытал приемник с временной проволочной антенной длиной не более 10м, включая снижение. Она была протянута с балкона к ограждению крыши и там закреплена на шесте высотой не более 1,5 м. Тем не менее уверенно принимались SSB станции европейской части России от Карелии до Поволжья и Краснодарского края, а также Украины и Белоруссии. Телеграфом слышны были станции Испании и Сибири (называю только самые дальние). "Заземление" на отопительную батарею или водопроводную трубу значительно увеличивало громкость приема. Таким образом, принято было практически все, что можно услышать и на любой другой, значительно более сложный приемник.

Литература:

  1. Журнал «Радио», 2003, № 1, с. 58-60
  2. Журнал «Радио», 2003, № 2, с. 58-59
  3. (в формате DjVu)

Простой приемник наблюдателя

Тема простого приемника наблюдателя для начинающих,не дает покоя многим,и далеко не начинающим радиолюбителям....Пе- риодически публикуются конструкции,открываются новые «ветки» в форумах и т.д....Вот и я время от времени размышляю на эту тему....Все хочу найти оптимальное по простоте, повторяемости, доступности компонентов решение....

Разумеется,что в наше время самый простой путь для желающих впервые послушать радиоэфир с достойным качеством это SDR приемник...

Но многим интересна «классика» - супергетеродин или ППП с ГПД и без синтезатора....Многие начинающие радиолюбители уже имеют опыт в радиотехнике, но не имеют в области радиоприема, и как правило не имеют нормальных диапазонных антенн,но хотели бы попробовать свои силы. Именно для этой категории я и пытался «изобрести» приемник...

Делать свой первый приемник вседиапазонным думаю не стоит – на основе ГПД сложно,а с преобразованием «вверх» нужен уже синтезатор,а делать однодиапазонным тоже не очень интересно...На мой взгляд интересен компромисс в виде 3-х диапазонного приемника на 80-40-20 м (понятно что в предлагаемой схеме можно сделать и все диапазоны при желании),т.е наиболее интересные диапазоны, которые активны в разное время суток,т.е. всегда можно что-то услышать,что и интересно для начинающего.

Приемник при своей простоте должен обладать не плохой динамикой,и избирательностью по зеркальному каналу – иначе при приеме на различные сурогатные «веревки» которые как правило и используют начинающие кроме свиста «вещалок» и шума будет трудно что-либо принять – и аттенюатор не всегда поможет.

На счет структуры...Продумывал много вариантов....И все равно возвратился к предлагаемой – супергетеродин с кварцевым фильтром.... Если есть в наличии ЭМФ,то может и имеет смысл делать двойное преобразование,а если ЭМФ нет? По моему проще приобрести 5 кварцев на одну частоту и сделать 4-х кристальный фильтр,который вполне подойдет для приемника этого класса.

По поводу комплектующих...Тоже много разногласий – для кого-то 174ХА2 уже «экзотика» ,а для кого-то доступна и т.д. Поэтому пришел к выводу – микросхем в радиотракте быть не должно...И параметры можно получить лучше и меньше проблем с поиском – транзисторы всегда проще найти.

ГПД....Критичный узел...Думаю нужно делать электронную перестройку на варикапах – КПЕ и верньеры для многих проблема....Даже не имея многооборотного резистора можно обойтись обычными двумя и сделать грубую и плавную настройки раздельно.

ДПФ – как минимум 2-х контурные...

Понятно,что большинство радиолюбителей «отпугивает» от постройки приемника именно необходимость намоток катушек, не всегда имеющиеся намоточные данные,проблемы найти каркасы как у автора той или иной схемы и т.д. Также думал как «унифицировать» катушки и решил,что лучше всего использовать «Амидоновские» кольца,которые становятся все более доступны и имеют отличные и легко расчитываемые параметры....Повторяемость конструкций с такими кольцами так же на высоте - пример тот же Softrock и многие другие наборы...Очень удобно рассчитав в RFSIM какой – либо фильтр и получив значение индуктивности рассчитать число витков под известную марку кольца по простейшей формуле Параметр Al есть в даташит на каждую марку – например для Т-25-2 он равен 34 ,т.е при 100 витках получим 34 мкГн

Подстроечные конденсаторы тоже думаю не проблема - отлично подходят "импортные" TSC-6 ,которые ставят практически во все радиоприемники...

Схема приемника



В кварцевом фильтре приемника предусмотрена возможность плавной регулировки полосы,а если это не нужно (или просто нет в наличии варикапов) просто поставить вместо варикапов конденсаторы емкостью 82 - 120 пФ для получения желаемой полосы пропускания 2,4 - 3 кГц.

С каскодным усилителем проблем не будет - нужно просто подобрать оптимальный режим работы подстроечником R19 и R17...Можно ввести регулировку усиления по ПЧ заменив R19 переменным резистором.

Вместо контура ПЧ L1 применим стандартный дроссель ДМ-01 (или ему подобный) на 1 мкГн.

Проблема с ДПФ? Берем любые доступные каркасы (с той же мыльницы) и делаем... Индуктивность известна...Или внутреннюю изоляцию кабеля (можно использовать каркасы от медицинских шприцов).Расчитываем нужное число витков и мотаем....Методик расчета числа витков катушек много. Еще вариант - берем дроссели ДМ-01 на 1 мкГн и ставим в ДПФ 20 м.... Нет проблем пересчитать ДПФ на все диапазоны под стандартные индуктивности...

Фильтр изготовлен из ПАЛовских резонаторов с частотой 8,867 мгц

Точность разброса по частоте желательна до 200 гц.

По замене транзисторов.

В смесителе применимы транзисторы КП302, 303, 307, DF245 и т.д. Режимы подбираются резистором в истоке.

VT2 заменим на КТ368 или любой высокочастотный малошумящий.

В УНЧ - КТ3102Е

Печатная плата приемника

Усовершенствование приемника.

В результате испытаний выяснилось - чувствительности на НЧ диапазонах достаточно а на ВЧ маловато. Поэтому смеситель был немного изменен.

Измененная схема приемника


Простой приёмник наблюдателя на двухзатворных полевых транзисторах, например, импортные серий BF9xx, доступны и дёшевы. У них относительно малый разброс параметров, малые шумы и большая крутизна.

При этом они хорошо защищены от пробоя статическим электричеством. На таких транзисторах можно конструировать простые и эффективные смесители для радиоприёмников. На рис. 1 показана типовая схема такого смесителя.

Напряжение сигнала подают на первый затвор транзистора, а напряжение гетеродина (генератора плавного диапазона, ГПД) - на второй Динамический диапазон смесителя (по интермодуляции - около 70 дБ, по блокированию - более 90 дБ) достигает максимального значения при напряжении смещения на затворах транзистора, близком к нулю. Высокое выходное сопротивление транзистора (10…20к0м) хорошо согласуется с широко распространёнными магнитострикционными электромеханическими фильтрами на частоту 500 кГц, а малый ток стока (примерно 1… 1,5 мА) позволяет применить непосредственное включение обмотки возбуждения ЭМФ. При этом значительная крутизна преобразования (примерно 1,5…2мА/В) обеспечивает получение приемлемой чувствительности приёмника даже без УПЧ. Высокое входное сопротивление по обоим входам существенно упрощает согласование смесителя с преселектором и ГПД.

На основе этих смесителей, используя дисковый ЭМФ на частоту 500 кГц со средней полосой пропускания, за пару часов неспешной, в удовольствие, работы был изготовлен простой как по схеме, так и в налаживании достаточно чувствительный и помехоустойчивый приёмник наблюдателя на диапазон 80 метров. Его схема представлена на рис. 2. Входной сигнал с уровнем 1 мкВ поступает на регулируемый аттенюатор, выполненный на сдвоенном переменном резисторе R27. В сравнении с одинарным резистором подобное решение обеспечивает глубину регулировки ослабления более 60 дБ во всём КВ диапазоне, что позволяет обеспечить оптимальную работу приёмника практически с любой антенной.

Далее сигнал поступает на входной диапазонный полосовой фильтр, образованный элементами L1, L2, С2, СЗ, С5 и С6 с внешне ёмкостной связью через конденсатор С4. Показанное на схеме подключение аттенюатора к первому контуру через ёмкостный делитель С2СЗ рекомендуется для низкоомных антенн (четвертьволновый “луч” длиной около 20 м, диполь или “дельта” с фидером из коаксиального кабеля). Для высокоомной антенны в виде отрезка провода длиной, значительно меньшей четверти длины волны, выход аттенюатора (верхний по схеме вывод резистора R27.2) следует подключить к выводу Х1 платы, соединённому с первым контуром входного фильтра через конденсатор С1. Способ подключения конкретной антенны подбирают экспериментально по максимальной громкости и качеству приёма.

Двухконтурный ДПФ оптимизирован под сопротивление антенны 50 Ом и сопротивление нагрузки 200 Ом (R4) Коэффициент передачи ДПФ за счёт трансформации сопротивлений составляет примерно +3 дБ. Так как с приёмником может применяться антенна любой случайной длины, а при регулировке аттенюатором сопротивление источника сигнала на входе ДПФ может меняться в широком диапазоне, на входе фильтра установлен согласующий резистор R1, обеспечивающий в таких условиях достаточно стабильную АЧХ. Выделенный ДПФ сигнал с уровнем не менее 1,4 мкВ поступает на вход смесителя - первый затвор транзистора VT1. На его второй затвор через конденсатор С7 поступает напряжение сигнала гетеродина с уровнем 1 …3 Вэфф.

Сигнал промежуточной частоты (500 кГц), являющийся разностью частот гетеродина и входного сигнала, с уровнем порядка 25…35 мкВ выделяется в цепи стока транзистора VT1 контуром, образованным индуктивностью обмотки фильтра Z1 и конденсаторами С12 и С15. Цепи R11C11 и R21C21 защищают общую цепь питания смесителей от попадания в неё сигналов гетеродина, промежуточной и звуковой частоты.

Первый гетеродин приёмника выполнен по схеме ёмкостной трёхточки на транзисторе VT2. Контур гетеродина образуют элементы L3C8-С10. Частоту гетеродина можно перестраивать конденсатором переменной ёмкости С38 в полосе 4000…4300 кГц (с некоторым запасом по краям). На диапазоне 80 метров любительские радиостанции используют нижнюю боковую полосу, а тракт ПЧ приёмника (см. ниже) ориентирован на выделение верхней боковой полосы. Чтобы обеспечить инвертирование боковой полосы принимаемого сигнала, частота ГПД должна лежать выше любительского диапазона 80 метров. Резисторы R2, R5 и R7 определяют и жёстко задают (за счёт глубокой ООС) режим работы транзистора по постоянному току. Резистор R6 улучшает спектральную чистоту (форму) сигнала. Питание обоих гетеродинов (+6 В) стабилизировано интегральным стабилизатором DA1. Цепи R10C14C16 и R12C17 защищают общую цепь питания обоих гетеродинов и развязывают их друг от друга.

Основную селекцию сигналов в приёмнике выполняет ЭМФ Z1 со средней полосой пропускания шириной 2,75 кГц В зависимости от типа применённого ЭМФ селективность по соседнему каналу (при расстройке на 3 кГц выше или ниже полосы пропускания) достигает 60…70 дБ. С его выходной обмотки, настроенной в резонанс конденсаторами С19, С22, сигнал поступает на смесительный детектор, выполненный на транзисторе VT4, по схеме, аналогичной первому смесителю. Его высокое входное сопротивление позволило получить минимально возможное затухание сигнала в ЭМФ (порядка 10… 12 дБ), и поэтому на первом затворе транзистора VT4 уровень сигнала составляет не менее 8…10 мкВ.

Второй гетеродин приёмника выполнен на транзисторе VT3 почти по такой же схеме, что и первый, только вместо катушки индуктивности применён керамический резонатор ZQ1. В этой схеме генерация колебаний возможна только при индуктивном сопротивлении цепи резонатора (когда частота колебаний находится между частотами последовательного и параллельного резонансов). Нередко в подобных приёмниках во втором гетеродине используют довольно дефицитный комплект - кварцевый резонатор на 500 кГц и ЭМФ с верхней полосой пропускания. Это удобно, но заметно удорожает приёмник. В нашем приёмнике в качестве частотозадающего элемента применён широко распространённый керамический резонатор на 500 кГц от пультов на ДУ, имеющий широкий межрезонансный интервал (не менее 12… 15 кГц). Конденсаторами С23 и С24 второй гетеродин легко перестраивается по частоте в пределах минимум 493…503 кГц и, как показал опыт, при исключении прямых температурных воздействий имеет достаточную для практики стабильность частоты.

Благодаря этому свойству для приёмника подходит практически любой ЭМФ со средней частотой около 500 кГц и полосой пропускания 2,1…3,1 кГц . Это может быть ЭМФ-11Д-500-3,0В или ЭМФДП-500Н-3,1 или ФЭМ-036-500-2,75С, использованный автором. Буквенный индекс указывает, какую боковую полосу относительно несущей выделяет данный фильтр - верхнюю (В) или нижнюю (Н), или же частота 500 кГц приходится на середину (С) полосы пропускания фильтра. В нашем приёмнике это не имеет значения, поскольку при налаживании частоту второго гетеродина устанавливают на 300 Гц ниже полосы пропускания фильтра, и в любом случае будет выделяться верхняя боковая полоса.

Сигнал второго гетеродина частотой около 500 кГц (в авторском экземпляре 498,33 кГц) и напряжением примерно 1.5…3 Вэфф поступает на второй затвор транзистора VT4. В результате преобразования спектр сигнала переносится в область звуковых частот. Коэффициент преобразования (усиления) детектора - около 4.

Сигнал с выхода УЗЧ детектируется диодами VD1. VD2, и управляющее напряжение АРУ поступает в цепь затвора регулирующего транзистора VT5. Как только уровень напряжения превысит пороговый (около 1 В), транзистор откроется и образованный им и резистором R20 делитель напряжения стабилизирует выходной сигнал звуковой частоты на уровне примерно 0,65…0,7 ВЭфф, что соответствует максимальной выходной мощности примерно 60 мВт. При такой мощности современные импортные динамики с высоким КПД способны озвучить трёхкомнатную квартиру, а вот для некоторых типов отечественных динамиков этого может оказаться мало. В этой ситуации можно повысить в два раза пороговое напряжение АРУ. установив в качестве VD1, VD2 красные светодиоды и увеличив напряжение питания УЗЧ до 12 В.

В режиме покоя или при работе на высокоомные головные телефоны приёмник достаточно экономичен - потребляемый ток не превышает 12 мА С динамической головкой с сопротивлением 8 Ом при максимальной громкости звучания потребляемый ток может достигать 45 мА. Для питания приёмника годится любой промышленный или самодельный блок питания, обеспечивающий стабилизированное напряжение +9 В при токе не менее 50 мА. Для автономного питания удобно применить гальванические элементы, размещённые в специальном контейнере, или аккумуляторы.

Например, аккумуляторная батарея HR22 (типоразмера “Крона”) с напряжением 8.4 В и ёмкостью 200 мА-ч обеспечивает более чем трёхчасовое прослушивание эфира на динамическую головку при средней громкости и более десяти часов на высокоомные телефоны.Все детали приёмника, кроме разъёмов, переменных резисторов и КПЕ, смонтированы на плате размерами 45×160 мм из односторонне фольгированного стеклотекстолита. Чертежи платы со стороны печатных проводников и расположением деталей приведены на рис.

Транзисторы VT1,VT4 могут быть любыми из серий BF961, BF964, BF980, BF981 или отечественные серии КП327. Для некоторых указанных типов, возможно, придётся подобрать номинал резистора в цепи истока для получения тока стока 1 …2 мА. Для гетеродинов подойдут импортные транзисторы структуры п-р-п - 2SC1815, 2N2222 или отечественные КТ312, КТ3102, КТ306, КТ316 с любыми буквенными индексами. Полевой транзистор 2N7000 может быть заменён его аналогами BS170, BSN254, ZVN2120A, КП501А. Диоды 1N4148 - любыми кремниевыми, например, КД503, КД509, КД521, КД522 с любым буквенным индексом.

Постоянные резисторы - любого типа мощностью рассеивания 0,125 или 0,25 Вт. Детали, устанавливаемые навесным монтажом на шасси, также могут быть любого типа. Сдвоенный переменный резистор R27 может иметь сопротивление 1…3,3к0м, a R26 - 47…500 Ом. Конденсатор настройки С38 - малогабаритный с воздушным диэлектриком и максимальной ёмкостью не менее 240 пФ, например, малогабаритный КПЕ от транзисторного радиовещательного приёмника. Конденсатор следует оснастить простейшим верньером с замедлением 1:3…1:10.

Контурные конденсаторы - малогабаритные керамические КД, КТ, КМ, КЛГ, КЛС, К10-7 с малым ТКЕ (групп ПЗЗ, М47 или М75) или аналогичные импортные (дисковые оранжевые с чёрной точкой или многослойные с нулевым ТКЕ - MP0). Подстроечные конденсаторы - CVN6 фирмы BARONS или аналогичные малогабаритные. Конденсаторы С26 и С29 желательно применить термостабильные плёночные, металлоплёночные, например, серий MKT, МКР и аналогичные. Остальные блокировочные керамические и оксидные - любого типа, импортные, малогабаритные. В качестве катушек ДПФ L1 и L2 применены стандартные малогабаритные дроссели ЕС24 индуктивностью 22 мкГн. Такой вариант позволяет отказаться от столь нелюбимых многими начинающими радиолюбителями самодельных катушек.

Катушка гетеродина L3 - самодельная Для её намотки использован готовый каркас с подстроечником диаметром 2,8 мм из феррита 600НН и экраном от стандартных контуров ПЧ 465 кГц отечественных транзисторных радиоприёмников. Для получения индуктивности 8,2 мкГн требуется 31 виток провода диаметром 0,17…0,27 мм. После намотки катушки равномерно в трёх секциях внутрь каркаса ввинчивают подстроечник, и затем эту конструкцию заключают в алюминиевый экран. Штатный цилиндрический магнитопровод не используют. Вообще, в качестве каркаса самодельных катушек можно применить любые доступные радиолюбителю, разумеется, с соответствующей корректировкой печатных проводников. Очень удобны и термостабильны импортные от контуров ПЧ 455 кГц, подстроечником которого служит ферритовый горшок, имеющий резьбу на наружной поверхности и шлиц под отвёртку. Провод во всех вариантах диаметром 0,17…0,27 мм.

Как уже отмечалось выше, в ДПФ в качестве катушек индуктивности применены стандартные импортные малогабаритные дроссели типа ЕС24 и аналогичные. Разумеется, если приобрести готовые дроссели требуемой индуктивности проблематично, можно применить и в ДПФ самодельные катушки, рассчитав число витков по приведённым выше формулам. И наоборот, если возникнут трудности с намоткой самодельных катушек, в качестве L3 также можно применить готовый импортный дроссель 8,2 мкГн. Дроссель L4 - любой готовый с индуктивностью в пределах 70…200 мкГн. Его можно изготовить самостоятельно, намотав 20-30 витков проводом ПЭВ-2 0,15 на магнитопроводе типоразмера К7х4х2 (К10x6x3) из феррита проницаемостью 600…2000 (большее число витков соответствует меньшим значениям диаметра и/или проницаемости).

Правильно смонтированный приёмник с исправными деталями начинает работать, как правило, при первом же включении. Тем не менее полезно провести все операции по его налаживанию в последовательности, изложенной ниже. Регулятор громкости устанавливают в положение максимального сигнала. С помощью мультиметра, включённого в разрыв цепи питания, проверяют, что потребляемый ток не превышает 12…15 мА и в динамике прослушивается собственный шум приёмника. Затем, переключив мультиметр в режим измерения постоянного напряжения. измеряют напряжения на выводах микросхемы DA2 и транзисторов. Они должны соответствовать данным, приведённым в табл. 1 и 2.

Далее проводят простейшую проверку общей работоспособности основных узлов. При исправном УЗЧ прикосновение руки к выводу 3 DA2 должно вызывать появление в динамике громкого, рычащего звука. Прикосновение к общей точке соединения элементов С27, R19, R20 должно привести к появлению такого же по тембру звука, но заметно меньшей громкости - это включилась в работу АРУ. Проверяем токи стоков полевых транзисторов по падению напряжения на истоковых резисторах R9 и R16. Если оно превышает 0,44 В (т. е. ток стока транзистора превышает 2 мА), следует увеличить сопротивление истоковых резисторов и добиться уменьшения тока стока до 1 …1,5 мА.

Для установки расчётной частоты второго гетеродина снимаем технологическую перемычку J2 и вместо неё к этому разъёму подключаем частотомер. При этом транзистор VT4 выполняет функцию развязывающего (буферного) усилителя сигнала второго гетеродина, что практически полностью устраняет влияние частотомера на точность установки частоты. Это удобно не только на этапе налаживания, но в дальнейшем, в процессе эксплуатации, позволяя проводить оперативный контроль, а при необходимости и подстройку частот гетеродинов без полной разборки приёмника. Требуемую частоту устанавливают, подбирая конденсатор С24 (грубо) и подстройкой конденсатора С23 (точно). Возвращают на место перемычку J2 и аналогично, подключив частотомер вместо технологической перемычки J1, проводят проверку, а при необходимости и укладку (подстройкой индуктивности L3) и диапазон перестройки ГПД окажется излишне широк, что вполне вероятно при использовании КПЕ с большей максимальной ёмкостью, последовательно с ним можно включить дополнительный растягивающий конденсатор, требуемую ёмкость которого надо будет подобрать самостоятельно.

Для настройки

в резонанс входной и выходной обмоток ЭМФ с ГСС на первый затвор транзистора VT1 через конденсатор ёмкостью 20… 100 пФ подают немодулированный сигнал с частотой, соответствующей середине полосы пропускания фильтра. Подборкой конденсаторов С12, С22 (грубо) и точной подстройкой конденсаторами С15, С19 настраивают фильтр по максимуму выходного сигнала. Во избежание срабатывания АРУ уровень сигнала ГСС поддерживают таким, чтобы сигнал на выходе УНЧ не превышал 0,4 Вэфф. Как правило, для ЭМФ неизвестного происхождения неизвестно даже ориентировочное значение резонансной ёмкости, а оно, в зависимости от типа ЭМФ, может быть в пределах от 62 до 150 пФ. Для нормальной работы приёмника на диапазоне 80 метров желательно подключить наружную антенну длиной не менее 10…15 м. При питании приёмника от батарей полезно подключить заземление или провод, противовес такой же длины. Неплохие результаты может дать использование в качестве заземления металлических труб водоснабжения, отопления или арматуры балконного ограждения в панельных железобетонных зданиях.

Схема простого КВ приемника наблюдателя на любой радиолюбительский диапазон

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “ “

Сегодня мы рассмотрим очень простую, и в тоже время обеспечивающую неплохие характеристики схему – КВ приемник наблюдателя – коротковолновика .
Схема разработана С. Андреевым. Не могу не отметить, что сколько я не встречал в радиолюбительской литературе разработок этого автора, все они были оригинальны, просты, с прекрасными характеристиками и самое главное – доступны для повторения начинающими радиолюбителями.
Первый шаг радиолюбителя в стихию обычно всегда начинается с наблюдения за работой других радиолюбителей в эфире. Мало знать теорию радиолюбительской связи. Только прослушивая любительский эфир, вникая в азы и принципы радиосвязи, радиолюбитель может получить практические навыки в проведении любительской радиосвязи. Эта схема как раз и предназначена для тех кто хочет сделать свои первые шаги в любительской связи.

Представленная схема приемника радиолюбителя – коротковолновика очень проста, выполнена на самой доступной элементной базе, несложная в настройке и в тоже время обеспечивающая хорошие характеристики. Естественно, что в силу своей простоты, эта схема не обладает “сногсшибательными” возможностями, но (к примеру чувствительность приемника около 8 микровольт) позволит начинающему радиолюбителю комфортно изучать принципы радиосвязи, особенно в 160 метровом диапазоне:

Приемник, в принципе, может работать в любом радиолюбительском диапазоне – все зависит от параметров входного и гетеродинного контуров. Автор этой схемы испытывал работу приемника только для диапазонов 160, 80 и 40 метров.
На какой диапазон лучше собрать данный приемник. Чтобы это определить, надо учесть в каком районе вы проживаете и исходить из характеристик любительских диапазонов.
()

Приемник построен по схеме прямого преобразования. Он принимает телеграфные и телефонные любительские станции – CW и SSB.

Антенна. Работает приемник на несогласованную антенну в виде отрезка монтажного провода, который можно протянуть под потолком комнаты по диагонали. Для заземления подойдет труба водопроводной или отопительной системы дома, которая подключается к клемме Х4. Снижение антенны подключается к клемме Х1.

Принцип работы. Входной сигнал выделяется контуром L1-C1, который настроен на середину принимаемого диапазона. Затем сигнал поступает на смеситель, выполненный на 2-х транзисторах VT1 и VT2, в диодном включении, включенных встречно-параллельно.
Напряжение гетеродина, выполненного на транзисторе VT5, подается на смеситель через конденсатор С2. Гетеродин работает на частоте в два раза ниже частоты входного сигнала. На выходе смесителя, в точке подключения С2, образуется продукт преобразования – сигнал разности входной частоты и удвоенной частоты гетеродина. Так как величина этого сигнала не должна быть более трех килогерц (в диапазон до 3-х килогерц укладывается “человеческий голос”), то после смесителя включен ФНЧ на дросселе L2 и конденсаторе С3, подавляющий сигнал частотой выше 3-х килогерц, благодаря чему достигается высокая избирательность приемника и возможность приема CW и SSB. При этом, сигналы АМ и FM практически не принимаются, но это и не очень важно, потому, что радиолюбители в основном используют CW и SSB.
Выделенный НЧ сигнал поступает на двухкаскадный усилитель низкой частоты на транзисторах VT3 и VT4, на выходе которого включаются высокоомные электромагнитные телефоны типа ТОН-2. Если у вас есть только низкоомные телефоны, то их можно подключать через переходной трансформатор, к примеру от радиоточки. Кроме того, если параллельно С7 включить резистор на 1-2 кОм, то сигнал с коллектора VT4 через конденсатор емкостью 0,1-10 мкФ можно подать на вход любого УНЧ.
Напряжение питания гетеродина стабилизировано стабилитроном VD1.

Детали. В приемнике можно использовать разные переменные конденсаторы: 10-495, 5-240, 7-180 пикофарад, желательно, чтобы они были с воздушным диэлектриком, но подойдут и с твердым.
Для намотки контурных катушек (L1 и L3) используются каркасы диаметром 8 мм с резьбовыми подстроечными сердечниками из карбонильного железа (каркасы от контуров ПЧ старых ламповых или лампово-полупроводниковых телевизоров). Каркасы разбираются, разматываются и от них спиливается цилиндрическая часть длиной 30 мм. Каркасы устанавливаются в отверстия платы и фиксируются эпоксидным клеем. Катушка L2 намотана на ферритовом кольце диаметром 10-20 мм и содержит 200 витков провода ПЭВ-0,12 намотанных внавал, но равномерно. Катушку L2 можно также намотать на сердечнике СБ а затем поместить внутрь броневых чашек СБ склеив их эпоксидным клеем.
Схематическое изображение крепления катушек L1, L2 и L3 на плате:

Конденсаторы С1, С8, С9, С11, С12, С13 должны быть керамическими, трубчатыми или дисковыми.
Намоточные данные катушек L1 и L3 (провод ПЭВ 0,12) номиналы конденсаторов С1, С8 и С9 для разных диапазонов и используемых переменных конденсаторах:

Печатная плата сделана из фольгированного стеклотекстолита. Расположение печатных дорожек – с одной стороны:

Налаживание. Низкочастотный усилитель приемника при исправных деталях и безошибочном монтаже в налаживании не нуждается, так-как режимы работы транзисторов VT3 и VT4 устанавливаются автоматически.
Основное налаживание приемника – налаживание гетеродина.
Сначала нужно проверить наличие генерации по наличию ВЧ напряжения на отводе катушки L3. Ток коллектора VT5 должен быть в пределах 1,5-3 мА (устанавливается резистором R4). Наличие генерации можно проверить по изменению этого тока при прикосновении руками к гетеродинному контуру.
Подстройкой гетеродинного контура надо обеспечить нужное перекрытие гетеродина по частоте, частота гетеродина должна перестраивается в пределах на диапазонах:
– 160 метров – 0,9-0,99 МГц
– 80 метров – 1,7-1,85 МГц
– 40 метров – 3,5-3,6 МГц
Проще всего это сделать, измеряя частоту на отводе катушки L3 при помощи частотомера, способного измерять частоту до 4 МГц. Но можно воспользоваться и резонансным волномером или генератором ВЧ (методом биений).
Если вы пользуетесь генератором ВЧ, то можно одновременно настроить и входной контур. Подайте на вход приемника сигнал от ГВЧ (расположите провод, подключенный к Х1 рядом с выходным кабелем генератора). Генератор ВЧ надо перестраивать в пределах частот в два раза больших, чем указано выше (например, на диапазоне 160 метров – 1,8-1,98 МГц), а контур гетеродина подстроить так, чтобы при соответствующем положении конденсатора С10 в телефонах прослушивался звук частотой 0,5-1 кГц. Затем, настройте генератор на середину диапазона, настройте на нее приемник, и подстройте контур L1-C1 по максимальной чувствительности приемника. Также по генератору можно откалибровать шкалу приемника.
При отсутствии генератора ВЧ входной контур можно настроить принимая сигнал радиолюбительской станции работающей как можно ближе к середине диапазона.
В процессе настройки контуров может потребоваться корректировка числа витков катушек L1 и L3. конденсаторов С1, С9.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то