Шифрование сообщений различными методами. Криптография и виды шифрования

Методы аутентификации

Аутентификация - выдача определённых прав доступа абоненту на основе имеющегося у него идентификатора. IEEE 802.11 предусматривает два метода аутентификации:

1. Открытая аутентификация (англ. Open Authentication ):

Рабочая станция делает запрос аутентификации, в котором присутствует только MAC-адрес клиента. Точка доступа отвечает либо отказом, либо подтверждением аутентификации. Решение принимается на основе MAC-фильтрации, т.е. по сути это защита на основе ограничения доступа, что не безопасно.

2. Аутентификация с общим ключом (англ. Shared Key Authentication ):

Необходимо настроить статический ключ шифрования алгоритма WEP (англ. Wired Equivalent Privacy ). Клиент делает запрос у точки доступа на аутентификацию, на что получает подтверждение, которое содержит 128 байт случайной информации. Станция шифрует полученные данные алгоритмом WEP (проводится побитовое сложение по модулю 2 данных сообщения с последовательностью ключа) и отправляет зашифрованный текст вместе с запросом на ассоциацию. Точка доступа расшифровывает текст и сравнивает с исходными данными. В случае совпадения отсылается подтверждение ассоциации, и клиент считается подключенным к сети.
Схема аутентификации с общим ключом уязвима к атакам «Man in the middle». Алгоритм шифрования WEP – это простой XOR ключевой последовательности с полезной информацией, следовательно, прослушав трафик между станцией и точкой доступа, можно восстановить часть ключа.
IEEE начал разработки нового стандарта IEEE 802.11i, но из-за трудностей утверждения, организация WECA (англ. Wi-Fi Alliance ) совместно с IEEE анонсировали стандарт WPA (англ. Wi-Fi Protected Access ). В WPA используется TKIP (англ.Temporal Key Integrity Protocol , протокол проверки целостности ключа), который использует усовершенствованный способ управления ключами и покадровое изменение ключа.

WPA также использует два способа аутентификации:

1. Аутентификация с помощью предустановленного ключа WPA-PSK (англ. Pre-Shared Key ) (Enterprise Autentification);

2. Аутентификация с помощью RADIUS-сервера (англ. Remote Access Dial-in User Service )

Шифрова́ние - способ преобразования открытой информации в закрытую и обратно. Применяется для хранения важной информации в ненадёжных источниках или передачи её по незащищённым каналам связи. Шифрование подразделяется на процесс зашифровывания и расшифровывания.

В зависимости от алгоритма преобразования данных, методы шифрования подразделяются на гарантированной или временнойкриптостойкости.

В зависимости от структуры используемых ключей методы шифрования подразделяются на



§ симметричное шифрование: посторонним лицам может быть известен алгоритм шифрования, но неизвестна небольшая порция секретной информации - ключа, одинакового для отправителя и получателя сообщения;

§ асимметричное шифрование: посторонним лицам может быть известен алгоритм шифрования, и, возможно, открытый ключ, но неизвестен закрытый ключ, известный только получателю.

Существуют следующие криптографические примитивы:

§ Бесключевые

1. Хеш-функции

2. Односторонние перестановки

3. Генераторы псевдослучайных чисел

§ Симметричные схемы

1. Шифры (блочные,потоковые)

2. Хеш-функции

4. Генераторы псевдослучайных чисел

5. Примитивы идентификации

§ Асимметричные схемы

3. Примитивы идентификации

Шифрование данных на диске
Система Zserver - средство защиты конфиденциальной информации, хранимой и обрабатываемой на корпоративных серверах, методом шифрования данных на диске. Zserver работает по принципу «прозрачного» шифрования разделов жестких дисков. Система автоматически, в online режиме, осуществляет шифрование информации при записи на диск и расшифровывает при чтении с него. Это обеспечивает хранение данных на диске в зашифрованном виде и невозможность использования их без ключа шифрования даже при изъятии сервера или носителя. Система Zserver обеспечивает шифрование файлов и папок на диске, а также всей служебной информации - таблицы размещения файлов и т. д. Таким образом, система Zserver не только надежно защищает конфиденциальные данные, но и скрывает сам факт их наличия от посторонних. Информация на защищенных дисках хранится в зашифрованном виде и становится доступна, только когда администратор сети предоставит пользователю соответствующие полномочия. Права доступа к защищенным дискам устанавливаются средствами операционной системы. Шифрование файлов и папок на диске осуществляется программным драйвером. Ключи шифрования данных на диске вводятся при загрузке сервера со смарт-карты, защищенной PIN-кодом. Не зная PIN-кода, воспользоваться смарт-картой нельзя. Три попытки неправильного ввода PIN-кода заблокируют карту. Смарт-карта необходима только при подключении защищенных носителей, и в процессе работы не требуется. При перезагрузке сервера без смарт-карты, защищенные диски не будут доступны. Система Zserver предоставляет возможность удаленного ввода ключей шифрования и администрирования системы с любой рабочей станции локальной сети, или через Интернет. В настоящее время разработаны системы Zserver, которые работают под управлением следующих операционных систем: Windows 2000/XP/2003/2008 (32- и 64-разрядные); Linux с ядром 2.6.x.

Данные в этом случае рассматриваются как сообщения, и для защиты их смысла используется классическая техника шифрования .

Криптография предполагает наличие трех компонентов: данных, ключа и криптографического преобразования. При шифровании исходными данными будет сообщение, а результирующими - шифровка. При расшифрований они меняются местами. Считается, что криптографическое преобразование известно всем, но, не зная ключа, с помощью которого пользователь закрыл смысл сообщения от любопытных глаз, требуется потратить невообразимо много усилий на восстановление текста сообщения. (Следует еще раз повторить, что нет абсолютно устойчивого от вскрытия шифрования. Качество шифра определяется лишь деньгами, которые нужно выложить за его вскрытие от $10 и до $1000000.) Такое требование удовлетворяется рядом современных криптографических систем, например, созданных по "Стандарту шифрования данных Национального бюро стандартов США" DES и ГОСТ 28147-89. Так как ряд данных критичен к некоторым их искажениям, которые нельзя обнаружить из контекста, то обычно используются лишь такие способы шифрования, которые чувствительны к искажению любого символа. Они гарантируют не только высокую секретность, но и эффективное обнаружение любых искажений или ошибок.

В этот день свой профессиональный праздник отмечает Криптографическая служба России.

«Криптография» с древнегреческого означает «тайнопись».

Как раньше прятали слова?

Своеобразный метод передачи тайного письма существовал во времена правления династии египетских фараонов:

выбирали раба. Брили его голову наголо и наносили на неё текст сообщения водостойкой растительной краской. Когда волосы отрастали, его отправляли к адресату.

Шифр — это какая-либо система преобразования текста с секретом (ключом) для обеспечения секретности передаваемой информации.

АиФ.ru сделал подборку интересных фактов из истории шифрования.

Все тайнописи имеют системы

1. Акростих — осмысленный текст (слово, словосочетание или предложение), сложенный из начальных букв каждой строки стихотворения.

Вот, например, стихотворение-загадка с разгадкой в первых буквах:

Д овольно именем известна я своим;
Р авно клянётся плут и непорочный им,
У техой в бедствиях всего бываю боле,
Ж изнь сладостней при мне и в самой лучшей доле.
Б лаженству чистых душ могу служить одна,
А меж злодеями — не быть я создана.
Юрий Нелединский-Мелецкий
Сергей Есенин, Анна Ахматова, Валентин Загорянский часто пользовались акростихами.

2. Литорея — род шифрованного письма, употреблявшегося в древнерусской рукописной литературе. Бывает простая и мудрая. Простую называют тарабарской грамотой, она заключается в следующем: поставив согласные буквы в два ряда в порядке:

употребляют в письме верхние буквы вместо нижних и наоборот, причём гласные остаются без перемены; так, например, токепот = котёнок и т. п.

Мудрая литорея предполагает более сложные правила подстановки.

3. «ROT1» — шифр для детишек?

Возможно, в детстве вы тоже его использовали. Ключ к шифру очень прост: каждая буква алфавита заменяется на последующую букву.

А заменяется на Б, Б заменяется на В и так далее. «ROT1» буквально означает «вращать на 1 букву вперёд по алфавиту». Фраза «Я люблю борщ» превратится в секретную фразу «А мявмя впсъ» . Этот шифр предназначен для развлечения, его легко понять и расшифровать, даже если ключ используется в обратном направлении.

4. От перестановки слагаемых...

Во время Первой мировой войны конфиденциальные сообщения отправляли с помощью так называемых перестановочных шрифтов. В них буквы переставляются с использованием некоторых заданных правил или ключей.

Например, слова могут быть записаны в обратном направлении, так что фраза «мама мыла раму» превращается во фразу «амам алым умар» . Другой перестановочный ключ заключается в перестановке каждой пары букв, так что предыдущее сообщение становится «ам ам ым ал ар ум» .

Возможно, покажется, что сложные правила перестановки могут сделать эти шифры очень трудными. Однако многие зашифрованные сообщения могут быть расшифрованы с использованием анаграмм или современных компьютерных алгоритмов.

5. Сдвижной шифр Цезаря

Он состоит из 33 различных шифров, по одному на каждую букву алфавита (количество шифров меняется в зависимости от алфавита используемого языка). Человек должен был знать, какой шифр Юлия Цезаря использовать для того, чтобы расшифровать сообщение. Например, если используется шифр Ё, то А становится Ё, Б становится Ж, В становится З и так далее по алфавиту. Если используется шифр Ю, то А становится Ю, Б становится Я, В становится А и так далее. Данный алгоритм является основой для многих более сложных шифров, но сам по себе не обеспечивает надёжную защиту тайны сообщений, поскольку проверка 33-х различных ключей шифра займёт относительно небольшое время.

Никто не смог. Попробуйте вы

Зашифрованные публичные послания дразнят нас своей интригой. Некоторые из них до сих пор остаются неразгаданными. Вот они:

Криптос . Скульптура, созданная художником Джимом Санборном, которая расположена перед штаб-квартирой Центрального разведывательного управления в Лэнгли, Вирджиния. Скульптура содержит в себе четыре шифровки, вскрыть код четвёртой не удаётся до сих пор. В 2010 году было раскрыто, что символы 64-69 NYPVTT в четвёртой части означают слово БЕРЛИН.

Теперь, когда вы прочитали статью, то наверняка сможете разгадать три простых шифра.

Свои варианты оставляйте в комментариях к этой статье. Ответ появится в 13:00 13 мая 2014 года.

Ответ:

1) Блюдечко

2) Слоненку все надоело

3) Хорошая погода

То, что информация имеет ценность, люди осознали очень давно - недаром переписка сильных мира сего издавна была объектом пристального внимания их недругов и друзей. Тогда-то и возникла задача защиты этой переписки от чрезмерно любопытных глаз. Древние пытались использовать для решения этой задачи самые разнообразные методы, и одним из них была тайнопись - умение составлять сообщения таким образом, чтобы его смысл был недоступен никому кроме посвященных в тайну. Есть свидетельства тому, что искусство тайнописи зародилось еще в доантичные времена. На протяжении всей своей многовековой истории, вплоть до совсем недавнего времени, это искусство служило немногим, в основном верхушке общества, не выходя за пределы резиденций глав государств, посольств и - конечно же - разведывательных миссий. И лишь несколько десятилетий назад все изменилось коренным образом - информация приобрела самостоятельную коммерческую ценность и стала широко распространенным, почти обычным товаром. Ее производят, хранят, транспортируют, продают и покупают, а значит - воруют и подделывают - и, следовательно, ее необходимо защищать. Современное общество все в большей степени становится информационно обусловленным, успех любого вида деятельности все сильней зависит от обладания определенными сведениями и от отсутствия их у конкурентов. И чем сильней проявляется указанный эффект, тем больше потенциальные убытки от злоупотреблений в информационной сфере, и тем больше потребность в защите информации.

Широкое применение компьютерных технологий и постоянное увеличение объема информационных потоков вызывает постоянный рост интереса к криптографии. В последнее время увеличивается роль программных средств защиты информации, не требующих крупных финансовых затрат в сравнении с аппаратными криптосистемами. Современные методы шифрования гарантируют практически абсолютную защиту данных.

Целью данной работы является знакомство с криптографией; шифрами, их видами и свойствами.

Задачи:

Ознакомиться с криптографией

Рассмотреть шифры, их виды и свойства

1. История криптографии

Перед тем как приступить к собственно истории криптографии необходимо прокомментировать ряд определений, так как без этого все нижесказанное будет "слегка" затруднительным для понимания:

Под конфиденциальностью понимают невозможность получения информации из преобразованного массива без знания дополнительной информации (ключа).

Аутентичность информации состоит в подлинности авторстваи целостности.

Криптоанализ объединяет математические методы нарушения конфиденциальности и аутентичности информации без знания ключей.

Алфавит - конечное множество используемых для кодирования информации знаков.

Текст - упорядоченный набор из элементов алфавита. В качестве примеров алфавитов можно привести следующие:

алфавит Z 33 - 32 буквы русского алфавита (исключая "ё") и пробел;

алфавит Z 256 - символы, входящие в стандартные коды ASCII и КОИ-8;

двоичный алфавит - Z 2 = {0, 1};

восьмеричный или шестнадцатеричный алфавит

Под шифром понимается совокупность обратимых преобразований множества открытых данных на множество зашифрованных данных, заданных алгоритмом криптографического преобразования. В шифре всегда различают два элемента: алгоритм и ключ. Алгоритм позволяет использовать сравнительно короткий ключ для шифрования сколь угодно большого текста.

Криптографическая система , или шифр представляет собой семейство Т обратимых преобразований открытого текста в шифрованный. Членам этого семейства можно взаимно однозначно сопоставить число k , называемое ключом. Преобразование Тk определяется соответствующим алгоритмом и значением ключа k .

Ключ - конкретное секретное состояние некоторых параметров алгоритма криптографического преобразования данных, обеспечивающее выбор одного варианта из совокупности всевозможных для данного алгоритма. Секретность ключа должна обеспечивать невозможность восстановления исходного текста по шифрованному.

Пространство ключей K - это набор возможных значений ключа.

Обычно ключ представляет собой последовательный ряд букв алфавита. Следует отличать понятия "ключ" и "пароль". Пароль также является секретной последовательностью букв алфавита, однако используется не для шифрования (как ключ), а для аутентификации субъектов.

Электронной (цифровой ) подписью называется присоединяемое к тексту его криптографическое преобразование, которое позволяет при получении текста другим пользователем проверить авторство и целостность сообщения.

Зашифрованием данных называется процесс преобразования открытых данных в зашифрованные с помощью шифра, а расшифрованием данных - процесс преобразования закрытых данных в открытые с помощью шифра.

Дешифрованием называется процесс преобразования закрытых данных в открытые при неизвестном ключе и, возможно, неизвестном алгоритме, т.е. методами криптоанализа.

Шифрованием называется процесс зашифрования или расшифрования данных. Также термин шифрование используется как синоним зашифрования. Однако неверно в качестве синонима шифрования использовать термин "кодирование" (а вместо "шифра" - "код"), так как под кодированием обычно понимают представление информации в виде знаков (букв алфавита).

Криптостойкостью называется характеристика шифра, определяющая его стойкость к дешифрованию. Обычно эта характеристика определяется периодом времени, необходимым для дешифрования.

С распространением письменности в человеческом обществе появилась потребность в обмене письмами и сообщениями, что вызвало необходимость сокрытия содержимого письменных сообщений от посторонних. Методы сокрытия содержимого письменных сообщений можно разделить на три группы. К первой группе относятся методы маскировки или стеганографии, которые осуществляют сокрытие самого факта наличия сообщения; вторую группу составляют различные методы тайнописи или криптографии ( от греческих слов ktyptos - тайный и grapho - пишу); методы третьей группы ориентированы на создание специальных технических устройств, засекречивания информации .

В истории криптографии условно можно выделить четыре этапа: наивный, формальный, научный, компьютерный.

1. Для наивной криптографии ( до начала XVI в) характерно использование любых, обычно примитивных, способов запутывания противника относительно содержания шифруемых текстов. На начальном этапе для защиты информации использовались методы кодирования и стеганографии,которые родственны, но не тождественны криптографии.

Большинство из используемых шифров сводились к перестановке или моноалфавитной подстановке. Одним из первых зафиксированных примеров является шифр Цезаря, состоящий в замене каждой буквы исходного текста на другую, отстоящую от нее в алфавите на определенное число позиций. Другой шифр, полибианский квадрат, авторство которого приписывается греческому писателю Полибию, является общей моноалфавитной подстановкой, которая проводится с помощью случайно заполненной алфавитом квадратной таблицей (для греческого алфавита размер составляет 5 × 5). Каждая буква исходного текста заменяется на букву, стоящую в квадрате снизу от нее.

2. Этап формальной криптографии ( конец XV - начало XX вв) связан с появлением формализованных и относительно стойких к ручному криптоанализу шифров. В европейских странах это произошло в эпоху Возрождения, когда развитие науки и торговли вызвало спрос на надежные способы защиты информации. Важная роль на этом этапе принадлежит Леону Батисте Альберти, итальянскому архитектору, который одним из первых предложил многоалфавитную подстановку. Данный шифр, получивший имя дипломата XVI в. Блеза Вижинера, состоял в последовательном "сложении" букв исходного текста с ключом (процедуру можно облегчить с помощью специальной таблицы). Его работа "Трактат о шифре" считается первой научной работой по криптологии. Одной из первых печатных работ, в которой обобщены и сформулированы известные на тот момент алгоритмы шифрования, является труд "Полиграфия" немецкого аббата Иоганна Трисемуса. Ему принадлежат два небольших, но важных открытия: способ заполнения полибианского квадрата (первые позиции заполняются с помощью легко запоминаемого ключевого слова, остальные - оставшимися буквами алфавита) и шифрование пар букв (биграмм). Простым, но стойким способом многоалфавитной замены (подстановки биграмм) является шифр Плейфера, который был открыт в начале XIX в. Чарльзом Уитстоном. Уитстону принадлежит и важное усовершенствование - шифрование "двойным квадратом". Шифры Плейфера и Уитстона использовались вплоть до первой мировой войны, так как с трудом поддавались ручному криптоанализу. В XIX в. голландец Керкхофф сформулировал главное требование к криптографическим системам, которое остается актуальным и поныне: секретность шифров должна быть основана на секретности ключа, но не алгоритма .

Наконец, последним словом в донаучной криптографии, которое обеспечило еще более высокую криптостойкость, а также позволило автоматизировать процесс шифрования стали роторные криптосистемы.

Шифрование данных чрезвычайно важно для защиты конфиденциальности. В этой статье я расскажу о различных типах и методах шифрования, которые используются для защиты данных сегодня.

Знаете ли вы?
Еще во времена Римской империи, шифрование использовалось Юлием Цезарем для того, чтобы сделать письма и сообщения нечитаемыми для врага. Это играло важную роль как военная тактика, особенно во время войн.

Так как возможности Интернета продолжают расти, все больше и больше наших предприятий проводятся на работу онлайн. Среди этого наиболее важными являются, интернет банк, онлайн оплата, электронные письма, обмен частными и служебными сообщениями и др., которые предусматривают обмен конфиденциальными данными и информацией. Если эти данные попадут в чужие руки, это может нанести вред не только отдельному пользователю, но и всей онлайн системе бизнеса.

Чтобы этого не происходило, были приняты некоторые сетевые меры безопасности для защиты передачи личных данных. Главными среди них являются процессы шифрования и дешифрования данных, которые известны как криптография. Существуют три основные методы шифрования, используемых в большинстве систем сегодня: хеширование, симметричное и асимметричное шифрование. В следующих строках, я расскажу о каждом из этих типов шифрования более подробно.

Типы шифрования

Симметричное шифрование

При симметричном шифровании, нормальные читабельные данные, известные как обычный текст, кодируется (шифруется), так, что он становится нечитаемым. Это скремблирование данных производится с помощью ключа. Как только данные будут зашифрованы, их можно безопасно передавать на ресивер. У получателя, зашифрованные данные декодируются с помощью того же ключа, который использовался для кодирования.

Таким образом ясно что ключ является наиболее важной частью симметричного шифрования. Он должен быть скрыт от посторонних, так как каждый у кого есть к нему доступ сможет расшифровать приватные данные. Вот почему этот тип шифрования также известен как "секретный ключ".

В современных системах, ключ обычно представляет собой строку данных, которые получены из надежного пароля, или из совершенно случайного источника. Он подается в симметричное шифрование программного обеспечения, которое использует его, чтобы засекретить входные данные. Скремблирование данных достигается с помощью симметричного алгоритма шифрования, такие как Стандарт шифрования данных (DES), расширенный стандарт шифрования (AES), или международный алгоритм шифрования данных (IDEA).

Ограничения

Самым слабым звеном в этом типе шифрования является безопасность ключа, как в плане хранения, так и при передаче аутентифицированного пользователя. Если хакер способен достать этот ключ, он может легко расшифровать зашифрованные данные, уничтожая весь смысл шифрования.

Еще один недостаток объясняется тем, что программное обеспечение, которое обрабатывает данные не может работать с зашифрованными данными. Следовательно, для возможности использовать этого программного обеспечение, данные сначала должны быть декодированы. Если само программное обеспечение скомпрометировано, то злоумышленник сможет легко получить данные.

Асимметричное шифрование

Асимметричный ключ шифрования работает аналогично симметричному ключу, в том, что он использует ключ для кодирования передаваемых сообщений. Однако, вместо того, чтобы использовать тот же ключ, для расшифровки этого сообщения он использует совершенно другой.

Ключ, используемый для кодирования доступен любому и всем пользователям сети. Как таковой он известен как «общественный» ключ. С другой стороны, ключ, используемый для расшифровки, хранится в тайне, и предназначен для использования в частном порядке самим пользователем. Следовательно, он известен как «частный» ключ. Асимметричное шифрование также известно, как шифрование с открытым ключом.

Поскольку, при таком способе, секретный ключ, необходимый для расшифровки сообщения не должен передаваться каждый раз, и он обычно известен только пользователю (приемнику), вероятность того, что хакер сможет расшифровать сообщение значительно ниже.

Diffie-Hellman и RSA являются примерами алгоритмов, использующих шифрование с открытым ключом.

Ограничения

Многие хакеры используют «человека в середине» как форму атаки, чтобы обойти этот тип шифрования. В асимметричном шифровании, вам выдается открытый ключ, который используется для безопасного обмена данными с другим человеком или услугой. Однако, хакеры используют сети обман, чтобы заставить вас общаться с ними, в то время как вас заставили поверить, что вы находитесь на безопасной линии.

Чтобы лучше понять этот тип взлома, рассмотрим две взаимодействующие стороны Сашу и Наташу, и хакера Сергея с умыслом на перехват их разговора. Во-первых, Саша отправляет сообщение по сети, предназначенное для Наташи, прося ее открытый ключ. Сергей перехватывает это сообщение и получает открытый ключ, связанный с ней, и использует его для шифрования и передачи ложного сообщения, Наташе, содержащего его открытый ключ вместо Сашиного.

Наташа, думая, что это сообщение пришло от Саши, теперь шифрует ее с помощью открытого ключа Сергея, и отправляет его обратно. Это сообщение снова перехватил Сергей, расшифровал, изменил (при желании), зашифровал еще раз с помощью открытого ключа, который Саша первоначально отправил, и отправил обратно к Саше.

Таким образом, когда Саша получает это сообщение, его заставили поверить, что оно пришло от Наташи, и продолжает не подозревать о нечестной игре.

Хеширование

Методика хеширования использует алгоритм, известный как хэш-функция для генерации специальной строки из приведенных данных, известных как хэш. Этот хэш имеет следующие свойства:

  • одни и те же данные всегда производит тот же самый хэш.
  • невозможно, генерировать исходные данные из хэша в одиночку.
  • Нецелесообразно пробовать разные комбинации входных данных, чтобы попытаться генерировать тот же самый хэш.

Таким образом, основное различие между хэшированием и двумя другими формами шифрования данных заключается в том, что, как только данные зашифрованы (хешированы), они не могут быть получены обратно в первозданном виде (расшифрованы). Этот факт гарантирует, что даже если хакер получает на руки хэш, это будет бесполезно для него, так как он не сможет расшифровать содержимое сообщения.

Message Digest 5 (MD5) и Secure Hashing Algorithm (SHA) являются двумя широко используемыми алгоритмами хеширования.

Ограничения

Как уже упоминалось ранее, почти невозможно расшифровать данные из заданного хеша. Впрочем, это справедливо, только если реализовано сильное хэширование. В случае слабой реализации техники хеширования, используя достаточное количество ресурсов и атаки грубой силой, настойчивый хакер может найти данные, которые совпадают с хэшем.

Сочетание методов шифрования

Как обсуждалось выше, каждый из этих трех методов шифрования страдает от некоторых недостатков. Однако, когда используется сочетание этих методов, они образуют надежную и высоко эффективную систему шифрования.

Чаще всего, методики секретного и открытого ключа комбинируются и используются вместе. Метод секретного ключа дает возможность быстрой расшифровки, в то время как метод открытого ключа предлагает более безопасный и более удобный способ для передачи секретного ключа. Эта комбинация методов известна как "цифровой конверт". Программа шифрования электронной почты PGP основана на технике "цифровой конверт".

Хеширования находит применение как средство проверки надежности пароля. Если система хранит хэш пароля, вместо самого пароля, он будет более безопасным, так как даже если хакеру попадет в руки этот хеш, он не сможет понять (прочитать) его. В ходе проверки, система проверит хэш входящего пароля, и увидит, если результат совпадает с тем, что хранится. Таким образом, фактический пароль будет виден только в краткие моменты, когда он должен быть изменен или проверен, что позволит существенно снизить вероятность его попадания в чужие руки.

Хеширование также используется для проверки подлинности данных с помощью секретного ключа. Хэш генерируется с использованием данных и этого ключа. Следовательно, видны только данные и хэш, а сам ключ не передается. Таким образом, если изменения будут сделаны либо с данными, либо с хэшем, они будут легко обнаружены.

В заключение можно сказать, что эти методы могут быть использованы для эффективного кодирования данных в нечитаемый формат, который может гарантировать, что они останутся безопасными. Большинство современных систем обычно используют комбинацию этих методов шифрования наряду с сильной реализацией алгоритмов для повышения безопасности. В дополнение к безопасности, эти системы также предоставляют множество дополнительных преимуществ, таких как проверка удостоверения пользователя, и обеспечение того, что полученные данные не могут быть подделаны.

Проблема воровства персональных данных незаметно превратилась в бич цивилизации. Информацию о пользователе тянут все кому не лень: кто-то предварительно испросив согласие (социальные сети, операционные системы, приложения компьютерные и мобильные), другие без разрешения и спросу (злоумышленники всех сортов и антрепренёры, извлекающие любую выгоду из сведений о конкретном человеке). В любом случае приятного мало и всегда есть риск, что вместе с безобидной информацией в чужие руки попадёт что-то такое, что сможет навредить лично вам или вашему работодателю: служебные документы, частная или деловая корреспонденция, семейные фото...

Но как помешать утечкам? Шапочка из фольги тут не поможет, хоть это, бесспорно, и красивое решение. Зато поможет тотальное шифрование данных: перехватив или украв зашифрованные файлы, соглядатай ничего в них не поймёт. Сделать это можно, защитив всю свою цифровую активность с помощью стойкой криптографии (стойкими называются шифры, на взлом которых при существующих компьютерных мощностях потребуется время, по крайней мере большее продолжительности жизни человека). Вот 6 практических рецептов, воспользовавшись которыми, вы решите эту задачу.

Зашифруйте активность веб-браузера. Глобальная сеть устроена таким образом, что ваш запрос даже к близко расположенным сайтам (типа yandex.ru) проходит на своём пути через множество компьютеров («узлов»), которые ретранслируют его туда и обратно. Посмотреть примерный их список можно, введя в командной строке команду tracert адрес_сайта. Первым в таком списке будет ваш интернет-провайдер или владелец точки доступа Wi-Fi, через которую вы подключились к интернету. Потом ещё какие-нибудь промежуточные узлы, и только в самом конце сервер, на котором хранится нужный вам сайт. И если ваше соединение не зашифровано, то есть ведётся по обычному протоколу HTTP, каждый, кто находится между вами и сайтом, сможет пересылаемые данные перехватить и проанализировать.

Поэтому сделайте простую вещь: добавьте к «http» в адресной строке символ «s», чтобы адрес сайта начинался с «https://». Таким образом вы включите шифрование трафика (так называемый слой безопасности SSL/TLS). Если сайт поддерживает HTTPS, он позволит это сделать. А чтобы не мучиться каждый раз, поставьте браузерный плагин : он будет принудительно пытаться включить шифрование на каждом посещаемом вами сайте.

Недостатки : соглядатай не сможет узнать смысл передаваемых и принимаемых данных, но он будет знать, что вы посещали конкретный сайт.

Зашифруйте свою электронную почту. Письма, отправленные по e-mail, тоже проходят через посредников, прежде чем попасть к адресату. Зашифровав, вы помешаете соглядатаю понять их содержимое. Однако техническое решение тут более сложное: потребуется применить дополнительную программу для шифрования и дешифровки. Классическим решением, не потерявшим актуальности до сих пор, будет пакет OpenPGP или его свободный аналог GPG , либо поддерживающий те же стандарты шифрования плагин для браузера (например, Mailvelope).

Прежде чем начать переписку, вы генерируете так называемый публичный криптоключ, которым смогут «закрывать» (шифровать) письма, адресованные вам, ваши адресаты. В свою очередь каждый из ваших адресатов тоже должен сгенерировать свой ключ: с помощью чужих ключей вы сможете «закрывать» письма для их владельцев. Чтобы не путаться с ключами, лучше использовать вышеупомянутый браузерный плагин. «Закрытое» криптоключом письмо превращается в набор бессмысленных символов - и «открыть» его (расшифровать) может только владелец ключа.

Недостатки : начиная переписку, вы должны обменяться ключами со своими корреспондентами. Постарайтесь гарантировать, чтобы никто не смог перехватить и подменить ключ: передайте его из рук в руки, либо опубликуйте на публичном сервере для ключей. Иначе, подменив ваш ключ своим, соглядатай сможет обмануть ваших корреспондентов и будет в курсе вашей переписки (так называемая атака man in the middle - посредника).

Зашифруйте мгновенные сообщения. Проще всего воспользоваться мессенджерами, которые уже умеют шифровать переписку: Telegram, WhatsApp, Facebook Messenger, Signal Private Messenger, Google Allo, Gliph и т.п. В таком случае от любопытных глаз со стороны вы защищены: если случайный человек и перехватит сообщения, то увидит лишь мешанину символов. Но вот от любопытства компании, которая владеет мессенджером, это вас не оградит: у компаний, как правило, есть ключи, позволяющие читать вашу переписку - и мало того, что они любят это делать сами, они по первому требованию сдадут их правоохранительным органам.

Поэтому лучшим решением будет воспользоваться каким-либо популярным свободным (open source) мессенджером с подключенным плагином для шифрования «на лету» (такой плагин часто называют «OTR»: off the record - препятствующий записи). Хорошим выбором будет Pidgin .

Недостатки : как и в случае с электронной почтой, вы не гарантированы от атаки посредника.


Зашифруйте документы в «облаке». Если вы пользуетесь «облачными» хранилищами вроде Google Drive, Dropbox, OneDrive, iCloud, ваши файлы могут быть украдены кем-то, кто подсмотрит (или подберёт) ваш пароль, либо если обнаружится какая-то уязвимость в самом сервисе. Поэтому прежде, чем поместить что-либо в «облако», зашифруйте это. Реализовать такую схему проще и удобней всего с помощью утилиты, которая создаёт на компьютере папку - помещённые куда документы автоматически шифруются и переправляются на «облачный» диск. Такова, например, Boxcryptor . Чуть менее удобно применить для той же цели приложения типа TrueCrypt - создающие целый шифрованный том, размещаемый в «облаке».

Недостатки : отсутствуют.


Зашифруйте весь (не только браузерный) трафик с вашего компьютера. Может пригодиться, если вы вынуждены пользоваться непроверенным открытым выходом в Сеть - например, незашифрованным Wi-Fi в публичном месте. Здесь стоит воспользоваться VPN: несколько упрощая, это защищённый шифрованием канал, протягиваемый от вас до VPN-провайдера. На сервере провайдера трафик дешифруется и отправляется далее по назначению. Провайдеры VPN бывают как бесплатные (VPNbook.com, Freevpn.com, CyberGhostVPN.com), так и платные - различающиеся скоростью доступа, временем сеанса и т.п. Большой бонус такого соединения в том, что для всего мира вы кажетесь выходящим в Сеть с сервера VPN, а не со своего компьютера. Поэтому, если VPN-провайдер находится за пределами Российской Федерации, вам будут доступны сайты, заблокированные внутри РФ.

Того же результата можно добиться, если установить на своём компьютере TOR - с той лишь разницей, что в данном случае провайдера нет: вы будете выходить в интернет через случайные узлы, принадлежащие другим участникам этой сети, то есть неизвестным вам лицам или организациям.

Недостатки : помните, что ваш трафик дешифруется на выходном узле, то есть на сервере VPN-провайдера или компьютере случайного участника TOR. Поэтому если их владельцы пожелают, они смогут анализировать ваш трафик: попробовать перехватить пароли, выделить ценные сведения из переписки и пр. Поэтому пользуясь VPN или TOR, совмещайте их с другими средствами шифрования. Кроме того, настроить TOR правильно - задача непростая. Если у вас нет опыта, лучше воспользоваться готовым решением: комплектом TOR + браузер Firefox (в таком случае будет шифроваться только браузерный трафик) или Linux-дистрибутивом Tails (работающим с компакт-диска или флэшки), где весь трафик уже настроен на маршрутизацию через TOR.

Зашифруйте флэшки и съёмные носители данных, мобильные устройства. Сюда же можно добавить и шифрование жёсткого диска на рабочем компьютере, но его вы по крайней мере не рискуете потерять - вероятность чего всегда присутствует в случае с носимыми накопителями. Чтобы зашифровать не отдельный документ, а сразу целый диск, используйте приложения BitLocker (встроено в MS Windows), FileVault (встроено в OS X), DiskCryptor , 7-Zip и им подобные. Такие программы работают «прозрачно», то есть вы не будете их замечать: файлы шифруются и дешифруются автоматически, «на лету». Однако злоумышленник, в руки которого попадёт закрытая с их помощью, например, флэшка, ничего из неё извлечь не сумеет.

Что касается смартфонов и планшеток, там для полного шифрования лучше воспользоваться встроенным функционалом операционной системы. На Android-устройствах загляните в «Настройки -> Безопасность», на iOS в «Настройки -> Пароль».

Недостатки : поскольку все данные хранятся теперь в зашифрованном виде, процессору приходится их дешифровать при чтении и шифровать при записи, на что, конечно, тратятся время и энергия. Поэтому падение производительности может быть заметным. Насколько в действительности замедлится работа вашего цифрового устройства, зависит от его характеристик. В общем случае более современные и топовые модели проявят себя лучше.


Таков список действий, которые стоит предпринять, если вас беспокоит возможная утечка файлов в чужие руки. Но помимо этого есть ещё несколько соображений общего характера, которые тоже следует иметь в виду:

Свободное приложение для охраны приватности обычно надёжней проприетарного. Свободное - это такое, исходные тексты которого опубликованы под свободной лицензией (GNU GPL, BSD и т.п.) и могут изменяться всеми желающими. Проприетарное - такое, эксклюзивные права на которое принадлежат какой-либо одной компании или разработчику; исходные тексты таких программ обычно не публикуются.

Шифрование предполагает использование паролей, поэтому позаботьтесь, чтобы ваш пароль был правильным: длинным, случайным, разнообразным.

Многие офисные приложения (текстовые редакторы, электронные таблицы и др.) умеют шифровать свои документы самостоятельно. Однако стойкость применяемых ими шифров, как правило, невелика. Поэтому для защиты лучше предпочесть одно из перечисленных выше универсальных решений.

Для задач, которые требуют анонимности/приватности, удобней держать отдельный браузер, настроенный на «параноидальный» режим (вроде уже упоминавшегося комплекта Firefox + TOR).

Javascript, часто используемый в Сети, это настоящая находка для шпиона. Поэтому, если вам есть что скрывать, Javascript в настройках браузера лучше заблокировать. Также безусловно блокируйте рекламу (поставьте любой плагин, реализующий эту функцию, например, AdBlockPlus): под видом банеров в последнее время часто рассылают вредоносный код.

Если пресловутый «закон Яровой» всё-таки вступит в силу (по плану это должно случиться 1 июля 2018 года), запасные ключи от всех шифров в России должны будут быть переданы государству, в противном случае шифр не будет сертифицирован. А за пользование несертифицированным шифрованием даже рядовые обладатели смартфонов смогут быть оштрафованными на сумму от 3 тысяч рублей с конфискацией цифрового устройства.

P.S. В статье использована фотография Christiaan Colen .

Если вам понравилась статья - порекомендуйте ее своим друзьям, знакомым или коллегам, имеющим отношение к муниципальной или государственной службе. Нам кажется, что им это будет и полезно, и приятно.
При перепечатке материалов обязательна ссылка на первоисточник.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то