Солнечные батареи с рекордным кпд. Самые эффективные солнечные батареи: КПД, мощность и показатели напряжения

  • – не новое изобретение. Уже больше полувека человечество использует излучение солнца для снабжения электроэнергией самых разных приборов и устройств. Тем не менее, аккумуляторы такого типа до их пор не получили повсеместного распространения и не вытеснили с рынка другие энергоносители. Одна из причин этого – не всегда достаточная эффективность работы солнечных панелей.

    Солнечной панелью или батареей называют устройство, способное перерабатывать энергию, содержащуюся в солнечном излучении, в электричество.

    зависит от многих факторов:

    • материалы;
    • погодные условия;
    • тип батареи.

    Стандартной эффективностью солнечных панелей, широко используемых для личных нужд, считается величина примерно равная 20%. У некоторых типов устройств этот показатель будет выше, у некоторых - ниже. Но среднее значение таково. Эта величина показывает, какой процент от попавшего на аккумулятор света был переработан в электроэнергию.

    Конечно, это весьма приблизительное определение, но в целом верное. В лабораториях уже были созданы батареи с эффективностью в 50 и даже 100%. Но пока что это только опытные образцы.

    Кремниевые панели

    Идеальная эффективность работы солнечных панелей, в которых в качестве полупроводника используется чистый кремний, равна 34% от всего полученного света. При этом необходимо иметь ввиду, что в условиях недостаточной освещенности, при рассеянном свете батареи уловят меньше света, и количественный показатель этих 34% уменьшится.

    • кремниевые панели хорошо проявляют себя при ярком свете, но малоэффективны при рассеянном.
    • Поликристаллические обладают меньшим КПД, но хорошо проявляют себя в условиях недостаточной освещенности.
    • (тонкопленочные) панели также достаточно эффективны при рассеянном свете.

    Гибридные панели

    КПД кремниевых устройств сравнительно невысок, так как они могут получать энергию только в красной части спектра. Энергия же синего, самого энергетически насыщенного фотона, остается неиспользованной. Ученые во всем мире активно работают над решением этой задачи.

    Один из предложенных вариантов – использование ароматического углерода пентацена и химического соединения PbS. Это сочетание позволяет получать большее количество электронов и, как следствие, вырабатывать больше энергии.

    Самые эффективные солнечные панели - многослойные ячейки, в которых каждый слой выполняет свою задачу. Эффективность этих батарей может достигать 87%. Но в массовом производстве эти технологии пока не используются. С увеличением количества слоев увеличивается и стоимость аккумулятора. Для достижения 87% КПД придется сделать очень дорогую солнечную батарею.

    Весьма перспективны устройства, в основе которых есть минерал перовскит. Сейчас они менее эффективны, чем кремниевые, но это в большей степени связано с новизной технологии. Имеющиеся результаты испытаний позволяют предположить, что в будущем они способны занять первое место на рынке альтернативной энергетики.

    Эффективность солнечных батарей напрямую зависит от их расположения. Они должны быть обращены на юг рабочей поверхностью и наклонены под углом, равным широте той точки, на которой находятся. Панели нельзя ставить так, чтобы на них падала тень от соседнего здания, например.

    Проблема, с которой можно столкнуться зимой – снег, закрывающий рабочую поверхность. Вариантов решения здесь, в общем-то, немного: либо чистить вручную, либо менять угол наклона. Полезное устройство, способное увеличить КПД аккумуляторов – трекер, поворачивающий панель следом за солнцем.

    Важно следить за тем, чтобы система не сильно нагревалась, так как перегрев ослабляет фотоэффект. Этого можно избежать, установив вентилируемый аккумулятор. Пыль на рабочей поверхности также снижает количество выработанной энергии. Протирать систему нужно не реже, чем каждые два года.

    Сейчас вы узнаете то, о чем никогда не расскажут продавцы солнечных панелей.

    Ровно год назад, в октябре 2015 года, в качестве эксперимента я решил записаться в ряды «зеленых», спасающих нашу планету от преждевременной гибели, и приобрел солнечные панели максимальной мощностью 200 ватт и грид-инвертор рассчитанный максимум на 300 (500) ватт вырабатываемой мощности. На фотографии вы можете увидеть структуру поликристаллической 200-ваттной панели, но через пару дней после покупки стало ясно, что в одиночной конфигурации у неё слишком низкое напряжение, недостаточное для правильной работы моего грид-инвертора.

    Поэтому мне пришлось её поменять на две 100-ваттных монокристаллических панели. Теоретически они должны быть немного эффективнее, по факту же они просто дороже. Это панели высокого качества, российского бренда Sunways. За две панели я заплатил 14 800 рублей.

    Вторая статья расходов - грид-инвертор китайского производства. Производитель никак себя не обозначил, но устройство сделано качественно, а вскрытие показало, что внутренние компоненты рассчитаны на мощность до 500 ватт (вместо 300, написанных на корпусе). Стоит такой грид всего 5 000 рублей. Грид - это гениальное устройство. С одной стороны к нему подключается + и - от солнечных панелей, а с другой стороны он с помощью обычной электрической вилки подключается совершенно в любую электрическую розетку в вашем доме. В процессе работы грид подстраивается под частоту в сети и начинает "выкачивать" переменный ток (сконвертированный из постоянного) в вашу домашную сеть 220 вольт.

    Грид работает только при наличии напряжения в сети и его нельзя рассматривать как резервный источник питания. Это его единственный минус. А колоссальным плюсом грид инвертора является то, что вам в принципе не нужны аккумуляторы. Ведь именно аккумуляторы являются самым слабым звеном в альтернативной энергетике. Если та же солнечная панель гарантированно отработает более 25 лет (то есть через 25 лет она потеряет примерно 20% своей производительности), то срок службы обыкновенного свинцового аккумулятора в аналогичных условиях составит 3-4 года. Гелевые и AGM аккумуляторы прослужат дольше, до 10 лет, но они и стоят в 5 раз дороже обычных аккумуляторов.

    Поскольку у меня есть сетевое электричество, то мне никакие аккумуляторы не нужны. Если же делать систему автономной, то нужно добавить к бюджету еще 15-20 тысяч рублей на аккумулятор и контроллер к нему.

    Теперь, что касается выработки электроэнергии. Вся энергия вырабатываемая солнечными панелями в реальном времени попадает в сеть. Если в доме есть потребители этой энергии, то она вся будет израсходована, а счетчик на вводе в дом «крутиться» не будет. Если же моментальная выработка электроэнергии превысит потребляемую в данный момент, то вся энергия будет передана обратно в сеть. То есть счетчик будет «крутиться» в обратную сторону. Но тут есть нюансы.

    Во-первых, многие современные электронные счетчики считают проходящий через них ток без учета его направления (то есть вы будете платить за отдаваемую обратно в сеть электроэнергию). А во-вторых, российское законодательство не разрешает частным лицам продавать электроэнергию. Такое разрешено в Европе и именно поэтому там каждый второй дом обвешан солнечными панелями, что в совокупности с высокими сетевыми тарифами позволяет действительно экономить.

    Что делать в России? Не ставить солнечные панели, которые могут выработать энергии больше, чем текущее дневное энергопотребление в доме. Именно по этой причине у меня всего две панели суммарной мощностью 200 ватт, которые с учетом потерь инвертора могут отдать в сеть примерно 160-170 ватт. А мой дом стабильно круглосуточно потребляет примерно 130-150 ватт в час. То есть вся выработанная солнечными панелями энергия будет гарантированно потреблена внутри дома.

    Для контроля вырабатываемой и потребляемой энергии я пользуюсь Smappee. Я уже писал про него в прошлом году. У него два трансформатора тока, которые позволяют вести учет как сетевой, так и вырабатываемой солнечными панелями электроэнергии.

    Начнём с теории, и перейдем к практике.

    В интернете есть много калькуляторов солнечных электростанций. Из моих исходных данных согласно калькулятору следует, что среднегодовая выработка электроэнергии моих солнечных панелей составит 0,66 квтч/сутки, а суммарная выработка за год - 239,9 квтч.

    Это данные для идеальных погодных условий и без учета потерь на конвертацию постоянного тока в переменный (вы же не собираетесь переделывать электроснабжение своего домохозяйства на постоянное напряжение?). В реальности полученную цифру можно смело делить на два.

    Сравниваем с реальными данными по выработке за год:

    2015 год - 5,84 квтч
    Октябрь - 2,96 квтч (с 10 октября)
    Ноябрь - 1,5 квтч
    Декабрь - 1,38 квтч
    2016 год - 111,7 квтч
    Январь - 0,75 квтч
    Февраль - 5,28 квтч
    Март - 8,61 квтч
    Апрель - 14 квтч
    Май - 19,74 квтч
    Июнь - 19,4 квтч
    Июль - 17,1 квтч
    Август - 17,53 квтч
    Сентябрь - 7,52 квтч
    Октябрь - 1,81 квтч (до 10 октября)

    Всего: 117,5 квтч

    Вот график выработки и потребления электроэнергии в загородном доме за последние 6 месяцев (апрель-октябрь 2016 года). Именно за апрель-август солнечными панелями была выработана львиная доля (более 70%) электрической энергии. В остальные месяцы года выработка была невозможна по большей части из-за облачности и снега. Ну и не забываем, что КПД грида по конвертации постоянного тока в переменный примерно 60-65%.

    Солнечные панели установлены практически в идеальных условиях. Направление строго на юг, поблизости нет высоких домов отбрасывающих тень, угол установки относительно горизонта - ровно 45 градусов. Этот угол даст максимальную среднегодовую выработку электроэнергии. Конечно можно было купить поворотный механизм с электроприводом и функцией слежения за солнцем, но это бы увеличило бюджет всей установки практически в 2 раза, тем самым отодвинув срок её окупаемости в бесконечность.

    По выработке солнечной энергии в солнечные дни у меня нет никаких вопросов. Она полностью соответствует расчетным. И даже снижение выработки зимой, когда солнце не поднимается высоко над горизонтом не было бы настолько критично, если бы не... облачность. Именно облачность является главным врагом фотовольтаики. Вот вам почасовая выработка за два дня: 5 и 6 октября 2016 года. Пятого октября светило солнце, а 6 октября небо затянули свинцовые тучи. Солнце, ау! Ты где спряталось?

    Зимой есть еще одна небольшая проблема - снег. Решить её можно только одним способом, установить панели практически вертикально. Либо каждый день вручную очищать их от снега. Но снег это ерунда, главное чтобы светило солнце. Пусть даже низко над горизонтом.

    Итак, подсчитаем расходы:

    Грид инвертор (300-500 ватт) - 5 000 рублей
    Монокристаллическая солнечная панель (Grade A - высшего качества) 2 шт по 100 ватт - 14 800 рублей
    Провода для подключения солнечных панелей (сечением 6 мм2) - 700 рублей
    Итого: 20 500 рублей.
    За прошедший отчетный период было выработано 117,5 квтч, по текущему дневному тарифу (5,53 руб/квтч) это составит 650 рублей.
    Если предположить, что стоимость сетевых тарифов не изменится (на самом деле они изменяются в большую сторону 2 раза в год), то свои вложения в альтернативную энергетику я смогу вернуть только через 32 года!

    А уж если добавить аккумуляторы, то вся эта система никогда себя не окупит. Поэтому солнечная энергетика при наличии сетевого электричества может быть выгодна только в одном случае - когда у нас электроэнергия будет стоить как в Европе. Вот будет стоить 1 квтч сетевого электричества более 25 рублей, вот тогда солнечные панели будут очень выгодны.
    Пока же использовать солнечные панели выгодно только там, где нет сетевого электричества, а его проведение стоит слишком дорого. Предположим, что у вас его загородный дом, расположенный в 3-5 км от ближайшей электрической линии. Причем она высоковольтная (то есть потребуется установка трансформатора), а у вас нет соседей (не с кем разделить расходы). То есть за подключение к сети вам придется заплатить условно 500 000 рублей, а после этого еще и платить по сетевым тарифам. Вот в этом случае вам будет выгоднее купить на эту сумму солнечные панели, контроллер и аккумуляторы - ведь после ввода системы в эксплуатацию вам уже больше платить не нужно будет.
    А пока стоит рассматривать фотовольтаику исключительно, как хобби.

    Солнечные батареи - уникальный преобразователь энергии световых лучей в электричество с неограниченным внешним источником. Постоянно растущий спрос на данную продукцию обусловлен доступностью и экологичностью энергоснабжения без расхода теплоносителя, а также экономической окупаемостью за 2 года при минимальном сроке службы панелей в 25 лет.

    Основой служат полупроводники или пленочные полимеры, пластина из слоев разной полярности преобразует свет в направленное движение электронов - это физическое явление неизменно для всех солнечных батарей. Вместе с тем такое исполнение ограничивает эффективность фотопреобразователей, часть энергии фотонов неизбежно теряется при прохождении границы p-n перехода. На практике на коэффициент полезного действия батарей влияют многие факторы: материал, площадь, расположение, интенсивность светового потока, что учитывается при покупке и эксплуатации.

    Зависимость КПД от вида фотопреобразователей

    Данный показатель определяется как процентное отношение вырабатываемой электрической энергии к мощности падающего солнечного света. На величину влияет чистота пластины и ее структура: пленочная, поли- или монокристаллическая. Последние виды относятся к самым дорогим и долго окупаемым, доступные солнечные батареи с высоким КПД для дома пока что производят только из слоев кремния разной полярности. Менее эффективными являются панели из террурида кадмия и CIGS, выпускаемые на основе пленочной технологии. КПД кадмиевых батарей составляет всего 11 %, но они дешевы и достаточно надежны в эксплуатации. Чуть выше показатель у пленки с нанесенными частицами галлия, меди, индия и селена, фотоэлементы CIGS эффективны на 15 %.

    Для сравнения: КПД кремниевых преобразователей монокристаллического типа - 25 %, а у тонкопленочных или аморфных субмодулей из того же материала - максимум 10, устройства на основе органических полимеров имеют минимальное значение - 5 %. Многое зависит от площади панели, одиночные фотоэлементы ограничены в генерировании электричества.

    Величина КПД маленьких солнечных батарей не позволяет использовать их для полноценного энергоснабжения, но их достаточно для запуска некоторых видов электроники. В любом случае, повышение эффективности устройств и минимизация их себестоимости является приоритетной задачей современной энергетики.

    Факторы, влияющие на эффективность солнечных батарей

    Коэффициент полезного действия зависит не только от применяемого материала и технологии, но и от целого комплекса внешних условий:

    1. Интенсивности светового потока. В свою очередь этот показатель связан с географическими координатами расположенной батареи, в частности - с широтой.

    2. Угла наклона конструкции. В идеале следует установить солнечные батареи, меняющие его, исходя из градиента падения лучей. Такая система стоит дороже, но она позволяет аккумулировать внушительное количество электричества (до 40–60 %) и меньше зависеть от сезона и времени суток.

    3. Температуры окружающей среды. Нагрев плохо влияет на фотоэффект, вентилируемые батареи имеют очень высокий КПД. Как ни парадоксально, но в морозную ясную погоду они вырабатывают больше энергии, чем в жару (хотя общий кумулятивный эффект снижается из-за короткого светового дня).

    4. Времени года. На практике КПД солнечных панелей зимой уменьшается в 2–8 раз, но это не связано с выпадением снега: на темной поверхности он быстро тает, кроме того - фотопреобразователи отлично воспринимают рассеянный свет.

    5. Запыленности. Чем чище внешняя часть солнечных батарей, тем большее количество фотонов будет преобразовано, поэтому для повышения КПД рабочие поверхности рекомендуется протирать как минимум раз в два года.

    6. Тени. Не секрет, что коэффициент полезного действия для солнечных батарей в пасмурную погоду значительно снижается, в туманных и дождливых районах их нет смысла ставить, то же относится и к затененным участкам. Панели нежелательно монтировать в тени высоких деревьев или соседних домов, при выборе месторасположения приоритет отдается южной стороне.

    О базовой станции на солнечных батареях. Оговорка состояла в том, что срок окупаемости системы питания на солнечных панелях - 2-3 года. Я по роду деятельности занимаюсь монтажом и наладкой систем альтернативных источников энергии и, как мне видится, авторы статей на данную тематику занижают время, в течении которого система полностью окупается, причем в несколько раз.

    Не претендую на абсолютную точность, но цифры берутся не с потолка, а с конкретного объекта, на котором делали бригадой монтаж – Симферопольский производственно-складской комплекс «Мяско». В расчеты включены основные самые затратные статьи.

    Данный завод уже имел на момент начала наших работ ферму на 300+ панелей, собранных по модульной системе. Мы добавляли еще шесть контуров по двадцать панелей. (Контур – объединение определенного количества панелей в один источник энергии, таким образом набирается контур нужного для инвертора напряжения).

    Сухие расчеты

    Теперь немного к цифрам, все расчеты ведутся с стоимостью доставки в Крым с территории Германии.


    Итого:
    Ферма в 120 панелей обходится в 59.000 долларов. В эти расчеты еще не включена оплата труда проектировщику, инженеру и монтажникам. В сумме все выльется в бюджет, стремящийся к 65.000$.

    Фактическая выработка электроэнергии

    Теоретически, в идеальных условиях, одна панель должна выдавать примерно 220-230Вт в час (в пересчете на привычные нам 220 вольт). Ниже представлены графики, которые ведет блок управления в инверторе, мониторить их можно удаленно.

    Солнечный день :

    Переменная облачность :

    Месячный график :

    В последнем графике следует учесть, что два дня система выключалась на время, а три первых дня месяца и два последних отсутствуют.

    В стабильно солнечный летний месяц, с продолжительным световым днем, такая ферма выдаст максимум 4500-4700кВт*ч. Зная эти цифры, можно подсчитать рентабельность системы, учитывая тарифы на электроэнергию.

    При этом нужно учесть, что ферма собрана без аккумуляторов, их наличие увеличило бы общую стоимость системы, время окупаемости, соответственно, тоже.

    Таким образом, у меня никак не получается выйти на окупаемость в 2-3 года. 10 лет - более-менее реальный срок.

    Пришло время рассказать о том, насколько эффективна солнечная энергетика в Московской области. Целый год я собирал статистику выработки солнечной энергии с двух 100-ваттных солнечных панелей, установленных на крыше загородного дома и подключенных в сеть с использованием грид инвертора. Я уже писал об этом год назад. А сейчас пора подвести итоги.

    Сейчас вы узнаете то, о чем никогда не расскажут продавцы солнечных панелей.

    Ровно год назад, в октябре 2015 года, в качестве эксперимента я решил записаться в ряды «зеленых», спасающих нашу планету от преждевременной гибели, и приобрел солнечные панели максимальной мощностью 200 ватт и грид-инвертор рассчитанный максимум на 300 (500) ватт вырабатываемой мощности. На фотографии вы можете увидеть структуру поликристаллической 200-ваттной панели, но через пару дней после покупки стало ясно, что в одиночной конфигурации у неё слишком низкое напряжение, недостаточное для правильной работы моего грид-инвертора.

    Поэтому мне пришлось её поменять на две 100-ваттных монокристаллических панели. Теоретически они должны быть немного эффективнее, по факту же они просто дороже. Это панели высокого качества, российского бренда Sunways. За две панели я заплатил 14 800 рублей.

    Вторая статья расходов - грид-инвертор китайского производства. Производитель никак себя не обозначил, но устройство сделано качественно, а вскрытие показало, что внутренние компоненты рассчитаны на мощность до 500 ватт (вместо 300, написанных на корпусе). Стоит такой грид всего 5 000 рублей. Грид - это гениальное устройство. С одной стороны к нему подключается + и - от солнечных панелей, а с другой стороны он с помощью обычной электрической вилки подключается совершенно в любую электрическую розетку в вашем доме. В процессе работы грид подстраивается под частоту в сети и начинает "выкачивать" переменный ток (сконвертированный из постоянного) в вашу домашную сеть 220 вольт.

    Грид работает только при наличии напряжения в сети и его нельзя рассматривать как резервный источник питания. Это его единственный минус. А колоссальным плюсом грид инвертора является то, что вам в принципе не нужны аккумуляторы. Ведь именно аккумуляторы являются самым слабым звеном в альтернативной энергетике. Если та же солнечная панель гарантированно отработает более 25 лет (то есть через 25 лет она потеряет примерно 20% своей производительности), то срок службы обыкновенного свинцового аккумулятора в аналогичных условиях составит 3-4 года. Гелевые и AGM аккумуляторы прослужат дольше, до 10 лет, но они и стоят в 5 раз дороже обычных аккумуляторов.

    Поскольку у меня есть сетевое электричество, то мне никакие аккумуляторы не нужны. Если же делать систему автономной, то нужно добавить к бюджету еще 15-20 тысяч рублей на аккумулятор и контроллер к нему.

    Теперь, что касается выработки электроэнергии. Вся энергия вырабатываемая солнечными панелями в реальном времени попадает в сеть. Если в доме есть потребители этой энергии, то она вся будет израсходована, а счетчик на вводе в дом «крутиться» не будет. Если же моментальная выработка электроэнергии превысит потребляемую в данный момент, то вся энергия будет передана обратно в сеть. То есть счетчик будет «крутиться» в обратную сторону. Но тут есть нюансы.

    Во-первых, многие современные электронные счетчики считают проходящий через них ток без учета его направления (то есть вы будете платить за отдаваемую обратно в сеть электроэнергию). А во-вторых, российское законодательство не разрешает частным лицам продавать электроэнергию. Такое разрешено в Европе и именно поэтому там каждый второй дом обвешан солнечными панелями, что в совокупности с высокими сетевыми тарифами позволяет действительно экономить.

    Что делать в России? Не ставить солнечные панели, которые могут выработать энергии больше, чем текущее дневное энергопотребление в доме. Именно по этой причине у меня всего две панели суммарной мощностью 200 ватт, которые с учетом потерь инвертора могут отдать в сеть примерно 160-170 ватт. А мой дом стабильно круглосуточно потребляет примерно 130-150 ватт в час. То есть вся выработанная солнечными панелями энергия будет гарантированно потреблена внутри дома.

    Для контроля вырабатываемой и потребляемой энергии я пользуюсь Smappee. Я уже писал про него в прошлом году. У него два трансформатора тока, которые позволяют вести учет как сетевой, так и вырабатываемой солнечными панелями электроэнергии.

    Начнём с теории, и перейдем к практике.

    В интернете есть много калькуляторов солнечных электростанций, вот можно посмотреть на то, что он из себя представляет. Из моих исходных данных согласно калькулятору следует, что среднегодовая выработка электроэнергии моих солнечных панелей составит 0,66 квтч/сутки , а суммарная выработка за год - 239,9 квтч .

    Это данные для идеальных погодных условий и без учета потерь на конвертацию постоянного тока в переменный (вы же не собираетесь переделывать электроснабжение своего домохозяйства на постоянное напряжение?). В реальности полученную цифру можно смело делить на два.

    Сравниваем с реальными данными по выработке за год:

    2015 год - 5,84 квтч
    Октябрь - 2,96 квтч (с 10 октября)
    Ноябрь - 1,5 квтч
    Декабрь - 1,38 квтч
    2016 год - 111,7 квтч
    Январь - 0,75 квтч
    Февраль - 5,28 квтч
    Март - 8,61 квтч
    Апрель - 14 квтч
    Май - 19,74 квтч
    Июнь - 19,4 квтч
    Июль - 17,1 квтч
    Август - 17,53 квтч
    Сентябрь - 7,52 квтч
    Октябрь - 1,81 квтч (до 10 октября)

    Всего: 117,5 квтч

    Вот график выработки и потребления электроэнергии в загородном доме за последние 6 месяцев (апрель-октябрь 2016 года). Именно за апрель-август солнечными панелями была выработана львиная доля (более 70%) электрической энергии. В остальные месяцы года выработка была невозможна по большей части из-за облачности и снега. Ну и не забываем, что КПД грида по конвертации постоянного тока в переменный примерно 60-65%.

    Солнечные панели установлены практически в идеальных условиях. Направление строго на юг, поблизости нет высоких домов отбрасывающих тень, угол установки относительно горизонта - ровно 45 градусов. Этот угол даст максимальную среднегодовую выработку электроэнергии. Конечно можно было купить поворотный механизм с электроприводом и функцией слежения за солнцем, но это бы увеличило бюджет всей установки практически в 2 раза, тем самым отодвинув срок её окупаемости в бесконечность.

    По выработке солнечной энергии в солнечные дни у меня нет никаких вопросов. Она полностью соответствует расчетным. И даже снижение выработки зимой, когда солнце не поднимается высоко над горизонтом не было бы настолько критично, если бы не... облачность. Именно облачность является главным врагом фотовольтаики. Вот вам почасовая выработка за два дня: 5 и 6 октября 2016 года. Пятого октября светило солнце, а 6 октября небо затянули свинцовые тучи. Солнце, ау! Ты где спряталось?

    Зимой есть еще одна небольшая проблема - снег. Решить её можно только одним способом, установить панели практически вертикально. Либо каждый день вручную очищать их от снега. Но снег это ерунда, главное чтобы светило солнце. Пусть даже низко над горизонтом.

    Итак, подсчитаем расходы:

    Грид инвертор (300-500 ватт) - 5 000 рублей
    Монокристаллическая солнечная панель (Grade A - высшего качества) 2 шт по 100 ватт - 14 800 рублей
    Провода для подключения солнечных панелей (сечением 6 мм2) - 700 рублей
    Итого: 20 500 рублей.

    За прошедший отчетный период было выработано 117,5 квтч, по текущему дневному тарифу (5,53 руб/квтч) это составит 650 рублей .

    Если предположить, что стоимость сетевых тарифов не изменится (на самом деле они изменяются в большую сторону 2 раза в год), то свои вложения в альтернативную энергетику я смогу вернуть только через 32 года!

    А уж если добавить аккумуляторы, то вся эта система никогда себя не окупит. Поэтому солнечная энергетика при наличии сетевого электричества может быть выгодна только в одном случае - когда у нас электроэнергия будет стоить как в Европе. Вот будет стоить 1 квтч сетевого электричества более 25 рублей, вот тогда солнечные панели будут очень выгодны.

    Пока же использовать солнечные панели выгодно только там, где нет сетевого электричества, а его проведение стоит слишком дорого. Предположим, что у вас его загородный дом, расположенный в 3-5 км от ближайшей электрической линии. Причем она высоковольтная (то есть потребуется установка трансформатора), а у вас нет соседей (не с кем разделить расходы). То есть за подключение к сети вам придется заплатить условно 500 000 рублей, а после этого еще и платить по сетевым тарифам. Вот в этом случае вам будет выгоднее купить на эту сумму солнечные панели, контроллер и аккумуляторы - ведь после ввода системы в эксплуатацию вам уже больше платить не нужно будет.

    А пока стоит рассматривать фотовольтаику исключительно, как хобби.

    • Сергей Савенков

      какой то “куцый” обзор… как будто спешили куда то