Стабилизатор с минимальным падением напряжения. Стабилизатор напряжения на полевом транзисторе — схемотехника. Ростех "огражданивается" и покушается на лавры Samsung и General Electric

Давно хотел собрать счетчик витков для ручного намоточного станка. Хотелось сделать устройство с батарейным питанием от двух микропальчиковых батарей, потребляющее мало энергии в рабочем режиме, имеющее простое кнопочное управление-«Сброс», «Вкл/Выкл». Счетчик должен уметь реверсно считать. Иногда приходится отматывать витки, или бывают не штатные ситуации.

В наличии были STM8S003F3P6 и STM8L051F3P6 в корпусах TSSOP-20. Выяснилось что S003 не годится для моей задумки-у нее питания 3-5в, и скорее всего при 50% разряде 3вольтовой батареи микроконтроллер работать не будет. Поэтому выбор пал на STM8L051F3P6. По даташиту питание у нее от 1,8 до 3,6в. В качестве дисплея решено было использовать МT-10T7 Российского производителя МЭЛТ. Данный ЖК был куплен лет 7 назад, с тех пор достойного применения так и не нашел.Выкинуть его было жалко.

Поговорим о датчике.Сначала я использовал интегральные датчики Холла,формирующие логический сигнал на выходе. Достались с платы подводного фонаря. Оказалось, что они перестают срабатывать уже при небольшом числе оборотов. Это меня огорчило. Пришлось изобретать свой велосипед. Решил использовать датчики холла от мотора cd-rom привода и ОУ lm358. Крайне сомнительно была работа этой затеи от 3в. Но попытка не пытка. На мое удивление схема отлично заработала при таком питании.

Схема проще не придумаешь. R5-задает ток через датчики Холла U1,U2. На DA1, сделан усилитель с КУ=50. Сигналы с выходов DA1 не соответствуют логическим уровням STM8,поэтому к его выходам подключены транзисторы Q1,Q2 представляющие преобразователя уровней.Входы микроконтроллеров подтянуты через резисторы к плюсу,поэтому дополнительный огород городить не стал. Зачем на плате предусмотрены элементы С1,С2-уже и не помню.Очевидно собирался бороться с помехами. Транзисторы на самом деле bc817-40. Но и те что на схеме должны работать. Датчики холла hw-101A(маркировка D).

Питание на датчик, и дисплей приходят с вывода PB1 микроконтроллера. Нагрузочной способности для этих целей более чем достаточно.

R1 это перемычка. Номинала 0 Ом у меня не нашлось,поэтому поставил самый мелкий что был.

Максимальное значение для счета это 65535. Кнопка «RESET» используется для сброса показаний счетчика, «ON/OFF» -вкл/выкл устройства.

Печатную плату можно назвать скорее отладочной.

Фото готового устройства.

В качестве датчика оборотов выступает стеклотекстолитовый диск, с приклеенным на нем ниодиевым магнитом диаметром 5мм,толщиной 1мм, и плата с датчиками Холла.Растояние между магнитом и датчиками около 5мм. Половина знакомест на дисплее осталась не задействована. Ни чего умнее не придумал-как показывать там напряжение питания. Контрастности индикатора не достаточно,поэтому пришлось наклонить всю плату под 45градусов. На фото датчик прикреплен скотчем, потом я его прикрепил несколькими витками изоленты. Конструкция получилась не шибко эстетичной, но этого мне вполне достаточно. Сам намоточный станок-ничто иное как старый механизм для перемотки кинопленки.Ни знаю какие манипуляции он был призван производить, но на него надевается бобина с пленкой. Индикатор,батарейный отсек, плата микроконтроллера приклеены к куску текстолита термоклеем.

Потребляемый ток во включенном состоянии 12,8мA , в выключенном 1,71мкА.

Программное обеспечение.

Код написан в среде IAR Embedded Workbench IDE. Микроконтроллер работает от встроенного RC генератора HSI с частотой 16мгц. Подсчетом числа витков занимается таймер общего назначения TIM2. Он имеет 16битный счетный регистр, и возможность работы с экодером(encoder mode). Это существенно облегчает задачу. Достаточно настроить таймер, и забыть. Он сам по себе будет считать значения, и реализовывает возможности реверсного счета. Правда из-за особенностей работы этого режим значения в регистре счетчика- в два раза больше реальных.

Конечно же значения из TIM2 нужно как то извлекать, и выводить на экран. Этим занимается 8битный TIM4, генерирующий прерывания, по которому происходит эта операция. Прерывания приходят каждые 8мс. В обработчик добавлен опрос кнопки «сброс»,и манипуляции по выводу информации от АЦП и TIM2 на экран.

Измерением напряжения батареи занимается АЦП. Вход опорного напряжения, внутри соединен с плюсовым источником питания микроконтроллера. Выбрать внутренний источник нельзя(как это например сделано в AVR). Зато можно измерить напряжение этого самого источника. Напряжение источника VREF измерено на заводе и записано в VREFINT_Factory_CONV byte,его можно считать.

Что бы основной программе не было скучно, она смотрит-не завершено ли преобразование АЦП и на основе 16 выборок вычисляет среднее.

Включение/выключение схемы реализовано на основе внешнего прерывания по нажатию на кнопку. По приходу прерывания меняем переменную, и сидим ждем пока кнопку отпустят.

Если пользователь хочет выключить устройство,то основная программа сохраняет значение счетного регистра TIM2 в ОЗУ. Все не задействованные выводы делает выходами,устанавливает на них нуль. Если этого не сделать у меня ловит помехи. Отключаем источник эталонного напряжения VREF и АЦП и засыпаем. Использован самый экономичный режим halt. Проснется микроконтроллер от нажатия кнопки «On»,по внешнему прерыванию(External interrupts).

Прошивка микроконтроллера.

Это отдельная история. Когда покупал STM32F0 Discovery, думал что программатор на ней умеет шить STM8.Оказалось что нет. Тратить деньги на отдельный программатор не хотелось, а возможности прошивки по USART меня не впечатлила(да и не всё 8битное семейство умеет это).

Область применения

  • Питание схем от аккумуляторной батареи
  • Сотовые телефоны
  • Ноутбуки и карманные компьютеры
  • Сканеры штрих-кода
  • Автомобильная электроника
  • DC-DC модули
  • Опорное напряжение в устройствах
  • Линейные низковольтные блоки питания

Второй вариант схемы

Эта схема представляет из себя low drop регулируемый блок питания с очень малым падением напряжения на нём. Конечно существует множество других конструкций для регулируемых источников питания, но микросхема MIC2941 имеет ряд преимуществ.

В зависимости от режима работы падение всего 40 - 400 мВ (сравните с 1, 25 - 2 В на LM317). Это означает, что вы можете использовать более широкий диапазон выходных напряжений (в том числе формирование стандартных для некоторых цифровых схем 3.3 В от столь же низкого 3.7 В напряжения (например, 3-х AA или литий-ионный аккумулятор). Обратите внимание, что микросхемы серии MIC2940 работают с фиксированным напряжением выхода, а MIC2941 можно плавно регулировать.

Таблица напряжений MIC294х

Возможности схемы на MIC2941

  • Защита от короткого замыкания и от перегрева.
  • Входной диод для защиты цепи от отрицательного напряжения или переменного тока.
  • Два индикаторных светодиода для высокого и низкого напряжения.
  • Выходной переключатель, чтобы выбрать 3,3 В или 5 В.
  • На плате потенциометр для регулировки напряжения от 1,25 В до максимального входного напряжения (20V max).
  • Высокая точность поддержания выходного напряжения
  • Гарантированный ток выхода 1.25 A.
  • Очень низкий температурный коэффициент
  • Вход микросхемы может выдержать от -20 до +60 В.
  • Логически управляемый электронный выключатель.
  • И, конечно, малое падение напряжения - от 40 мВ.

MOSFET + TL431 = Последовательный компенсационный стабилизатор напряжения с минимальным падением

Идеальный LDO регулятор

LDO = low dropout = малое минимальное падение напряжения на проходном элементе

Для популярного трёх-выводного интегрального стабилизатора LM317 (datasheet) минимальное падение напряжения, при котором ещё нормируется его работа - 3 Вольта. Причём в документации этот параметр явно нигде не указан, а так, скромненько, в условиях измерений упоминается. В большинстве же случаев подразумевается, что падение на чипе 5 Вольт и более:
"Unless otherwise specified, VIN − VOUT = 5V" .

Баба Яга - против! Жалко терять 3 Вольта на глупом проходном транзисторе. И рассеивать лишние Ватты. Популярное решение проблемы - импульсные стабилизаторы - здесь не обсуждаем по причине того, что они свистят . С помехами можно бороться, но, как известно: кто не борется - тот непобедим! 😉

Идея
Идея данной схемки восходит к одному из многочисленных datasheet "ов на TL431. Вот, например, что предлагают National Semiconductor / TI:

Vo ~= Vref * (1+R1/R2)

Сам по себе такой регулятор не шибко интересен: на мой взгляд он ни чем не лучше, чем обычные трёхвыводные стабилизаторы 7805, LM317 и тому подобные. Минимальное падение на проходном дарлингтоне меньше 2 Вольт тут вряд ли удастся получить. Да к тому же никаких защит ни по току, ни от перегрева. Разве что транзисторы можно ставить на столько толстые, на сколько душа пожелает.

Недавно мне понадобилось-таки соорудить линейный стабилизатор с минимальным падением напряжения. Конечно, всегда можно извернуться, взять трансформатор с бОльшим напряжением на вторичке, диоды Шоттки в мост поставить, конденсаторов накопительных поболе... И всем этим счастьем греть трёхвыводной стабилизатор. Но хотелось-то изящного решения и с тем трансом, что был в наличии. Какой проходной регулятор может обеспечить падение близкое к нулю? MOSFET: у современных мощных полевиков сопротивление канала может быть единицы милли-Ом.

Простая замена дарлингтона на полевой транзистор с изолированным затвором и индуцированным каналом (т.е. самый обычный MOSFET) в схеме выше - не особо поможет. Так как пороговое напряжение затвор-исток будет Вольта 3-4 у обычных, и всё одно больше Вольта у "логических" MOSFET"ов - чем и будет задано минимальное проходное напряжение на таком стабилизаторе.

Интересно могло бы получиться при использовании полевика, работающего в режиме обеднения (т.е. со встроенным каналом), или с p-n переходом. Но к сожалению, мощные устройства этих типов нынче практически недоступны.

Спасает дополнительный источник напряжения смещения. Такой источник совсем не должен быть сильноточным - несколько миллиАмпер будет достаточно.

Работает это всё очень просто: когда напряжение на управляющем входе TL431, пропорциональное выходному напряжению, падает ниже порогового (2.5V) - "стабилитрон" закрывается и "отпускает" затвор полевика "вверх". Ток от дополнительного источника через резистор "подтягивает" напряжение на затворе, а, следовательно, и на выходе стабилизатора.
В обратную сторону, при увеличении выходного напряжения, всё работает аналогично: "стабилитрон" приоткрывается и уменьшает напряжение на затворе полевика.
TL431 суть устройство линейное, никаких защёлок в ней нету:

Реальность
В схеме реального устройства я всё же добавил защиту по току, пожертвовав пол-Вольта падения в пользу безопасности. В принципе, в низковольтных конструкциях часто можно обойтись плавким предохранителем, так как полевые транзисторы доступны с огромным запасом по току и при наличии радиатора способны выдерживать бешеные перегрузки. Если же и 0.5 Вольта жалко, и защита по току необходима - пишите, ибо есть способы 😉

30 января 2012: 🙂 Работает отлично! При токах нагрузки примерно от 2А и выше - мощные диоды желательно усадить на небольшой радиатор. R8=0; C7=0.1 ... 10мкФ керамика или плёнка.

При номиналах R5-R6-R7, указанных на схеме, диапазон регулировки выходного напряжения примерно от 9 до 16 Вольт. Естественно, реальный максимум зависит от того, сколько может обеспечить трансформатор под нагрузкой.
R4 необходимо использовать достойной мощности: PmaxR4 ~= 0.5 / R. В данном примере - двухватник будет в самый раз.

Где это может понадобиться
Например: в ламповой технике для питания накальных цепей постоянным током.
Зачем постоянный, да ещё так тщательно стабилизированный ток для питания нитей накала?

  1. Исключить наводки переменного напряжения в сигнальные цепи. Путей для просачивания "фона" из накальных цепей в сигнал несколько (тема для отдельной статьи!)
  2. Питать накал строго заданным напряжением. Есть данные, что превышение напряжения накала на 10% от номинального может сократить срок службы лампы на порядок. Нормы же допусков для напряжения питающей сети плюс погрешности исполнения трансформаторов и т.п. - 10% ошибки легко набежит.

Для 6-вольтовых накалов необходимо уменьшить R5: 5.6КОм будет в самый раз.

Что можно улучшить
Например, для питания нитей накала полезно добавить плавный старт. Для этого достаточно будет увеличить C4 скажем до 1000мкФ и включить между мостом и C4 резистор сопротивлением в 1КОм.

Немножко окололамповой мифологии
Позволю себе пройтись по поводу одного стойкого заблуждения, утверждающего, будто питание накала "постоянкой" отрицательно сказывается на "звуке".
Наиболее вероятный источник происхождения этого мифа, как водится - недостаток понимания и кривые ручки. Например: один трансформатор запитывает и аноды и накал. Номинальный ток накальной обмотки, скажем, 1А, который до этого питал накал ламп напрямую, и те потребляли чуть меньше этого самого 1А. Всё работало хорошо, может быть фонило чуток. Если теперь некий паяльщик-такелажник, мнящий себя "tube-guru", вдруг запитал те же лампы от той же обмотки но уже через выпрямитель/конденсатор/стабилизатор - всё, хана усилку! Объяснение простое, хотя не для всех очевидное:

  1. Во-первых, трансформатор теперь перегружен из-за импульсного характера тока заряда накопительной ёмкости (нужна отдельная статья!) Если вкратце: надо брать транс с номинальным током вторички примерно в 1.8 раза больше, нежели выпрямленный ток нагрузки.
  2. Во-вторых - ударные токи заряда накопительных емкостей в источнике питания накала ничего хорошего в анодное питание не добавят.
  • Заключение
  • Вам было интересно? Напишите мне!

Спрашивайте, предлагайте: в комментариях, или по e-mail (есть в моём профайле). Спасибо!

Всего Вам доброго!
- Сергей Патрушин.

This entry was posted in , by . Bookmark the .

Комментарии ВКонтакте

131 thoughts on “MOSFET + TL431 = Последовательный компенсационный стабилизатор напряжения с минимальным падением

Этот сайт использует Akismet для борьбы со спамом.

Имеется большая потребность в 5-вольтовых стабилизаторах с выходными токами несколько ампер и с как можно меньшим падением напряжения. Падение напряжения является просто разностью между входным постоян­ным напряжением и выходным с условием, что поддерживается стабилиза­ция. Необходимость в стабилизаторах с такими параметрами можно видеть на практическом примере, в котором напряжение никель-кадмиевого ак­кумулятора, равное примерно 8,2 В, стабилизируется на уровне 5 В. Если падение напряжения составляет обычные 2 или 3 В, то ясно, что длитель­но пользоваться таким аккумулятором невозможно. Увеличение напряже­ния аккумулятора является не лучшим решением, поскольку в этом слу­чае в проходном транзисторе будет бессмысленно рассеиваться мощность. Если бы можно было поддерживать стабилизацию при падении напряжения, например, вдвое меньшем, общая ситуация была бы намного лучше.

Известно, что непросто сделать в интегральных схемах стабилизаторов проходной транзистор с низким напряжением насыщения. Хотя желатель­но управлять проходным транзистором с помощью ИС, сам транзистор дол­жен быть отдельным устройством. Это естественно предполагает примене­ние гибридных устройств, а не полностью интехральных схем. Фактически это скрытое благословение, поскольку позволяет легко оптимизировать на­пряжение насыщения и бета транзистора для достижения намеченной цели. Кроме того, можно даже экспериментировать с германиевыми транзистора­ми, которые по своей природе имеют низкие напряжения насыщения. Дру­гой фактор, который следует учесть, состоит в том, что /7л/7-транзисторы имеют более низкие напряжения насыщения, чем их прп аналоги.

Использование этих фактов естественно приводит к схеме стабили­затора с низким падением напряжения, показанной на рис. 20.2. Паде­ние напряжение на этом стабилизаторе составляет 50 мВ при токе на­грузки 1 А и всего лишь 450 мВ при токе 5 А. Необходимость создания проходного транзистора по существу была стимулирована выпуском ли­нейного интегрального стабилизатора?71123. Кремниевый /?л/7-транзис-тор MJE1123 был специально разработан для этой схемы, но имеется не­сколько аналогичных транзисторов. Низкое напряжение насыщения является важным параметром при выборе транзистора, но важен также высокий коэффициент усиления по постоянному току (бета) для надеж­ного ограничения тока короткого замыкания. Оказалось, что германие­вый транзистор 2iV4276 позволяет получить даже более низкие падения напряжения, но, вероятно, за счет ухудшения характеристики ограниче­ния тока при коротком замыкании. Сопротивление резистора в цепи базы проходного транзистора (на схеме 20 Ом) подбирается опытным путем. Идея состоит в том, чтобы делать его как можно выше при при­емлемом падении напряжения. Его величина будет зависеть от предпо­лагаемого максимального входного напряжения. Другой особенностью

этого стабилизатора является низкая величина тока холостого хода, око­ло 600 мкА, что способствует долгому сроку службы аккумулятора.

Рис. 20.2. Пример линейного стабилизатора, имеющего низкое паде­ние напряжения. Здесь используется гибридная схема, потому что трудно получить низкое падение напряжения, применяя только ИС. Linear Technology Софога!1оп.

Аналогичный линейный стабилизатор с низким падением напряжения другой полупроводниковой фирмы показан на рис. 20.3. Основные характе­ристики остаются теми же самыми - падение напряжения 350 мВ при токе нафузки 3 А. И снова, применение гибридной схемы дает дополнительную гибкость при проектировании. Главное, чем отличаются различные ИС для управления такими стабилизаторами, состоит в наличии вспомогательных функций. Необходимость в них можно заранее оценить применительно к конкретному приложению и сделать соответствующий выбор. Большинство этих специализированных ИС имеют, по крайней мере, защиту от короткого замыкания и перегрева. Поскольку проходной рпр-тршшстор является вне­шним по отношению к ИС, важен хороший теплоотвод. Часто для обеспе­чения дополнительной стабилизации линейный стабилизатор с низким па­дением напряжения добавляют к уже созданному ИИП. Причем, к.п.д. системы в целом при этом практически не изменится. Этого нельзя сказать, когда для дополнительной стабилизации используется обычный интефаль-ный стабилизатор напряжения с 3-мя выводами.

Первым желанием может быть повторение только что описанных двух схем с низким падением напряжения, применяя обычный интег­ральный стабилизатор напряжения с 3-мя выводами и проходной тран­зистор. Однако ток покоя (ток, потребляемый интефальной схемой ста­билизатора, и который не протекает через нагрузку) будет намного выше, чем при использовании специальных схем. Это губит саму идею - не вводить дополнительного рассеяния мощности в системе.

Рис. 20.3. Другая схема линейного стабилизатора с малым падением нап­ряжения. Используется та же самая конфигурация с внешним рпр-транзистором. Выбранная управляющая ИС является лучшей с точки зре­ния требуемых вспомогательных функций. Cherry Semiconductor Соф.

С ПАДЕНИЕМ НАПРЯЖЕНИЯ 0.05 В

При питании различной аппаратуры от батареек, часто возникает необходимость стабилизировать напряжение и потребляемый ток. Например при создании DVD лазера (смотрите статью на сайте) или светодиодного фонарика. Для этих целей, промышленность уже разработала несколько так называемых микросхем - драйверов, представляющих собой преобразователь низковольтного напряжения со встроенным стабилизатором. Последняя разработка - микросхема LT1308A.

Нисколько не уменьшая достоинства этих драйверов, хочу заметить, что даже в нашем крупном областном центре, такие микросхемы не достанешь. Только под заказ и по цене от 10 уе. Поэтому предлагаю простую, дешёвую но эффективную схему стабилизатора, из радиоаматора 4 2007.

Коэффициент стабилизации около 10000, выходное напряжение выставляем резистором 2.4 к* в пределах 2 - 8 В. При напряжении на входе меньше чем на выходе, регулирующий транзистор полностью открыт, и падение напряжения составляет несколько милливольт. Когда напряжение входа превышает выходное - падение на стабилизаторе составляет всего 0.05 В! Это делает возможным питание свето- и лазерных диодов от двух - трёх пальчиковых батареек. Тем более, что меняя ток нагрузки в пределах 0 - 0.5 А, Uвых меняется лишь на 1 милливольт. Плату для такого простого девайса можно не травить, а вырезать резаком. Для тех, кто не знает, объясню: берём сломанное полотно от ножовки по металлу и затачиваем на наждаке. Далее для удобства держания в руке, обматываем толстым проводом.


Теперь этим инструментом просто процарапываем с усилием медь, как дорожки.

Зачищаем наждачкой, залуживаем, паяем детали, и готово.


  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то