Сжатие данных без потерь. Алгоритм Хаффмана. Сжатие данных

Сжатие данных

Михаил Сваричевский

Сжатием (компрессией) данных называют преобразование их в форму, занимающую меньше места. В такой форме данные и хранить легче (устройства хранения все-таки не резиновые), и передавать по каналам с ограниченной пропускной способностью куда приятнее.

Все алгоритмы сжатия делятся на два типа: с потерями и без.

Сжатие с потерями позволяет достичь гораздо бóльшей степени сжатия (до 1/30 и менее от исходного объема).
Например, видеофильм, занимающий в неупакованном виде гигабайт 30, удается записать на 1 CD.
Однако, алгоритмы сжатия с потерями приводят к некоторым изменениям самих данных; поэтому применять такие алгоритмы можно только к тем данным, для которых небольшие искажения несущественны: видео, фото-изображения (алгоритмы JPEG), звук (алгоритм MP3).

Сжатие без потерь, конечно, не так эффективно (его степень очень зависит от конкретных данных), зато данные после распаковки полностью идентичны оригинальным. Что абсолютно необходимо, например, для текстовых данных, программного кода. В этой статье будет рассматриваться именно сжатие без потерь.

Большинство алгоритмов сжатия без потерь делятся на две группы: первыесоставляют текст из кусочков исходного файла в той или иной форме (словарные методы); вторые (статистические методы) используют тот факт, что разные символы или символьные группы появляются в файле с разными вероятностями (например, буква "а" в текстовых файлах встречается гораздо чаще, чем "б").

Словарные методы

Словарные методы отличаются высокой скоростью сжатия/распаковки, но несколько худшим сжатием. Словом называется некоторая последовательность символов. В общем - речь, конечно, идет не о символах, а о байтах; но для простоты в примерах будут использоваться ASCII-символы.

Словарь содержит некоторое количество слов (обычно 2x; например, 4096).
Сжатие достигается за счет того, что номер слова в словаре обычно гораздо короче самого слова.
Алгоритмы словарного сжатия делятся на две группы:
1) использующие словарь в явной форме(алгоритмы LZ78, LZW, LZC, LZT, LZMV, LZJ, LZFG)
Например, по словарю
1. "Большинство"
2. "сжатия"
3. "без"
4. "потерь"
5. "алгоритмов"
текст "Большинство алгоритмов сжатия без потерь" сжимается в "15234".

2) указывающие вместо номера слова - позицию относительно текущей позиции и длину повторяющегося участка (алгоритмы LZ77, LZR, LZSS, LZB, LZH)
Например, текст "абаббабаббабвгббабв"
сжимается в "05абабб5504абвг65", где:
"05абабб" – позиция 0 означает, что далее 5 символов идут без сжатия.
"55" – 5 букв с позиции, отстоящей от текущей на 5 символов назад.
"04абвг" – еще 4 символа не сжимается.
"65" –5 букв с позиции, отстоящей от текущей на 6 символов назад.

Модификации LZ-алгоритмов отличаются только способами представления словаря, поиска и добавления слов. Одни сжимают быстрее, но хуже; другие требуют больше памяти.

Рассмотрим подробнее модифицированный алгоритм LZ77.
Архив будет состоять из записей следующего вида:
(n,m) – означает, что с позиции n начинается такая же строка длиной m, что и с текущей позиции.
(0,m,"m символов") – означает, что далее следует m символов, которые не удалось сжать.

Алгоритм сжатия будет заключаться в следующем: ищем в файле место, начиная с которого идет самая длинная последовательность, совпадающая с последовательностью, начинающейся на текущем байте. Если ее длина больше 3, то в архив записываем начало и длину последовательности; иначе - записываем 0, длину последовательности и сами несжатые символы. Распаковка еще проще: пока файл архива не кончился, читаем по 2 числа(n,m). Если n=0, то m символов из архива сразу помещаем в буфер (эти символы нам еще понадобятся) и записываем в выходной файл. Если n<>0 то из буфера с позиции n копируем m элементов в буфер и выходной файл.

Однако есть две проблемы:
1) Ограниченный размер буфера: если нам нужно будет сжать файл размеров в 100МБ, мы его в буфер никак не поместим. Поэтому, когда он будет заполнен (скажем, на 75%), придется сдвинуть данные в нем к началу (напр., на 25%;конечно, самые старые символы при этом потеряются). Это ухудшит сжатие, но сделает алгоритм нетребовательным к памяти.
2) Скорость работы программы сжатия очень мала. В самом деле, если нужно будет сжать файл размеров 10КБ, то это потребует от нас проведения как минимум около 10000*10000/2 операций (10000 раз нам нужно будет искать совпадающую подпоследовательность, а каждый такой поиск займет в среднем 10000/2 операций). Для того, чтобы ускорить операцию поиска, можно хранить в отдельном массиве номера позиций последовательностей, начинающихся на символ chr(0), chr(2) … chr(255). Тогда при поиске нам нужно будет проверить только те комбинации, первая буква которых совпадает с первой буквой искомой последовательности.

Статистические методы

Статистические методы гораздо медленнее словарных, но достигают более сильного сжатия. В них каждая буква заменяется некоторым кодом. Код – это несколько бит, однозначно идентифицирующие некоторый символ. Статистические методы используют различные приемы для того, чтобы наиболее часто встречающимся символам соответствовали более короткие коды. Существуют два основных алгоритма кодирования букв в соответствии с их частотой встречаемости:

1) Коды Хаффмана: все символы кодируются целым количеством бит; причем так, что раскодирование всегда однозначно (например, если букве "а" соответствует последовательность бит "1001", а "b" – "10010", то раскодирование неоднозначно). Достоинство - высокая скорость сжатия. Недостатки - неоптимальное сжатие, сложности при реализации адаптивного варианта. Так как в последнее время скорость собственно алгоритма кодирования играет все меньшую роль (алгоритмы накопления статистической информации работают все медленнее и медленнее, и даже 2-х кратное увеличение времени работы кодировщика практически не влияет на скорость), этот алгоритм не имеет существенных преимуществ перед арифметическим кодированием.

2) Арифметическое кодирование: для каждого символа определяется промежуток на отрезке и в зависимости от ширины этого отрезка может выделяться разное количество бит, условно говоря, даже дробное (например: пусть строке "a" соответствует0 , а строке "ab" - 1, тогда строка "aba" закодируется в 2 бита, т.е в среднем 2/3 бита на символ). Этот метод точнее использует статистическую информацию, и всегда сжимает не хуже алгоритма Хаффмана, но медленнее. Достоинства - максимальная теоретически достижимая степень сжатия, простая реализация адаптивного варианта. Недостатки - несколько меньшая скорость.

Принцип работы арифметического кодирования:

Например, мы присвоили символу "a" промежуток , "b" – и "c" – . Тогда, если у нас будет число 0.4, то мы можем сказать, что закодирована буква "b"(0.3<=0.4<=0.6), а если 0.9 – то c(0.6<=0.9<=1). Итак, у нас получилось закодировать 1 букву в число. Как же закодировать 2 буквы? Очень просто: например, если первая буква – "b", то интервал равен . Разделим этот интервал на части, в отношении наших первоначальных отрезков. Тогда 2-м буквам "ba" будет соответствовать интервал , "bb" – и "bc" – . Для раскодирования нам достаточно знать любое число из этого интервала.

Попробуем раскодировать: пусть дано число 0.15. Это число попадает в интервал буквы "a", значит первая закодированная буква – "a". Для того, чтобы узнать вторую букву, нужно преобразовать число, чтобы оно указывало букву в интервале не , а . Для этого от числа отнимем нижнюю границу исходного интервала (0) и разделим на ширину интервала (0.3-0=0.3). Получим новое число(0.15-0)/0.3 = 0.5. Повторив те же действия, мы узнаем, что вторая буква – "b". Если бы было закодировано 3 и более букв, то, многократно повторяя этот процесс, мы нашли бы все буквы.

Почему представление в виде числа позволяет сжать данные:
Более вероятным символам соответствует более широкий интервал, и после кодирования такой буквы, интервал уменьшится ненамного, следовательно, для представления любого числа из этого промежутка понадобится ненамного больше бит.

Алгоритм сжатия:
Для каждого символа мы должны присвоить соответствующий промежуток в соответствии с частотой (вероятностью встречи) в данных: пусть символ "а"имеет вероятность 0.4, "b" – 0,3 и "c" – тоже 0.3; тогда символу "а" будет соответствовать промежуток , "b" – , "c" – . Т.е мы делим имеющийся у нас промежуток между всеми необходимыми буквами в соответствии с вероятностью их встречи (более вероятному символу соответствует больший промежуток).

В процессе сжатия у нас есть 2 границы: верхняя и нижняя, назовем их соответственно hiи lo. Пусть нам нужно закодировать символ, которому мы отвели промежуток . Тогда в наш промежуток "вставляется" промежуток символа, и lo будет равен нижней границе вставляемого промежутка, hi – верхней. В итоге по мере кодирования промежуток между loи hi становится все уже и уже. Наконец, когда мы закодировали все данные, выбираем любое число из получившегося промежутка и выводим. Оно и будет сжатыми данными.

Распаковка:
Построим промежутки для символов, как и для сжатия. Символ, в промежуток которого попадает число-архив, и есть первый символ данных. "Растягиваем" промежуток символа вместе с числом-архивом до промежутка (т.е отнимаем нижнюю границу интервала только что раскодированного символа, и делим на ширину этого интервала), затем повторяем операцию, пока все не раскодируем.

Проблемы:
Если бы все было так просто… На самом деле, для хранения числа-архива нужна будет очень большая точность (десятки и сотни тысяч знаков), поэтому на практике приходится пользоваться обычными типами данных. Чтобы этого добиться, будем смотреть на старшие биты/цифры числа-архива. Как только у hi и lo они совпадут, мы можем сразу записать их в архив и "отсечь". При распаковке наоборот, когда увидим, что мы довольно много раз расширяли промежуток до , считаем из файла-архива несколько цифр и допишем их в конец нашего числа-архива.
Часто используется модификация арифметического кодирования - range coder. Основное отличие - начальный интервал - . Это позволяет выводить данные сразу по байту, а не наскребать по биту, что отражается на скорости работы. В конце статьи приведена реализация именно этого варианта.

Определение вероятностей символов

Основной процесс, влияющий на скорость и степень сжатия – определение вероятностей символов. В простейшем случае будем считать вероятностью символа - количество его встреч в уже закодированной части данных, делённое на общее количество символов в данных. Для текстов это дает приблизительно 2-кратное сжатие. Чтобы его увеличить, можно учитывать такие факты, как, например, то, что вероятность встречи символа "я" после "ю" практически равна 0, а "o" после "с" – около 0.25. Поэтому для каждого предыдущего символа будем отдельно считать вероятности.

Предположения, которые мы делаем относительно сжимаемых данных (например, зависимость вероятности от предыдущих символов) называются вероятностной моделью. Модель, вероятности в которой не зависят от предыдущих символов, называется моделью 0-го порядка. Если вероятности зависят от 1 предыдущего символа, то это модель 1-го порядка, если от 2-х последних – то 2-го и т.д. Для эффективного вычисления вероятностей символов в моделях высокого порядка существуют специальная группа алгоритмов – PPM и его модификации.
Модели могут быть неадаптивными, полуадаптивными и адаптивными. В неадаптивных методах вероятности всех символов жестко зашиты в программу. В полуадаптивных по входным данным делается 2 прохода: 1-й - для определения вероятностей, 2-й – собственно для сжатия. Адаптивный – вероятности символов изменяются в процессе сжатия. Адаптивные модели самые медленные, но они обычно сжимают данные сильнее неадаптивных и полуадаптивных моделей. В общем, среди всех моделей лучше сжимают использующие наибольшее кол-во информации о сжимаемых данных - зависимость от предыдущих символов, некоторые факты, например: в текстах после точки обычно следует большая буква и т.д.

Алгоритмы, используемые в популярных архиваторах:

ZIP,ARJ,RAR - LZ+Хаффман
HA - PPM+Арифметическое кодирование
BOA - BWT+Арифметическое кодирование
UHARC - LZ+PPM+Арифметическое кодирование
(Здесь "+" означает, что результат работы алгоритма, написанного слева от знака, далее сжимается алгоритмом, записанным справа).
Как видно, в архиваторах ZIP,ARJ,RAR ,разрабатывавшихся в конце 80-х - начале 90-х, используются уже довольно устаревшие алгоритмы; поэтому они по тестам проигрывают более современным.

Пример программы адаптивного сжатия/распаковки 0-го порядка:

Данные: compr – тут хранятся сжатые данные
Data- тут хранятся исходные данные
Freq – частоты символов

Procedure compress_range; {Процедура сжатия}
Var
cum_freq: Extended;
Begin
{- Инициализация модели и кодера -}
For q:= 0 To 255 Do
freq [q] := 1; {Все символы в начале имеют одинаковую вероятность}
freq := freq - 0.20000;
total:= 256; {Сумма частот всех символов.}
{ В freq - небольшой остступ от 0 и макс.значения}
PC:= 0;{Кол-во уже закодированых байт }
Lo:= 0; range:= 256;
{- Кодирование -}
For q:= 1 To Size Do
Begin
{Нахождение интервала, соответствующего кодируемому символу}
cum_freq:= 0.1; {Начинаем накапливать вероятность}
For w:= 0 To data [q] - 1 Do
cum_freq:= cum_freq + freq [w];
{Изменяем range&lo}
range:= range / total;
Lo:= Lo + range * (cum_freq);
range:= range * freq ];
{Нормализация т.е вывод байтов, одинаковых у Lo и Hi(Hi=Lo+Range)}

Begin
Inc (PC);
compr := Trunc (Lo);
Lo:= Frac (Lo) * 256;
range:= range * 256;
End;
{Обновления модели}
freq ] := freq ] + 1;
{Присваеваем кодируемому символу на 1 большую вероятность}
total:= total + 1;
End;
{Сжатие закончено, выводим остаток}
Lo:= Lo + range / 2;
Inc (PC);
compr := Trunc (Lo);
Lo:= Frac (Lo) * 256;
range:= range * 256;
End;

Procedure decompress_range;{Процедура распаковки}
Var
temp: Extended;
ee: Extended;
Begin
{Инициализация модели и кодера}
For q:= 0 To 255 Do
freq [q] := 1;
freq := freq - 0.20000; { В freq - небольшой остступ от 0 и макс.значения}
total:= 256;
PC:= 4; {PC - номер байта, которые мы считываем}
code:= 0;
Lo:= 0; range:= 256;
{Считываем начальное, приближенное значение code.}
For q:= 1 To 4 Do
Begin
code:= code * 256 + compr [q] / 65536 / 256;
End;
w:= 0; {W- кол-во верно распакованных байт}
{Собственно расжатие}
While True Do
Begin
{Нахождения вероятности следующего символа}
temp:= (code- Lo) * total / range;
{Поиск символа, в интервал которого попадает temp}
sum:= 0.1; ssum:= 0.1;
For e:= 0 To 255 Do
Begin
sum:= sum + freq [e];
If sum > temp Then Break;
ssum:= sum;
End;
Inc (w);
{Проверка правильности распаковки}
{Сейчас в e – распакованный байт, и его можно выводить в файл}
If data [w] <> e Then Break; {Если неправильно распаковали - выходим}
If w = Size Then Begin Inc (w); Break End; {Если все распаковали выходим,}
{и модель не обновляем:-)}
{Обновления Lo&Hi(Растягивание)}
range:= range / total;
Lo:= Lo + range * (ssum);
range:= range * (freq [e]);
{Обновление модели(Делаем символ e более вероятным)}
freq [e] := freq [e] + 1;
total:= total + 1;
{Нормализация, уточнение числа}
While Trunc (Lo) = Trunc (Lo + range) Do
Begin
Inc (PC);
temp:=compr;
code:= (code - trunc(code)) * 256 + temp / 16777216;
Lo:= Frac (Lo) * 256;
range:= range * 256;
End;
End;
Dec (w);
{DONE_DECOMPRESS}
End;

GORKOFF 24 февраля 2015 в 11:41

Методы сжатия данных

  • Алгоритмы

Мы с моим научным руководителем готовим небольшую монографию по обработке изображений. Решил представить на суд хабрасообщества главу, посвящённую алгоритмам сжатия изображений. Так как в рамках одного поста целую главу уместить тяжело, решил разбить её на три поста:
1. Методы сжатия данных;
2. Сжатие изображений без потерь;
3. Сжатие изображений с потерями.
Ниже вы можете ознакомиться с первым постом серии.

На текущий момент существует большое количество алгоритмов сжатия без потерь, которые условно можно разделить на две большие группы:
1. Поточные и словарные алгоритмы. К этой группе относятся алгоритмы семейств RLE (run-length encoding), LZ* и др. Особенностью всех алгоритмов этой группы является то, что при кодировании используется не информация о частотах символов в сообщении, а информация о последовательностях, встречавшихся ранее.
2. Алгоритмы статистического (энтропийного) сжатия. Эта группа алгоритмов сжимает информацию, используя неравномерность частот, с которыми различные символы встречаются в сообщении. К алгоритмам этой группы относятся алгоритмы арифметического и префиксного кодирования (с использованием деревьев Шеннона-Фанно, Хаффмана, секущих).
В отдельную группу можно выделить алгоритмы преобразования информации. Алгоритмы этой группы не производят непосредственного сжатия информации, но их применение значительно упрощает дальнейшее сжатие с использованием поточных, словарных и энтропийных алгоритмов.

Поточные и словарные алгоритмы

Кодирование длин серий

Кодирование длин серий (RLE - Run-Length Encoding) - это один из самых простых и распространённых алгоритмов сжатия данных. В этом алгоритме последовательность повторяющихся символов заменяется символом и количеством его повторов.
Например, строку «ААААА», требующую для хранения 5 байт (при условии, что на хранение одного символа отводится байт), можно заменить на «5А», состоящую из двух байт. Очевидно, что этот алгоритм тем эффективнее, чем длиннее серия повторов.

Основным недостатком этого алгоритма является его крайне низкая эффективность на последовательностях неповторяющихся символов. Например, если рассмотреть последовательность «АБАБАБ» (6 байт), то после применения алгоритма RLE она превратится в «1А1Б1А1Б1А1Б» (12 байт). Для решения проблемы неповторяющихся символов существуют различные методы.

Самым простым методом является следующая модификация: байт, кодирующий количество повторов, должен хранить информацию не только о количестве повторов, но и об их наличии. Если первый бит равен 1, то следующие 7 бит указывают количество повторов соответствующего символа, а если первый бит равен 0, то следующие 7 бит показывают количество символов, которые надо взять без повтора. Если закодировать «АБАБАБ» с использованием данной модификации, то получим «-6АБАБАБ» (7 байт). Очевидно, что предложенная методика позволяет значительно повысить эффективность RLE алгоритма на неповторяющихся последовательностях символов. Реализация предложенного подхода приведена в Листинг 1:

  1. type
  2. function RLEEncode(InMsg: ShortString) : TRLEEncodedString;
  3. MatchFl: boolean ;
  4. MatchCount: shortint ;
  5. EncodedString: TRLEEncodedString;
  6. N, i: byte ;
  7. begin
  8. N : = 0 ;
  9. SetLength(EncodedString, 2 * length(InMsg) ) ;
  10. while length(InMsg) >= 1 do
  11. begin
  12. MatchFl : = (length(InMsg) > 1 ) and (InMsg[ 1 ] = InMsg[ 2 ] ) ;
  13. MatchCount : = 1 ;
  14. while (MatchCount <= 126 ) and (MatchCount < length(InMsg) ) and ((InMsg[ MatchCount] = InMsg[ MatchCount + 1 ] ) = MatchFl) do
  15. MatchCount : = MatchCount + 1 ;
  16. if MatchFl then
  17. begin
  18. N : = N + 2 ;
  19. EncodedString[ N - 2 ] : = MatchCount + 128 ;
  20. EncodedString[ N - 1 ] : = ord (InMsg[ 1 ] ) ;
  21. else
  22. begin
  23. if MatchCount <> length(InMsg) then
  24. MatchCount : = MatchCount - 1 ;
  25. N : = N + 1 + MatchCount;
  26. EncodedString[ N - 1 - MatchCount] : = - MatchCount + 128 ;
  27. for i : = 1 to MatchCount do
  28. EncodedString[ N - 1 - MatchCount + i] : = ord (InMsg[ i] ) ;
  29. end ;
  30. delete(InMsg, 1 , MatchCount) ;
  31. end ;
  32. SetLength(EncodedString, N) ;
  33. RLEEncode : = EncodedString;
  34. end ;

Декодирование сжатого сообщения выполняется очень просто и сводится к однократному проходу по сжатому сообщению см. Листинг 2:
  1. type
  2. TRLEEncodedString = array of byte ;
  3. function RLEDecode(InMsg: TRLEEncodedString) : ShortString;
  4. RepeatCount: shortint ;
  5. i, j: word ;
  6. OutMsg: ShortString;
  7. begin
  8. OutMsg : = "" ;
  9. i : = 0 ;
  10. while i < length(InMsg) do
  11. begin
  12. RepeatCount : = InMsg[ i] - 128 ;
  13. i : = i + 1 ;
  14. if RepeatCount < 0 then
  15. begin
  16. RepeatCount : = abs (RepeatCount) ;
  17. for j : = i to i + RepeatCount - 1 do
  18. OutMsg : = OutMsg + chr (InMsg[ j] ) ;
  19. i : = i + RepeatCount;
  20. else
  21. begin
  22. for j : = 1 to RepeatCount do
  23. OutMsg : = OutMsg + chr (InMsg[ i] ) ;
  24. i : = i + 1 ;
  25. end ;
  26. end ;
  27. RLEDecode : = OutMsg;
  28. end ;

Вторым методом повышения эффективности алгоритма RLE является использование алгоритмов преобразования информации, которые непосредственно не сжимают данные, но приводят их к виду, более удобному для сжатия. В качестве примера такого алгоритма мы рассмотрим BWT-перестановку, названную по фамилиям изобретателей Burrows-Wheeler transform. Эта перестановка не изменяет сами символы, а изменяет только их порядок в строке, при этом повторяющиеся подстроки после применения перестановки собираются в плотные группы, которые гораздо лучше сжимаются с помощью алгоритма RLE. Прямое BWT преобразование сводится к последовательности следующих шагов:
1. Добавление к исходной строке специального символа конца строки, который нигде более не встречается;
2. Получение всех циклических перестановок исходной строки;
3. Сортировка полученных строк в лексикографическом порядке;
4. Возвращение последнего столбца полученной матрицы.
Реализация данного алгоритма приведена в Листинг 3.
  1. const
  2. EOMsg = "|" ;
  3. function BWTEncode(InMsg: ShortString) : ShortString;
  4. OutMsg: ShortString;
  5. LastChar: ANSIChar;
  6. N, i: word ;
  7. begin
  8. InMsg : = InMsg + EOMsg;
  9. N : = length(InMsg) ;
  10. ShiftTable[ 1 ] : = InMsg;
  11. for i : = 2 to N do
  12. begin
  13. LastChar : = InMsg[ N] ;
  14. InMsg : = LastChar + copy(InMsg, 1 , N - 1 ) ;
  15. ShiftTable[ i] : = InMsg;
  16. end ;
  17. Sort(ShiftTable) ;
  18. OutMsg : = "" ;
  19. for i : = 1 to N do
  20. OutMsg : = OutMsg + ShiftTable[ i] [ N] ;
  21. BWTEncode : = OutMsg;
  22. end ;

Проще всего пояснить это преобразование на конкретном примере. Возьмём строку «АНАНАС» и договоримся, что символом конца строки будет символ «|». Все циклические перестановки этой строки и результат их лексикографической сортировки приведены в Табл. 1.

Т.е. результатом прямого преобразования будет строка «|ННАААС». Легко заметить, что это строка гораздо лучше, чем исходная, сжимается алгоритмом RLE, т.к. в ней существуют длинные подпоследовательности повторяющихся букв.
Подобного эффекта можно добиться и с помощью других преобразований, но преимущество BWT-преобразования в том, что оно обратимо, правда, обратное преобразование сложнее прямого. Для того, чтобы восстановить исходную строку, необходимо выполнить следующие действия:
Создать пустую матрицу размером n*n, где n-количество символов в закодированном сообщении;
Заполнить самый правый пустой столбец закодированным сообщением;
Отсортировать строки таблицы в лексикографическом порядке;
Повторять шаги 2-3, пока есть пустые столбцы;
Вернуть ту строку, которая заканчивается символом конца строки.

Реализация обратного преобразования на первый взгляд не представляет сложности, и один из вариантов реализации приведён в Листинг 4.

  1. const
  2. EOMsg = "|" ;
  3. function BWTDecode(InMsg: ShortString) : ShortString;
  4. OutMsg: ShortString;
  5. ShiftTable: array of ShortString;
  6. N, i, j: word ;
  7. begin
  8. OutMsg : = "" ;
  9. N : = length(InMsg) ;
  10. SetLength(ShiftTable, N + 1 ) ;
  11. for i : = 0 to N do
  12. ShiftTable[ i] : = "" ;
  13. for i : = 1 to N do
  14. begin
  15. for j : = 1 to N do
  16. ShiftTable[ j] : = InMsg[ j] + ShiftTable[ j] ;
  17. Sort(ShiftTable) ;
  18. end ;
  19. for i : = 1 to N do
  20. if ShiftTable[ i] [ N] = EOMsg then
  21. OutMsg : = ShiftTable[ i] ;
  22. delete(OutMsg, N, 1 ) ;
  23. BWTDecode : = OutMsg;
  24. end ;

Но на практике эффективность зависит от выбранного алгоритма сортировки. Тривиальные алгоритмы с квадратичной сложностью, очевидно, крайне негативно скажутся на быстродействии, поэтому рекомендуется использовать эффективные алгоритмы.

После сортировки таблицы, полученной на седьмом шаге, необходимо выбрать из таблицы строку, заканчивающуюся символом «|». Легко заметить, что это строка единственная. Т.о. мы на конкретном примере рассмотрели преобразование BWT.

Подводя итог, можно сказать, что основным плюсом группы алгоритмов RLE является простота и скорость работы (в том числе и скорость декодирования), а главным минусом является неэффективность на неповторяющихся наборах символов. Использование специальных перестановок повышает эффективность алгоритма, но также сильно увеличивает время работы (особенно декодирования).

Словарное сжатие (алгоритмы LZ)

Группа словарных алгоритмов, в отличие от алгоритмов группы RLE, кодирует не количество повторов символов, а встречавшиеся ранее последовательности символов. Во время работы рассматриваемых алгоритмов динамически создаётся таблица со списком уже встречавшихся последовательностей и соответствующих им кодов. Эту таблицу часто называют словарём, а соответствующую группу алгоритмов называют словарными.

Ниже описан простейший вариант словарного алгоритма:
Инициализировать словарь всеми символами, встречающимися во входной строке;
Найти в словаре самую длинную последовательность (S), совпадающую с началом кодируемого сообщения;
Выдать код найденной последовательности и удалить её из начала кодируемого сообщения;
Если не достигнут конец сообщения, считать очередной символ и добавить Sc в словарь, перейти к шагу 2. Иначе, выход.

Например, только что инициализированный словарь для фразы «КУКУШКАКУКУШОНКУКУПИЛАКАПЮШОН» приведён в Табл. 3:

В процессе сжатия словарь будет дополняться встречающимися в сообщении последовательностями. Процесс пополнения словаря приведён в Табл. 4.

При описании алгоритма намеренно было опущено описание ситуации, когда словарь заполняется полностью. В зависимости от варианта алгоритма возможно различное поведение: полная или частичная очистка словаря, прекращение заполнение словаря или расширение словаря с соответствующим увеличением разрядности кода. Каждый из этих подходов имеет определённые недостатки. Например, прекращение пополнения словаря может привести к ситуации, когда в словаре хранятся последовательности, встречающиеся в начале сжимаемой строки, но не встречающиеся в дальнейшем. В то же время очистка словаря может привести к удалению частых последовательностей. Большинство используемых реализаций при заполнении словаря начинают отслеживать степень сжатия, и при её снижении ниже определённого уровня происходит перестройка словаря. Далее будет рассмотрена простейшая реализация, прекращающая пополнение словаря при его заполнении.

Для начала определим словарь как запись, хранящую не только встречавшиеся подстроки, но и количество хранящихся в словаре подстрок:

Встречавшиеся ранее подпоследовательности хранятся в массиве Words, а их кодом являются номера подпоследовательностей в этом массиве.
Также определим функции поиска в словаре и добавления в словарь:

  1. const
  2. MAX_DICT_LENGTH = 256 ;
  3. function FindInDict(D: TDictionary; str: ShortString) : integer ;
  4. r: integer ;
  5. i: integer ;
  6. fl: boolean ;
  7. begin
  8. r : = - 1 ;
  9. if D. WordCount > 0 then
  10. begin
  11. i : = D. WordCount ;
  12. fl : = false ;
  13. while (not fl) and (i >= 0 ) do
  14. begin
  15. i : = i - 1 ;
  16. fl : = D. Words [ i] = str;
  17. end ;
  18. end ;
  19. if fl then
  20. r : = i;
  21. FindInDict : = r;
  22. end ;
  23. procedure AddToDict(var D: TDictionary; str: ShortString) ;
  24. begin
  25. if D. WordCount < MAX_DICT_LENGTH then
  26. begin
  27. D. WordCount : = D. WordCount + 1 ;
  28. SetLength(D. Words , D. WordCount ) ;
  29. D. Words [ D. WordCount - 1 ] : = str;
  30. end ;
  31. end ;

Используя эти функции, процесс кодирования по описанному алгоритму можно реализовать следующим образом:
  1. function LZWEncode(InMsg: ShortString) : TEncodedString;
  2. OutMsg: TEncodedString;
  3. tmpstr: ShortString;
  4. D: TDictionary;
  5. i, N: byte ;
  6. begin
  7. SetLength(OutMsg, length(InMsg) ) ;
  8. N : = 0 ;
  9. InitDict(D) ;
  10. while length(InMsg) > 0 do
  11. begin
  12. tmpstr : = InMsg[ 1 ] ;
  13. while (FindInDict(D, tmpstr) >= 0 ) and (length(InMsg) > length(tmpstr) ) do
  14. tmpstr : = tmpstr + InMsg[ length(tmpstr) + 1 ] ;
  15. if FindInDict(D, tmpstr) < 0 then
  16. delete(tmpstr, length(tmpstr) , 1 ) ;
  17. OutMsg[ N] : = FindInDict(D, tmpstr) ;
  18. N : = N + 1 ;
  19. delete(InMsg, 1 , length(tmpstr) ) ;
  20. if length(InMsg) > 0 then
  21. AddToDict(D, tmpstr + InMsg[ 1 ] ) ;
  22. end ;
  23. SetLength(OutMsg, N) ;
  24. LZWEncode : = OutMsg;
  25. end ;

Результатом кодирования будут номера слов в словаре.
Процесс декодирования сводится к прямой расшифровке кодов, при этом нет необходимости передавать созданный словарь, достаточно, чтобы при декодировании словарь был инициализирован так же, как и при кодировании. Тогда словарь будет полностью восстановлен непосредственно в процессе декодирования путём конкатенации предыдущей подпоследовательности и текущего символа.

Единственная проблема возможна в следующей ситуации: когда необходимо декодировать подпоследовательность, которой ещё нет в словаре. Легко убедиться, что это возможно только в случае, когда необходимо извлечь подстроку, которая должна быть добавлена на текущем шаге. А это значит, что подстрока удовлетворяет шаблону cSc, т.е. начинается и заканчивается одним и тем же символом. При этом cS – это подстрока, добавленная на предыдущем шаге. Рассмотренная ситуация – единственная, когда необходимо декодировать ещё не добавленную строку. Учитывая вышесказанное, можно предложить следующий вариант декодирования сжатой строки:

  1. function LZWDecode(InMsg: TEncodedString) : ShortString;
  2. D: TDictionary;
  3. OutMsg, tmpstr: ShortString;
  4. i: byte ;
  5. begin
  6. OutMsg : = "" ;
  7. tmpstr : = "" ;
  8. InitDict(D) ;
  9. for i : = 0 to length(InMsg) - 1 do
  10. begin
  11. if InMsg[ i] >= D. WordCount then
  12. tmpstr : = D. Words [ InMsg[ i - 1 ] ] + D. Words [ InMsg[ i - 1 ] ] [ 1 ]
  13. else
  14. tmpstr : = D. Words [ InMsg[ i] ] ;
  15. OutMsg : = OutMsg + tmpstr;
  16. if i > 0 then
  17. AddToDict(D, D. Words [ InMsg[ i - 1 ] ] + tmpstr[ 1 ] ) ;
  18. end ;
  19. LZWDecode : = OutMsg;
  20. end ;

К плюсам словарных алгоритмов относится их большая по сравнению с RLE эффективность сжатия. Тем не менее надо понимать, что реальное использование этих алгоритмов сопряжено с некоторыми трудностями реализации.

Энтропийное кодирование

Кодирование с помощью деревьев Шеннона-Фано

Алгоритм Шеннона-Фано - один из первых разработанных алгоритмов сжатия. В основе алгоритма лежит идея представления более частых символов с помощью более коротких кодов. При этом коды, полученные с помощью алгоритма Шеннона-Фано, обладают свойством префиксности: т.е. ни один код не является началом никакого другого кода. Свойство префиксности гарантирует, что кодирование будет взаимно-однозначным. Алгоритм построения кодов Шеннона-Фано представлен ниже:
1. Разбить алфавит на две части, суммарные вероятности символов в которых максимально близки друг к другу.
2. В префиксный код первой части символов добавить 0, в префиксный код второй части символов добавить 1.
3. Для каждой части (в которой не менее двух символов) рекурсивно выполнить шаги 1-3.
Несмотря на сравнительную простоту, алгоритм Шеннона-Фано не лишён недостатков, самым существенным из которых является неоптимальность кодирования. Хоть разбиение на каждом шаге и является оптимальным, алгоритм не гарантирует оптимального результата в целом. Рассмотрим, например, следующую строку: «ААААБВГДЕЖ». Соответствующее дерево Шеннона-Фано и коды, полученные на его основе, представлены на Рис. 1:

Без использования кодирования сообщение будет занимать 40 бит (при условии, что каждый символ кодируется 4 битами), а с использованием алгоритма Шеннона-Фано 4*2+2+4+4+3+3+3=27 бит. Объём сообщения уменьшился на 32.5%, но ниже будет показано, что этот результат можно значительно улучшить.

Кодирование с помощью деревьев Хаффмана

Алгоритм кодирования Хаффмана, разработанный через несколько лет после алгоритма Шеннона-Фано, тоже обладает свойством префиксности, а, кроме того, доказанной минимальной избыточностью, именно этим обусловлено его крайне широкое распространение. Для получения кодов Хаффмана используют следующий алгоритм:
1. Все символы алфавита представляются в виде свободных узлов, при этом вес узла пропорционален частоте символа в сообщении;
2. Из множества свободных узлов выбираются два узла с минимальным весом и создаётся новый (родительский) узел с весом, равным сумме весов выбранных узлов;
3. Выбранные узлы удаляются из списка свободных, а созданный на их основе родительский узел добавляется в этот список;
4. Шаги 2-3 повторяются до тех пор, пока в списке свободных больше одного узла;
5. На основе построенного дерева каждому символу алфавита присваивается префиксный код;
6. Сообщение кодируется полученными кодами.

Рассмотрим тот же пример, что и в случае с алгоритмом Шеннона-Фано. Дерево Хаффмана и коды, полученные для сообщения «ААААБВГДЕЖ», представлены на Рис. 2:

Легко подсчитать, что объём закодированного сообщения составит 26 бит, что меньше, чем в алгоритме Шеннона-Фано. Отдельно стоит отметить, что ввиду популярности алгоритма Хаффмана на данный момент существует множество вариантов кодирования Хаффмана, в том числе и адаптивное кодирование, которое не требует передачи частот символов.
Среди недостатков алгоритма Хаффмана значительную часть составляют проблемы, связанные со сложностью реализации. Использование для хранения частот символов вещественных переменных сопряжено с потерей точности, поэтому на практике часто используют целочисленные переменные, но, т.к. вес родительских узлов постоянно растёт, рано или поздно возникает переполнение. Т.о., несмотря на простоту алгоритма, его корректная реализация до сих пор может вызывать некоторые затруднения, особенно для больших алфавитов.

Кодирование с помощью деревьев секущих функций

Кодирование с помощью секущих функций – разработанный авторами алгоритм, позволяющий получать префиксные коды. В основе алгоритма лежит идея построения дерева, каждый узел которого содержит секущую функцию. Чтобы подробнее описать алгоритм, необходимо ввести несколько определений.
Слово – упорядоченная последовательность из m бит (число m называют разрядностью слова).
Литерал секущей – пара вида разряд-значение разряда. Например, литерал (4,1) означает, что 4 бит слова должен быть равен 1. Если условие литерала выполняется, то литерал считается истинным, в противном случае - ложным.
k-разрядной секущей называют множество из k литералов. Если все литералы истинны, то и сама секущая функция истинная, в противном случае она ложная.

Дерево строится так, чтобы каждый узел делил алфавит на максимально близкие части. На Рис. 3 показан пример дерева секущих:

Дерево секущих функций в общем случае не гарантирует оптимального кодирования, но зато обеспечивает крайне высокую скорость работы за счёт простоты операции в узлах.

Арифметическое кодирование

Арифметическое кодирование – один из наиболее эффективных способов сжатия информации. В отличие от алгоритма Хаффмана арифметическое кодирование позволяет кодировать сообщения с энтропией меньше 1 бита на символ. Т.к. большинство алгоритмов арифметического кодирования защищены патентами, далее будут описаны только основные идеи.
Предположим, что в используемом алфавите N символов a_1,…,a_N, с частотами p_1,…,p_N, соответственно. Тогда алгоритм арифметического кодирования будет выглядеть следующим образом:
В качестве рабочего полуинтервала взять будут представлены короткими битовыми комбинациями, а те знаки, которые встречаются реже , - более длинными битовыми комбинациями. В результате мы получим более короткое представление всего текста, чем при использовании обычного кода, подобного Unicode или ASCII. Построение алгоритма, который обычно используется при разработке частотно-зависимых кодов, приписывают Девиду Хаффману , поэтому такие коды часто называются кодами Хаффмана. Большинство используемых сегодня частотно-зависимых кодов является кодами Хаффмана.

Пример. Пусть требуется закодировать частотно-зависимым методом последовательность: αγααβααγααβαλααβαβαβαβαα, которая состоит из четырех символов α, β, γ и λ. Причем в этой последовательности α встречается 15 раз, β - 6 раз, γ - 2 раза и λ - 1 раз.

Выберем в соответствии с методом Хаффмана следующий двоичный код для представления символов:

α - 1
β - 01
γ - 001
λ - 000

Метод Лемпеля-Зива

Данный метод назван в честь его создателей, Абрахама Лемпеля и Джэкоба Зива . Системы кодирования по методу Лемпеля-Зива используют технологию кодирования с применением адаптивного словаря. В данном контексте термин словарь означает набор строительных блоков, из которых создается сжатое сообщение. Если сжатию подвергается английский текст, то строительными блоками могут быть символы алфавита. Если потребуется уменьшить размер данных, которые хранятся в компьютере, то компоновочными блоками могут стать нули и единицы. В процессе адаптивного словарного кодирования содержание словаря может изменяться. Например, при сжатии английского текста может оказаться целесообразным добавить в словарь окончание ing и артикль the. В этом случае место, занимаемое будущими копиями окончания ing и артикля the, может быть уменьшено за счет записи их как одиночных ссылок вместо сочетания из трех разных ссылок. Системы кодирования по методу Лемпеля-Зива используют изощренные и весьма эффективные методы адаптации словаря в процессе кодирования или сжатия. В частности, в любой момент процесса кодирования словарь будет состоять из тех комбинаций, которые уже были закодированы [сжаты].

В качестве примера рассмотрим, как можно выполнить сжатие сообщения с использованием конкретной системы метода Лемпеля-Зива, известной как LZ77. Процесс начинается практически с переписывания начальной части сообщения, однако в определенный момент осуществляется переход к представлению будущих сегментов с помощью триплетов, каждый из которых будет состоять из, двух целых чисел и следующего за ними одного символа текста. Каждый триплет описывает способ построения следующей части сообщения. Например, пусть распакованный текст имеет следующий вид:

αβααβλβ

Строка αβααβλβ является уже распакованной частью сообщения. Для того чтобы разархивировать остальной текст сообщения, необходимо сначала расширить строку, присоединив к ней ту часть, которая в ней уже встречается. Первый номер в триплете указывает, сколько символов необходимо отсчитать в обратном направлении в строке, чтобы найти первый символ добавляемого сегмента. В данном случае необходимо отсчитать в обратном направлении 5 символов, и мы попадем на второй слева символ а уже распакованной строки. Второе число в триплете задает количество последовательных символов справа от начального, которые составляют добавляемый сегмент. В нашем примере это число 4, и это означает, что добавляемым сегментом будет ααβλ. Копируем его в конец строки и получаем новое значение распакованной части сообщения: αβααβλβααβλ.

Наконец, последний элемент [в нашем случае это символ α] должен быть помещен в конец расширенной строки, в результате чего получаем полностью распакованное сообщение: αβααβλβααβλα.

Сжатие изображений

Растровый формат, используемый в современных цифровых преобразователях изображений, предусматривает кодирование изображения в формате по три байта на пиксель, что приводит к созданию громоздких, неудобных в работе растровых файлов. Специально для этого формата было разработано множество схем сжатия, предназначенных для уменьшения места, занимаемого подобными файлами на диске. Одной из таких схем является формат GIF , разработанный компанией CompuServe. Используемый в ней метод заключается в уменьшении количества цветовых оттенков пикселя до 256, в результате чего цвет каждого пикселя может быть представлен одним байтом вместо трех. С помощью таблицы, называемой цветовой палитрой, каждый из допустимых цветовых оттенков пикселя ассоциируется с некоторой комбинацией цветов "красный-зеленый-синий". Изменяя используемую палитру, можно изменять цвета, появляющиеся в изображении.

Обычно один из цветов палитры в формате GIF воспринимается как обозначение "прозрачности". Это означает, что в закрашенных этим цветом участках изображения отображается цвет того фона, на котором оно находится. Благодаря этому и относительной простоте использования изображений формат GIF получил широкое распространение в тех компьютерных играх, где множество различных картинок перемещается по экрану.

Другим примером системы сжатия изображений является формат JPEG. Это стандарт, разработанный ассоциацией Joint Photographic Experts Group [отсюда и название этого стандарта] в рамках организации ISO. Формат JPEG показал себя как эффективный метод представления цветных фотографий. Именно по этой причине данный стандарт используется производителями современных цифровых фотокамер. Следует ожидать, что он окажет немалое влияние на область цифрового представления изображений и в будущем.

В действительности стандарт JPEG включает несколько способов представления изображения, каждый из которых имеет собственное назначение. Например, когда требуется максимальная точность представления изображения, формат JPEG предлагает режим "без потерь", название которого прямо указывает, что процедура кодирования изображения будет выполнена без каких-либо потерь информации. В этом режиме экономия места достигается посредством запоминания различий между последовательными пикселями, а не яркости каждого пикселя в отдельности. Согласно теории, в большинстве случаев степень различия между соседними пикселями может быть закодирована более короткими битовыми комбинациями, чем собственно значения яркости отдельных пикселей. Существующие различия кодируются с помощью кода переменной длины, который применяется в целях дополнительного сокращения используемой памяти.

К сожалению, при использовании режима "без потерь" создаваемые файлы растровых изображений настолько велики, что они с трудом обрабатываются методами современной технологии, а потому и применяются на практике крайне редко. Большинство существующих приложений использует другой стандартный метод формата JPEG - режим "базовых строк". В этом режиме каждый из пикселей также представляется тремя составляющими, но в данном случае это уже один компонент яркости и два компонента цвета. Грубо говоря, если создать изображение только из компонентов яркости, то мы увидим черно-белый вариант изображения, так как эти компоненты отражают только уровень освещенности пикселя.

Смысл подобного разделения между цветом и яркостью объясняется тем, что человеческий глаз более чувствителен к изменениям яркости, чем цвета. Рассмотрим, например, два равномерно окрашенных синих прямоугольника, которые абсолютно идентичны, за исключением того, что на один из них нанесена маленькая яркая точка, тогда как на другой - маленькая зеленая точка той же яркости, что и синий фон. Глазу проще будет обнаружить яркую точку, а не зеленую. Режим "базовых строк" стандарта JPEG использует эту особенность, кодируя компонент яркости каждого пикселя, но усредняя значение цветовых компонентов для блоков, состоящих из четырех пикселей, и записывая цветовые компоненты только для этих блоков. В результате окончательное представление изображения сохраняет внезапные перепады яркости, однако оставляет размытыми резкие изменения цвета. Преимущество этой схемы состоит в том, что каждый блок из четырех пикселей представлен только шестью значениями [четыре показателя яркости и два - цвета], а не двенадцатью, которые необходимы при использовании схемы из трех показателей на каждый пиксель.

Общей проблемой при обработке различных потоковых данных является их объем. Практически всегда качество воспроизведения оцифрованного потока зависит от частоты дискретизации, а чем больше частота - тем больше объем.

Для решения этой проблемы при хранении и распространении цифровых данных, в особенности видео и аудио, применяют различные методы сжатия.

Под сжатием понимается применение алгоритмов преобразования фрагментов данных, позволяющих при прямом преобразовании (сжатии, упаковке) уменьшить размер данных (т.е. количество битов в конечном блоке меньше, чем в исходном), а при обратном преобразовании восстановить исходные данные в годном для использования виде .

Различают две основные группы методов сжатия: методы сжатия без потерь , которые позволяют восстановить исходные данные без каких-либо изменений , и методы сжатия с потерями , которые восстанавливают данными с отличиями, но эти отличия оказываются допустимыми с точки зрения дальнейшего использования .

В качестве примеров алгоритмов сжатия графических данных без потерь можно привести алгоритм RLE. При применении этого алгоритма вместо последовательности одинаковых по цвету пикселей в строке изображения записывается цвет и количество его повторений. Такой подход используется при хранении изображений в формате BMP.

Для сложных изображений такой метод малоэффективен, поэтому в промышленных форматах применяют другие методы. Например, один из универсальных алгоритмов LZW (назван по фамилиям авторов Якоб Лемпель, Абрахам Зив и Терри Велч). Этот алгоритм подразумевает создание во время обработки специального словаря уже встречавшихся фрагментов. При кодировании последовательности байтов заменяются на их номера по словарю, причем номера часто встречающихся последовательностей имеют меньшее количество битов, чем редко встречающихся. Этот способ активно применяется при сжатии самых разных данных, в том числе и графических. Такой способ сжатия применяется в графическом формате TIFF, в популярном формате GIF. Аналогичные методы применяются и в современном формате PNG (P ortable N etwork G raphic ), разработанном специально для применения в сетевых приложениях.

Нужно отметить, что алгоритмы сжатия применяются не только для работы с графическими данными (где они фактически необходимы), но и для хранения и пересылки других данных. Программы, реализующие применение этих методов, получили название архиваторов . Современные архиваторы при упаковке данных позволяют сохранять файловую структуру, применяют сложные комбинации методов сжатия в зависимости от типа и особенностей упаковываемой информации. Методы сжатия используют такое общее свойство представления информации в цифровом виде, как избыточность .

С появлением средств оцифровки изображений появилась существенная проблема: в фотоизображениях практически не встречались точно повторяющиеся последовательности точек. С учетом роста частоты дискретизации и небольшой емкости носителей, это затрудняло их обработку и применение. Фактически средний жесткий диск мог хранить только 45–50 изображений высокого качества.

Для решения этой проблемы группой специалистов был разработан специальный формат и способ сжатия, получивший название JPEG (J oint P hotographic E xpert G roup , объединенная группа экспертов-фотографов). Алгоритм сжатия, предложенный ими, подразумевал сжатие с потерей качества . Его достоинством было то, что “силу” сжатия можно было указывать изначально и таким образом находить компромисс между качеством и объемом изображения. Первый стандарт этого алгоритма был принят в 1991 году.

Алгоритм JPEG предусматривает перевод изображения в более пригодную для сжатия цветовую модель - YСrCb (Яркость, Хроматический красный, Хроматический синий). За счет того, что человеческий глаз более чувствителен к яркости, чем к цвету, появляется возможность сжимать цветовые компоненты сильнее. В дальнейшем операции над компонентами выполняются отдельно. Изображение разбивается на фрагменты размером 8 ґ 8 пикселей, и внутри объектов выполняется целый ряд преобразований, некоторые из которых сглаживают разницу между пикселями. В зависимости от заданного параметра степени сжатия можно сглаживать разницу сильнее или слабее.

При использовании высоких степеней сжатия изображение чувствительно портится: становится заметно разделение на квадраты и изменение частот в них, появляются своеобразные “ореолы” вокруг четко очерченных объектов.

Алгоритм JPEG - один из базовых алгоритмов сжатия изображений. Его широкое распространение позволило резко расширить возможности и сферу применения цифровых методов обработки изображения. Несмотря на то, что существовали и существуют методы, обеспечивающие более высокое качество и степень сжатия, этот алгоритм получил широкое распространение за счет низких аппаратных требований и высокой скорости работы.

Следующим шагом стала разработка группы методов, предназначенных для сжатия потоковых данных (видео и аудио). Существенной особенностью этих данных является их очень большой объем и постепенное изменение (из-за высокой частоты между двумя соседними кадрами, как правило, разница невелика). Сжатый видео- и/или аудиопоток характеризуется чаще всего общим показателем битрейтом (bit rate - битовая скорость) - количеством битов на одну секунду использования, которое получается после упаковки.

Первым был разработан и принят в 1992 году стандарт MPEG-1, включавший в себя способ сжатия видео в поток до 1,5 Мбит, аудио в поток 64, 128 или 192 Кбит/с на канал, а также алгоритмы синхронизации. Стандарт описывал не алгоритмы, а формат получающегося битового потока. Это позволило в дальнейшем разработать множество реализаций алгоритмов кодирования и декодирования. Стандарт применялся для создания видео и CD.

Особенную популярность завоевала реализация MPEG-1 для упаковки звука. Применяется для этого стандарт MPEG-1 Layer 3 (сокращенно названный MP3 ). При сжатии этим методом используется сжатие с потерей информации. Причем учитывается особенность слухового восприятия: если рядом расположены две частоты, то более громкая “перекрывает” более тихую. Таким образом, ее можно сгладить без ощутимой потери качества звука.

Следующим шагом была разработка и принятие в 1995 году стандарта MPEG-2, предусматривающего работу с более качественным видеопотоком, скорость которого могла изменяться от 3 до 10 Мбит/с. Эта группа методов применяется при создании DVD-дисков.

Группа стандартов, получившая позднее название MPEG-4 , изначально проектировалась для работы с очень низкими потоками, но в дальнейшем претерпела много изменений. В основном эти изменения касались введения интеллектуальных методов - например, описания параметров отображения лиц или синтеза речи.

Несмотря на большое разнообразие, в основе всех этих алгоритмов лежит общий подход к кодированию/декодированию. Во-первых, одной из основ сжатия кадров является алгоритм JPEG. В рамках этого подхода рассматриваются три вида кадров: ключевой кадр, сохраняемый в потоке полностью (intrapictures), кадры, сжатые со ссылкой на предыдущее изображение (predicted), и кадры, ссылающиеся на два кадра (bidirection).

В случае использования ссылок на кадры записывается и сжимается не весь кадр, а только его изменившиеся части. Двунаправленные и ключевые кадры позволяют сократить накапливающиеся ошибки. Во время сжатия каждое изображение разбивается на макроблоки, разбивающие кадр на отдельные квадраты по 16 пикселей (алгоритм разбиения значительно сложнее, но в этом тексте он подробно не рассматривается). Отсюда вытекает ограничение: размеры кадра должны быть кратны 16.

Поскольку алгоритмы в стандарте не описаны впрямую, существует большое количество различных их реализаций. Зачастую результаты работы этих реализаций сильно различаются по качеству изображения - в зависимости, например, от методики расстановки ключевых кадров. Конкретное кодирование и декодирование выполняется набором программ, получившим название кодеков.

Технически кодеки - отдельные программы, вызываемые проигрывателями для декодирования потока, а средствами сохранения - для его сжатия . Кодек отмечается в начале файла (или сетевого потока), и его наличие - важное условие работы с мультимедиа-данными. Многие кодеки не поставляются с операционной системой, а устанавливаются дополнительно. Для удобства их часто собирают в пакеты (codec-pack).

Примеры программных средств

DivX, XviD, Lame MP3 encoder, QuickTime

Теория и стратегия представления данных

Сжатие данных широко используется в самых разнообразных контекстах программирования. Все популярные операционные системы и языки программирования имеют многочисленные инструментальные средства и библиотеки для работы с различными методами сжатия данных.

Правильный выбор инструментальных средств и библиотек сжатия для конкретного приложения зависит от характеристик данных и назначения самого приложения: потоковой передачи данных или работы с файлами; ожидаемых шаблонов и закономерностей в данных; относительной важности использования ресурсов ЦП и памяти, потребностей в каналах передачи и требований к хранению и других факторов.

Что понимается под сжатием данных? Если говорить кратко, то сжатие устраняет из данных избыточность ; в терминах же теории информации сжатие увеличивает энтропию сжатого текста. Однако оба этих утверждения по существу по существу верны в силу определения самих понятий. Избыточность может быть выражена в самых разных формах. Одним типом является последовательности повторяющихся битов (11111111). Вторым – последовательности повторяющихся байтов (XXXXXXXX). Однако чаще избыточность проявляется в более крупном масштабе и выражается либо закономерностями в наборе данных, взятом как единое целое, либо последовательностями различной длины, имеющими общие признаки. По существу, цель сжатия данных заключается в поиске алгоритмических преобразований представлений данных, которые позволят получить более компактные представления «типовых» наборов данных. Это описание может показаться несколько туманным, но мы постараемся раскрыть его суть на практических примерах.

Сжатие без потерь и с потерями

Фактически существуют два в корне различающихся подхода к сжатию данных: сжатие с потерями и без потерь. Эта статья, в основном, посвящена методам сжатия без потерь, но для начала полезно изучить различия. Сжатие без потерь предусматривает преобразование представления набора данных таким образом, чтобы затем можно было в точности воспроизвести первоначальный набор данных путем обратного преобразования (распаковки). Сжатие с потерями – это представление, которое позволяет воспроизводить нечто «очень похожее» на первоначальный набор данных. Преимущество использования методов сжатия с потерями заключается в том, что они зачастую позволяют получать намного более компактные представления данных по сравнению с методами сжатия без потерь. Чаще всего методы сжатия с потерями применяются для обработки изображений, звуковых файлов и видео. Сжатие с потерями в этих областях может оказаться уместным благодаря тому, что человек воспринимает битовую комбинацию цифрового изображения/звука не с «побитовой» точностью, а скорее оценивает музыку или изображение в целом.

С точки зрения «обычных» данных сжатие с потерями – неудачный вариант. Нам не нужна программа, которая делает «примерно» то, а не точно то, что было запрошено в действительности. То же касается и баз данных, которые должны хранить именно те данные, которые были в них загружены. По крайней мере, это не подойдет для решения большинства задач (и мне известно очень мало практических примеров использования сжатия с потерями за пределами тех данных, которые сами по себе описывают чувственное восприятие реального мира (например, изображений и звуков)).

Пример набора данных

В данной статье будет использоваться специально подготовленное гипотетическое представление данных. Приведем простой для понимания пример. В городе Гринфилд (штат Массачусетс, США) используются префиксы телефонных номеров 772- , 773- и 774- . (К сведению читателей за пределами США: в США местные телефонные номера являются семизначными и традиционно представляются в виде ###-####; префиксы назначаются в соответствии с географическим местоположением). Также предположим, что из всех трех префиксов чаще всего используется первый. Частями суффикса могут быть любые другие цифры с приблизительно равной вероятностью. Набор интересующих нас данных находится в «списке всех телефонных номеров, которые в настоящее время находятся в активном пользовании». Можно попробовать подобрать причину, почему это могло бы быть интересным с точки зрения программирования, но в данном случае это не важно.

Изначально интересующий нас набор данных имеет стандартное представление: многоколоночный отчет (возможно, сгенерированный в качестве результата выполнения какого-либо запроса или процесса компиляции). Первые несколько строк этого отчета могли бы выглядеть следующим образом:

Таблица 1. Многоколоночный отчет

============================================================= 772-7628 772-8601 772-0113 773-3429 774-9833 773-4319 774-3920 772-0893 772-9934 773-8923 773-1134 772-4930 772-9390 774-9992 772-2314 [...]

Сжатие пустых мест

Сжатие пустых мест может быть охарактеризовано в более общем смысле как «удаление того, что нас не интересует». Даже несмотря на то, что этот метод с технической точки зрения представляет собой метод сжатия с потерями, он все равно полезен для многих типов представлений данных, с которыми мы сталкиваемся в реальном мире. Например, даже несмотря на то, что HTML намного удобнее читать в текстовом редакторе при добавлении отступов и междустрочных интервалов, ни одно из этих «пустых мест» никак не влияет на визуализацию HTML-документа в Web-браузере. Если вам точно известно, что конкретный документ HTML предназначается исключительно для Web-браузера (или для какого-либо робота/поискового агента), то, возможно, будет неплохо убрать все пустые места, чтобы документ передавался быстрее и занимал меньше места в хранилище. Все то, что мы удаляем при сжатии пустых мест, в действительности не несет никакой функциональной нагрузки.

В случае с представленным примером из описанного отчета можно удалить лишь небольшую часть информации. Строка символов «=» по верхнему краю отчета не несет никакого функционального наполнения; то же самое касается символов «-» в номерах и пробелов между номерами. Все это полезно для человека, читающего исходный отчет, но не имеет никакого значения, если мы рассматриваем эти символы в качестве «данных». То, что мы удаляем, – это не совсем «пустое место» в традиционном смысле, но является им по сути.

Сжатие пустых мест крайне «дешево» с точки зрения реализации. Вопрос состоит лишь в считывании потока данных и исключении из выходного потока нескольких конкретных значений. Во многих случаях этап «распаковки» вообще не предусматривается. Однако даже если бы мы захотели воссоздать что-то близкое к оригиналу потока данных, это потребовало бы лишь небольшого объема ресурсов ЦП или памяти. Восстановленные данные не обязательно будут совпадать с исходными данными; это зависит от того, какие правила и ограничения содержались в оригинале. Страница HTML, напечатанная человеком в текстовом редакторе, вероятно, будет содержать пробелы, расставленные согласно определенным правилам. Это же относится и к автоматизированным инструментальным средствам, которые часто создают «обоснованные» отступы и интервалы в коде HTML. В случае с жестким форматом отчета, представленным в нашем примере, не существует никаких причин, по которым первоначальное представление не могло бы быть воссоздано каким-либо «форматирующим распаковщиком».

Групповое кодирование

Групповое кодирование (RLE) является простейшим из широко используемых методов сжатия без потерь. Подобно сжатию пустых мест, оно не требует особых затрат, особенно для декодирования. Идея, стоящая за данным методом, заключается в том, что многие представления данных состоят большей частью из строк повторяющихся байтов. Наш образец отчета является одним из таких представлений данных. Он начинается со строки повторяющихся символов «=» и имеет разбросанные по отчету строки, состоящие только из пробелов. Вместо того чтобы представлять каждый символ с помощью его собственного байта, метод RLE предусматривает (иногда или всегда) указание количества повторений, за которым следует символ, который необходимо воспроизвести указанное число раз.

Если в обрабатываемом формате данных преобладают повторяющиеся байты, то может быть уместным и эффективным использование алгоритма, в котором один или несколько байтов указывают количество повторений, а затем следует повторяемый символ. Однако если имеются строки символов единичной длины, для их кодирования потребуются два (или более) байта. Другими словами, для одного символа ASCII «X» входного потока мог бы потребоваться выходной битовый поток 00000001 01011000 . С другой стороны, для кодирования ста следующих друг за другом символов «X» использовалось бы то же самое количество битов: 01100100 01011000 , что весьма эффективно.

В различных вариантах RLE часто применяется избирательное использование байтов для указания числа повторений, в то время как остальные байты просто представляют сами себя. Для этого должно быть зарезервировано как минимум одно однобайтовое значение, которое в случае необходимости может удаляться из выходных данных. Например, в нашем образце отчета по телефонным номерам известно, что вся информация во входном потоке состоит из простых символов ASCII. В частности, у всех таких символов первый бит ASCII-значения равен 0. Мы могли бы использовать этот первый бит ASCII для указания на то, что байт указывает число повторений, а не обычный символ. Следующие семь битов байта итератора могли бы использоваться для указания числа повторений, а в следующем байте мог бы содержаться повторяющийся символ. Так, например, мы могли бы представить строку «YXXXXXXXX» следующим образом:

"Y" Iter(8) "X" 01001111 10001000 01011000

Этот пример не объясняет, как отбрасывать значения байта итератора и не предусматривает возможности использования более 127 повторений одного символа. Однако различные вариации RLE при необходимости решают и эти задачи.

Кодирование по методу Хаффмана

Кодирование по методу Хаффмана рассматривает таблицу символов как целый набор данных. Сжатие достигается путем нахождения «весовых коэффициентов» каждого символа в наборе данных. Некоторые символы используются чаще других, поэтому кодирование по методу Хаффмана предполагает, что частые символы должны кодироваться меньшим количеством бит, чем более редкие символы. Существуют различные варианты кодирования по методу Хаффмана, но исходный (и чаще всего применяемый) вариант включает поиск самого распространенного символа и кодирование его одним битом, например, 1. И если в закодированной последовательности встречается 0, это значит, что на этом месте находится другой символ, закодированный большим количеством бит.

Представим, что мы применили кодирование по методу Хаффмана для кодирования нашего примера (предположим, что мы уже подвергли отчет сжатию пустых мест). Мы могли бы получить следующий результат:

Таблица 2. Результаты кодирования по методу Хаффмана

Encoding Symbol 1 7 010 2 011 3 00000 4 00001 5 00010 6 00011 8 00100 9 00101 0 00111 1

Исходный набор символов (состоящий из чисел) может быть легко закодирован (без сжатия) в виде 4-х битных последовательностей (полубайтов). Приведенное кодирование по методу Хаффмана будет использовать до 5 битов для символов в наихудшем случае, что очевидно хуже кодирования с помощью полубайтов. Однако в лучшем случае потребуется всего 1 бит; при этом известно, что именно лучший случай будет использоваться чаще всего (так как именно этот символ чаще всего встречается в данных). Таким образом, мы могли бы закодировать конкретный телефонный номер следующим образом:

772 7628 --> 1 1 010 1 00010 010 00011

При кодировании с помощью полубайтов представление телефонного номера заняло бы 28 бит, в нашем же случае кодирование занимает 19 бит. Пробелы добавлены в пример только для лучшего восприятия; их присутствие в кодированных символах не требуется, так как по таблице кодов всегда можно определить, достигнут конец закодированного символа или нет (правда, при этом все равно необходимо отслеживать текущую позицию в данных).

Кодирование по методу Хаффмана по-прежнему является очень «дешевым» для декодирования с точки зрения процессорного времени. Однако оно требует поиска в таблице кодов, поэтому не может быть столь же «дешевым», как RLE. Кодирование по методу Хаффмана является довольно затратным, так как требует полного сканирования данных и построения таблицы частот символов. В некоторых случаях при использовании кодирования по методу Хаффмана уместным является «короткий путь». Стандартное кодирование по методу Хаффмана применяется к конкретному кодируемому набору данных, при этом в выходных данных вначале следует таблица символов. Однако если передается не одиночный набор данных, а целый формат с одинаковыми закономерностями встречаемости символов, то можно использовать глобальную таблицу Хаффмана. При наличии такой таблицы мы можем жестко запрограммировать поиск в своих исполняемых файлах, что значительно «удешевит» сжатие и распаковку (за исключением начальной глобальной дискретизации и жесткого кодирования). Например, если мы знаем, что наш набор данных будет представлять собой прозу на английском языке, то частоты появления букв хорошо известны и постоянны для различных наборов данных.

Сжатие по алгоритму Лемпеля-Зива

Вероятно, самым значимым методом сжатия без потерь является алгоритм Лемпеля-Зива. В этой статье речь пойдет о варианте LZ78, но LZ77 и другие варианты работают схожим образом. Идея, заложенная в алгоритме LZ78, заключается в кодировании потоковой последовательности байтов с использованием некоторой динамической таблицы. В начале сжатия битового потока таблица LZ заполняется фактическим набором символов, наряду с несколькими пустыми слотами. В алгоритме применяются таблицы разных размеров, но в данном примере с телефонными номерами (со сжатием пустых мест) используется таблица из 32 элементов (этого достаточно для данного примера, но может оказаться мало для других типов данных). Вначале мы заполняем первые десять слотов символами используемого алфавита (цифрами). По мере поступления новых байтов сначала выводится значение из таблицы, соответствующее самой длинной подходящей последовательности, а затем в следующий доступный слот записывается последовательность длиной N+1. В наихудшем случае мы используем 5 битов вместо 4 для отдельного символа, однако в большинстве случаев мы сможем обойтись 5 битами на несколько символов. Рассмотрим пример работы этого алгоритма (слот таблицы указан в квадратных скобках):

7 --> Поиск: 7 найдено --> добавлять нечего --> продолжить поиск 7 --> Поиск: 77 не найдено --> добавить "77" to --> вывести =00111 2 --> Поиск: 72 не найдено --> добавить "72" to --> вывести =00111 7 --> Поиск: 27 не найдено --> добавить "27" to --> вывести =00010 6 --> Поиск: 76 не найдено --> добавить "76" to --> вывести =00111 2 --> Поиск: 62 не найдено --> добавить "62" to --> вывести =00110 8 --> Поиск: 28 не найдено --> добавить "28" to --> вывести =00010

До сих пор мы не извлекли из этого никакой пользы, но давайте перейдем к следующему телефонному номеру:

7 --> Поиск: 87 не найдено --> добавить "87 to --> вывести =00100 7 --> Поиск: 77 найдено --> добавлять нечего --> продолжить поиск 2 --> Поиск: 772 не найдено --> добавить "772" to --> вывести =01011 8 --> Поиск: 28 найдено --> добавлять нечего --> продолжить поиск 6 --> Поиск: 286 не найдено --> добавить "286" to --> вывести =10000 ....

Приведенных операций должно быть достаточно для демонстрации работы модели. Хотя никакого заметного сжатия пока не достигнуто, уже видно, что мы повторно использовали слоты 11 и 16, закодировав по два символа одним выходным символом. Кроме того, мы уже накопили крайне полезную последовательность байтов 772 в слоте 18, которая впоследствии неоднократно будет встречаться в потоке.

Алгоритм LZ78 заполняет одну таблицу символов полезными (предположительно) записями, затем записывает эту таблицу, очищает ее и начинает новую. В такой ситуации таблица из 32 символов может оказаться недостаточной, так как будет очищена прежде, чем нам удастся неоднократно воспользоваться такими последовательностями, как 772 и ей подобные. Однако с помощью небольшой таблицы проще проиллюстрировать работу алгоритма.

В типичных наборах данных варианты метода Лемпеля-Зива достигают значительно более высоких коэффициентов сжатия, чем методы Хаффмана и RLE. С другой стороны, варианты метода Лемпеля-Зива тратят значительные ресурсы на итерации, а их таблицы могут занимать много места в памяти. Большинство существующих инструментальных средств и библиотек сжатия используют комбинацию методов Лемпеля-Зива и Хаффмана.

Правильная постановка задачи

Выбрав правильный алгоритм, можно получить значительный выигрыш даже по сравнению с более оптимизированными, но неподходящими методами. Точно так же правильный выбор представления данных зачастую оказывается важнее выбора методов сжатия (которые всегда являются своего рода последующей оптимизацией требуемых функций). Простой пример набора данных, приводимый в этой статье, служит отличной иллюстрацией ситуации, когда переосмысление проблемы будет более удачным решением, чем использование любого из приведенных методов сжатия.

Необходимо еще раз взглянуть на проблему, которую представляют данные. Так как это не общий набор данных и для него существуют четкие предварительные требования, то проблему можно переформулировать. Известно, что существует максимум 30000 телефонных номеров (от 7720000 до 7749999), некоторые из которых являются активными, а некоторые – нет. Перед нами не стоит задача вывести полное представление всех активных номеров. Нам просто требуется указать с помощью логического значения, активен данный номер или нет. Размышляя о проблеме подобным образом, мы можем просто выделить 30000 битов в памяти и в системе хранения и использовать каждый бит для индикации активности («да» или «нет») соответствующего телефонного номера. Порядок битов в битовом массиве может соответствовать телефонным номерам, отсортированным по возрастанию (от меньшего к большему).

Подобное решение на основе битового массива идеально со всех точек зрения. Оно требует ровно 3750 байт для представления набора данных; различные методы сжатия будут использовать меняющийся объем в зависимости от количества телефонных номеров в наборе и эффективности сжатия. Однако если 10000 из 30000 возможных телефонных номеров являются активными и если даже самому эффективному методу сжатия требуется несколько байтов на один телефонный номер, то битовый массив однозначно выигрывает. С точки зрения потребностей в ресурсах ЦП битовый массив не только превосходит любой из рассмотренных методов сжатия, но и оказывается лучше, чем обычный метод представления телефонных номеров в виде строк (без сжатия). Проход по битовому массиву и увеличение счетчика текущего телефонного номера могут эффективно выполняться даже во встроенном кэше современных процессоров.

Из этого простого примера можно понять, что далеко не каждая проблема имеет такое идеальное решение, как рассмотренная выше. Многие проблемы действительно требуют использования значительного объема ресурсов памяти, пропускной способности, хранилища и ЦП; и в большинстве подобных случаев методы сжатия могут облегчить или снизить эти требования. Но более важный вывод состоит в том, что перед применением методов сжатия стоит еще раз удостовериться, что для представления данных выбрана правильная концепция.

Посвящается памяти Клода Шеннона (Claude Shannon).

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то