Типы узип. Когда нужно применять узип. Устройство защиты от импульсных перенапряжений узип

Импульсные перенапряжения в электрических сетях — не редкость. Возникают они при прямых или близких ударах молний, из-за переключений в высоковольтных сетях, а также из-за различных аварийных процессов. При этом особой опасности подвергаются частные домовладения, которые получают питание по воздушной линии электропередачи (ВЛ).

Молния — это электрический разряд атмосферного происхождения, который развивается между грозовым облаком и землей или между грозовыми облаками. Считается, что ток прямого удара молнии, составляет примерно 100 тысяч Ампер , а напряжение до 1 миллиарда Вольт . Форма импульса перенапряжения при ударе молнии показана на рисунке ниже.

Очевидно, что воздействие напряжения в десятки тысяч вольт на электроприборы, рассчитанные на 220В приведет как минимум к выходу их из строя, а чаще — к их возгоранию.

Когда нужно применять УЗИП

Защита зданий и сооружений от возгораний при прямом попадании молнии осуществляется молниеотводами. Для жилых зданий он представляет собой сваренную сетку из стали диаметром 8 мм на плоской кровле, с шагом ячейки 15х15 или трос, протянутый на коньке кровли, если она скатного типа.

Защита техники и электропроводки от воздействий молнии осуществляется специальными аппаратами — . Применение УЗИП при вводе в здание воздушной линией является обязательным. Такое требование предъявляет ПУЭ п.7.1.22. УЗИП могут выглядеть как модули, устанавливаемые на DIN-рейку, или как устройства, встраиваемые в вилки или розетки.

Многие бытовые приборы в своих конструкциях имеют защитные блоки, так сказать, уже встроенные, которые защищают от импульсных перенапряжений. Это опасный вид напряжения, которое может быть вызвано грозой, при проведении ремонта сетей, при коммутации больших нагрузок и так далее. В общем, причин немало. Так вот встроенные блоки имеют очень небольшой ресурс. И если импульсная разновидность напряжения бывает часто, то приходит один момент, когда блок перестает работать и подвергает бытовую технику опасности. То есть, от перенапряжения техника просто начнет выходить из строя. Поэтому для предотвращения этих неприятностей надо установить в питающую сеть устройство защиты от импульсных перенапряжений (УЗИП). Итак, давайте разбираться: УЗИП – что это такое?

Как работает УЗИП

Принцип работы УЗИП очень простое, потому что в нем несложная схема отвода перенапряжения. Так вот в схеме прибора установлен шунт, по которому электроэнергия движется к нагрузке. Конечно, которая через прибор подключена к питанию. Между шунтом и заземляющей линией устанавливается перемычка (мост), состоящая из варистора или разрядника.

Так вот, если напряжение в сети нормальное, то сопротивление варистора определяется мегаомами. Как только на линии появляется перенапряжение, то варистор тут же переходит в категорию проводников и начинает через себя пропускать ток, который устремляется в заземление. Вот так все просто.

Разновидности УЗИП

Существует три класса, обозначаемые римскими цифрами.

  • Класс I используется в сетях, где импульс (волна) имеет характеристику 10/350 мкс. Как понять это? По сути, это время, в течение которого импульс достигнет своего максимума, и оно равно 10 микросекунд. А 350 мкс – это время падения напряжения до номинального. При этом УЗИП данного класса может выдерживать токи краткосрочного типа в пределах 25-100 кА. Это соответствует, например, удару молнии в линию электропередачи, если место удара удалено от потребителя на 1,5 км.
  • Класс II. Обозначим сразу показатели: 8/20 мкс, 10-40 кА. В этом приборе используются только варисторы. А так как эти элементы имеют незначительный ресурс, то в схему подключения между ними и шунтом впаивается предохранитель, он механический. Как только сопротивление варистора станет, так сказать, неадекватным в плане необходимой безопасности, предохранитель размыкает цепь. Он просто отпаивается. Если посмотреть на это с точки зрения физического принципа работы, то это в точности тепловая защита. Кстати, производители позаботились о том, чтобы предупреждать о снижении сопротивления варистора. Он связан с индикатором, который выведен на панель УЗИП.
  • Класс III. Приборы этого класса в точности повторяют предыдущий. Есть одно отличие – это сила тока, которую варистор должен выдерживать, ее значение не превышает 10 кА.

Кстати, необходимо отметить, что защитные блоки, встраиваемого типа, имеют точно такую же схему, и они работают точно также по этому принципу. Но как было сказано выше, у них слишком низкий ресурс эксплуатации. Поэтому добавляя в сеть УЗИП третьего класса, вы решаете проблемы с преждевременным отказом бытовой техники, связанными с перенапряжением в питающей сети.

Правда, надо быть до конца честными, разбираясь с прибором этого типа. Высокую надежность могут гарантировать сразу все три класса, установленные в распределительный щит. Почему? Все дело в разных импульсах. К примеру, УЗИП первого класса не сработает, если импульс напряжения будет коротким. Да и сама величина перенапряжения будет незначительной. Потому что это устройство относится к группе малочувствительных. А вот прибор с малой пропускной способностью по мощности просто не справиться с большой силой тока.

Добавим, что схема подключения данного устройства достаточно проста. По сути, он подключается как обычный автоматический выключатель.


С каждым годом совершенствуется конструкция и технические параметры УЗИП , что приводит к снижению времени сервисного обслуживания и контроля этих устройств, а также к повышению их надежности. Однако нельзя полностью исключить повреждение и поломку этих устройств. Например, при сильной грозовой активности может произойти неоднократное попадание прямых ударов молний в защищаемый энергообъект (электрическую подстанцию) или на территорию вблизи него в течение одной грозы.

Применение УЗИП

Также следует учитывать то обстоятельство, что УЗИП, которые используются в слаботочных электросетях и в информационных сетях, с течением времени подвергаются старению, что означает постепенную потерю способностей по эффективному ограничению импульсных перенапряжений искусственного и естественного характера.

Процесс старения особенно быстро протекает при частых грозовых ударах значительной мощности, повторяющихся вна протяжении секунд или минут. При этом достигаются максимальные амплитуды импульсных токов, которые допустимы для УЗИП (Imax = 8/20 мкс и Iimp = 10/350 мкс).

Повреждение защитных устройств происходит из-за перегрева корпусных деталей при протекании сильных разрядных токов значительной интенсивности. Характер повреждений защитных устройств зависит от типа УЗИП .

  • В газонаполненных разрядниках с металлокерамическими корпусами происходит утечка газов и последующее разрушением корпуса прибора.
  • В УЗИП варисторного типа в результате теплового пробоя изменяется структура кристалла вплоть до его полного разрушения.
  • Защитные устройства, основанные на использовании открытых искровых промежутков, могут вызвать выброс перегретых газов и повреждение элементов элекрического шкафа.

В отдельных случаях отмечалась сильная деформация металлических частей распределительного шкафа, что можно сравнить с разрушениями от взрыва боевой гранаты. Поэтому при эксплуатации подобных УЗИП в электрических распределительных щитах требуется неукоснительное соблюдение мер противопожарной безопасности. Исходя из вышеуказанных причин, предприятия-изготовители УЗИП настоятельно рекомендуют проводить своевременный контроль защитных устройств на предмет сохранения работоспособности, в том числе после прохождения сильного грозового фронта. Для проверки устройств используются специальные тестеры, приспособленные для контроля и обслуживания защитных устройств от импульсного перенапряжения .

Визуальный осмотр или применение универсальной измерительной аппаратуры являются недостаточно эффективными мероприятиями для обнаружения многих неисправностей, так как:

  • Газонаполненный разрядник с металлокерамическим корпусом требует не только внешнего осмотра, но разборки корпуса для определения состояния внутренних частей. Но даже такая поверка не позволяет обнаружить потерю газового разряда. Поэтому для корректного контроля напряжения зажигания газонаполненного (грозового) разрядника следует использовать специальный тестер.
  • Варистор может иметь повреждения при отсутствии сигналов о выходе из строя устройства. При некорректной вольтамперной характеристике наблюдается утечка токов до 1 мА, что не всегда можно зафиксировать обычными тестерами. Для получения достоверных результатов производится измерение характеристики варистора как минимум в двух точках (при 0,010 мА и при 1 мА) с использованием источника тока с большим подъёмом напряжения (диапазон 1- 1,5 кВ).
  • Для проверки УЗИП с открытым искровым промежутком необходимо демонтировать данное устройство и провести контрольные измерения при помощи генератора импульсного тока с временем 10/350 мкс.

Современные устройства для защиты от импульсных перенапряжений работают на основе принципа выравнивания потенциалов между фазным (L) и рабочим (PEN или N) проводником. УЗИП всегда подключаются параллельно нагрузке. При выходе из строя защитного устройства (например, при пробое изоляции или при разрушении нелинейного элемента у газонаполненных разрядников и варисторов) или при потери работоспособности искровых разрядников (невозможность гашения импульсного тока) между проводниками возникает короткое замыкание, что чревато угрозой повреждения энергообъекта или возникновением пожара.

В действующих стандартах МЭК содержится два обязательных способа для защиты объектов с рабочим напряжением 220 и 380 В:

  • Защитные устройства теплового отключения (тепловая защита); используются в варисторах.
  • Быстродействующие предохранители для защиты всех типов УЗИП от токов короткого замыкания

В УЗИП варисторного типа предусмотрена тепловая защита, обеспечивающая работоспособность устройств при длительной эксплуатации. Однако, вследствие износа варистора, который связан с частыми воздействиями токов с большой амплитудой, происходит критическое разрушение P-N переходов в структуре защитного устройства. В результате снижается важнейший параметр варистора – максимальное допустимое рабочее напряжение Uc.

Данный параметр устанавливается в соответствии с фактическим напряжением в электрической сети и указывается предприятием-изготовителем варистора в его паспортных данных и на корпусе устройства. Например, на корпусе УЗИП варисторного типа указано значение наибольшего допустимого напряжения Uc = 300 В. Данное устройство будет нормально выполнять свои защитные фунции в сети с напряжением 220В даже при кратковременном увеличении напряжения до 300 В.

Достаточный запас по напряжению обеспечивает работоспособность варистора при скачках напряжения и позволяет эффективно рассеивать энергию при импульсных перенапряжениях. В процессе неизбежного «старения» защитного устройства реальное значение Uc заметно снижается и может оказаться ниже, чем номинальное напряжение в электрической сети объекта. В результате увеличения токов утечки через УЗИП, произойдёт перегрев и деформация корпуса защитного устройства, фазные клеммы могут проплавить пластиковый корпус и вызвать короткое замыкание на металлический профиль для крепления модульного оборудования (DIN-рейка).

Учитывая вышеизложенное, для должной защиты энергообъектов рекомендуется использовать варисторы, снабженные терморазмыкателем (тепловая защита). Данные устройства отличаются особой надёжностью в работе и очень простой конструкцией: контакт с пружиной припаян к одному из выводов УЗИП, связанному с охранно-пожарной сигнализацией. Отдельные устройства имеют контакты для подключения автономной сигнализации, предназначенной для подачи сигнала при неисправностиУЗИП.

При неполадках или повреждениях защитного устройства на пульт диспетчера или на вход автоматической системы по обработке и передаче данных поступает соответствующая информация (Рис. 1).

При длительном превышении фактического напряжения в электрической сети над наибольшим предельно допустимым длительным рабочим напряжением УЗИП (Uc) часто возникает аварийная ситуация. Например, подобное может случиться при обрыве или обгорании нулевого провода при входе в трансформатор (3-хфазная сеть с глухозаземлённой нейтралью). В этом случае к нагрузке прикладывается линейное напряжение, равное 380 Вольт. Как и положено, защитное устройство сработает пропуская через себя ток, по величине равный току короткого замыкания, достигающего сотен ампер.

Вследствие инертности конструкции тепловая защита реагирует с небольшим запозданием, которого вполне достаточно для полного разрушения варистора и сохранения режима КЗ через образовавшуюся дугу. Из-за расплавления корпуса защитного устройства возможно замыкание клемм УЗИП на DIN-рейку или на металлические части электрического шкафа. Данная ситуация возможна не только при использовании УЗИП варисторного типа, но на защитных устройствах с газовыми разрядниками, у которых отсутствует тепловая защита.

На рис. 2 продемонстрирован реальный случай, произошедший на одной из подстанций. Выход из строя УЗИП варисторного типа привёл к возгоранию в главном распределительном щите.

На рис. 3 показаны остатки от варистора, ставшего причиной возгорания в ГРЩ.

Для исключения подобных ситуаций следует устанавливать последовательно вместе с УЗИП тепловые предохранители, обладающие характеристиками срабатывания gG по ГОСТ Р 50339.0-92 (МЭК 60269-1-86) или gL по стандартам VDE 0636 (Германия). Большинство изготовителей УЗИП в каталогах продукции приводят технические требования, включающие номинальные значения и тип характеристики срабатывания тепловых предохранителей, предназначенных для дополнительной защиты от токов КЗ. Для этих целей применяются предохранители типа gG или gL, защищающие проводку и распределительные устройства от импульсных перегрузок и коротких замыканий.

Данный тип тепловых предохранителей отличается повышенной стойкостью к значительным токам импульсного перенапряжения и крайне малым временем срабатывания (в 10...100 раз быстрее, чем аналогичные автоматические выключатели). В ходе экспериментальных испытаний установлены и практикой подтверждены случаи повреждения автоматических выключателей или подгорания (приваривания) контактов вследствие длительного или частого воздействия импульсных перенапряжений. В результате автоматический выключатель выходит из строя и не может выполнять защитные функции.

Различные варианты применения тепловых предохранителей имеют свои особенности, которые необходимо брать в расчёт ещё на стадии проектирования электрощитовой продукции и схем электроснабжения энергообъектов. Например, если для защиты от КЗ будут применяться только вводные предохранители (общая защита), то при первом коротком замыкании в УЗИП любой ступени, будет отключен от питания весь объект или его часть.

Использование тепловых предохранителей, установленных последовательно с основным защитным устройством, гарантирует исключение подобной ситуации. Но при этом возникает вопрос подбора правильных предохранителей, с учётом очередности срабатывания каждого из них. Для решения этой проблемы следует прислушаться к рекомендациям предприятий-изготовителей УЗИП и применять предохранители таких типов и номиналов, которые предназначены для эксплуатации с конкретным защитным устройством.

На рис.4 продемонстрированы схемы установки предохранителей F7...F12 в TN-S сеть 220/380 В.

При использовании в рассматриваемой схеме разрядников HS55 в I ступени защиты и УЗИП варисторного типа (PIII280) во II ступени защиты (Рис. 4) применение предохранителей F7 ...F9 и F10...F12 зависит от номинального значения предохранителей F1...F3:

  • При значении F1...F3 свыше 315 А gG, значения F7...F9 соответствуют 315 А gG и и F10...F12 – 160 А gG.
  • При значении F1 ...F3 от 160 до 315 А gG, можно обойтись без предохранителей F7...F9. Предохранители F10...F12 равны 160 А gG.
  • При значении F1...F3 до 160 А gG, предохранители F7...F12 не требуются.

В отдельных случаях требуется, чтобы при возникновении в УЗИП короткого замыкания не срабатывал общий предохранитель, устанавливаемый на вводе трансформатора. Для этого в цепи каждого защитного устройства устанавливаются предохранители, которые выбираются с коэффициентом 1,6. Например, если общий предохранитель имеет номинальное значение 250 А gG, то предохранитель установленный последовательно с УЗИП должен быть номиналом в 160 А gG.

Использование автоматических выключателей для этой цели нецелесообразно: прежде всего из-за увеличенного времени срабатывания и недостаточной стойкости к импульсным перенапряжениям значительной величины и продолжительности.

Отдельные предприятия-изготовители защитных устройств предлагают УЗИП I и II класса модульного исполнения.

Конструкция подобных устройств включает базу, устанавливаемую на металлическую DIN-рейку, и сменный модульный элемент, оснащённый варистором или газовым разрядником с ножевыми контактами. На первый взгляд, подобная конструкция УЗИП, по сравнению с монолитным корпусом, кажется более удобной в эксплуатации и выгодной по стоимости. Однако подобная конструкция имеет ограничения по импульсным токам: Imax равняется 25 kA (для волны 8/20 мкс) и Iimp составляет не более 20 kA (для волны 10/350 мкс). Несмотря на это обстоятельтво, ряд производителей УЗИП показывают в рекламных проспектах максимальные разрядные способности защитных устройств, доходящие Imax до 100 kA (с формой импульса 8/20 мкс) и Iimp до 25 kA (форма импульса 10/350 мкс).

Однако фактические результаты испытаний расходятся с заявлениеми производителей. При ударе испытательного импульсного тока с подобной амплитудой возникают разрушения и пережоги ножевых контактов у сменного модуля и отмечаются повреждения контактов клемм в базе. На рис.5 представлены доказательства разрушительного воздействия испытательного импульса тока Imax равного 50 kA (форма импульса 8/20 мкс) на механическую часть УЗИП модульной конструкции.

После подобных воздействий импульсного тока будет крайне сложно извлечь вставной элемент из базы, так как возможно приваривание контактов друг к другу. Если вставку удастся благополучно вытащить из базы, последняя придёт в негодность: обгоревшие контакты увеличат переходное сопротивление, что повлечёт изменение уровня защиты данного УЗИП.

Рис.5

Для исключения подобных последствий УЗИП с модульной конструкцией следует применять только в тех случаях, когда возможные импульсные перенапряжения гарантированно не превысят предельно допустимых значений. Для достижения этого необходим корректный выбор типов и классов защитных устройств для конкретного энергообъекта и согласование технических параметров УЗИП между всеми ступенями защиты.

Среди вторичных источников питания чаще всего применяется выпрямитель. Укоренившаяся практика установки защитных устройств (варисторов, разрядников и др.) внутри блоков выпрямителя или непосредственно на платах не обеспечивает должную защиту оборудования подстанции. Как правило, подобные варисторы по своим параметрам относятся к III классу защиты, в соответствии с положениями ГОСТ Р 51992-2002 (МЭК 61643-1-98).

Данные устройства рассчитаны на токи порядка 7...10 кА с формой импульса 8/20 мкС. На многих предприятиях эксплуатирующих энергообъекты, данный тип защитных устройств считается вполне приемлемым и поэтому не принимаются другие меры по дополнительной защите технологического оборудования подстанции.

При отсутствии дополнительных внешних УЗИП более высокого класса и в случае длительных превышений номинального напряжения питающей электрической сети возможны следующие типовые аварийные ситуации:

  • При срабатывания варистора будут возникать токи значительной силы, которые пройдут через печатные платы и провода напрямую к заземляющей клемме, расположенной на стойке. Это как правило приводит к разрушению печатных проводников на платах и к появлению вторичных токов на незащищенных цепях, что в свою очередь выведет из строя электронные компоненты выпрямительного устройства.
  • Если импульсные токи превысят максимальное допустимое значение, установленное изготовителем для данной модели варистора, возможно возгорание или разрушение защитного устройства, что является серьезной угрозой для самого выпрямителя.
  • Иная ситуация наблюдается ели при действующее напряжение в электрической сети длительно превышает свое значение над максимально допустимым рабочим напряжением, установленным техническими условиями для данного типа варистора. В результате воздействия импульсного перенапряжения возникает вероятность обгорания печатных плат и внутренних проводов. При взрыве варистора возможны значительные механические повреждения выпрямителя.

На рис.6 показаны примеры поврежденных плат

Для решения проблем перечисленных в пункте I, наиболее оптимальным является вариант установки УЗИП, при котором защитные устройства располагаются в отдельном щитке или размещаются в стандартных силовых шкафах и распределительных электрощитах электроустановки энергообъекта. Использование дополнительных внешних УЗИП обеспечивает защиту выпрямителя от больших импульсных токов и позволяет соответственно уменьшить до предельно допустимого (7 ...10 кА) расчётные значения величин импульсных токов, проходящие через варисторные УЗИП, непосредственно встроенные в выпрямитель.

Для защиты оборудования подстанции от повышенного напряжения в сети (пункт II) рекомендуется применять устройства для контроля напряжения фазы или аналогичные приборы. На рис. 7 показана схема подключения устройства РКФ-3/1, предназначенного для контроля фаз.

Выбор конкретной схемы для защиты промышленного энергообъекта зависит от конфигурации оборудования, высоты антенно-мачтовых сооружений и типа ввода линий электропитания (подземный или воздушный). Для энергообъектов, имеющих высотные АМС или обладающих воздушным вводом линий электропитания с рабочим напряжением 220/380 В, применяют как минимум 2-х ступенчатые схемы для защиты от токов импульсного перенапряжения, в которых используются УЗИП I и II класса защиты (ГОСТ Р 51992-2002 (МЭК 61643-1-98) «Устройства для защиты от импульсных перенапряжений в низковольтных силовых распределительных системах).

  • Для цепей L-N – 1-фазные грозовые разрядники, выдерживающие импульсные токи при прямом попадании молнии (10/350 мкс с амплитудным значением свыше 50 кА), с уровнем защиты (1Гр) более 4 кВ и способные автоматически гасить электрические дуги с токами не менее 4 кА.
  • Для цепей N-PE – грозовые разрядники, способные пропускать импульсные токи перенапряжения (10/350 мкс, с амплитудой до 120 кА), обеспечивающие минимальный уровень защиты (UP) не менее 2 кВ и способные гасить возникающие импульсные токи силой до 300 А. Данные разрядники не применяются в 4-х проводных схемах электропитания для сетей типа ТN-С.
  • В цепях L-N – 1-фазные (3-х фазные) защитные устройства варисторного типа, способные выдержать максимальный импульсный ток до 40 кА (8/20 мкс) с уровнем защиты (UP) более 1,5 кВ.
  • В цепях N-PE – грозовые разрядники II класса защиты, способные выдерживать наибольшие импульсные токи перенапряжения с амплитудой до 50 кА (8/20 мкс) и обладающие уровнем защиты (UP) от 1,5 кВ. В распределительных сетях ТN-С установка данных разрядников не обязательна.

Схемы включения УЗИП для защиты электропитающих сетей типа ТN-С-S и ТN-S приведены на Рис. 4 ...11. При монтаже защитных устройств следует выдерживать расстояние между смежными ступенями защиты (не менее десяти метров), измеренное по силовому электрическому кабелю. Данное требование является крайне важным – его соблюдение обеспечивает безотказную работу защитных устройств. При размещении защитных устройств I и II ступеней на меньшем расстоянии или при их расположении в одном и том же месте, следует установить дополнительное согласующее устройство (разделительный дроссель импульсного типа).

Для энергообъектов, использующих схему с подземным кабельным вводом электропитания, допустимо применение варисторных УЗИП комбинированного типа, которые по своим входным техническим параметрам полностью соответствуют требованиям к техническим устройствам II класса защиты (способность выдерживать импульсные токи до 25 кА с формой амплитуды 10/350 мкс). По выходным техническим параметрам (степень защиты UP (1 300...1 700 В), импульсный ток с формой амплитуды 8/20 мкс) они также должны подходить под требования для УЗИП II класса защиты. Использование данных защитных устройств позволяет полностью отказаться от применения разделительных дросселей.

Пример подобных УЗИП для энергообъекта, обладающего 2-мя подземными вводами электрического питания, привёден на Рис. 8. Отказ от схемы с использованием разделительных дросселей в пользу варисторных УЗИП позволяет получить экономию до 40%. Однако следует помнить, что при установке подобных защитных устройств на линии электропитания с воздушным вводом, нельзя исключать вероятность повреждения защитных устройств при прямом попадании грозового разряда в провода линии электропередач данного энергообъекта.

Требования к монтажу и установке УЗИП

При использовании защитных устройств в ЭПУ энергообъекта контейнерного типа, имеющего ограниченные габаритные характеристики, рекомендуется выполнить следующее:

  • Защитные устройства I класса (грозовые разрядники или комбинированные УЗИП варисторного типа) лучше всего устанавливать во вводном электрощитке, после вводного автоматического выключателя, но перед счетчиком для учёта электроэнергии, что обеспечивает надёжную защиту последнего.
  • Защитные устройства II класса также размещаются во вводном распределительном щитке непосредственно перед автоматическими выключателями (Рис.8, 9). В случае необходимости данные УЗИП монтируются на DIN-рейке выпрямительного устройства (Рис. 10, 11). Этот вариант подходит в том случае, когда устанавливается новый выпрямитель (при наличии УЗИП II класса защиты).
  • Для энергообъектов контейнерного типа во вводном распределительном щитке следует устанавливать импульсные разделительные дроссели, обладающие индуктивностью 15 мкГн. На входе в ЭПУ или на линии, где расположены дроссели, устанавливаются защитные устройства, предназначенных для защиты дросселей и проводников от токов перенапряжения и токов КЗ. На Рис. 8 ...11 показаны схемы, где используются распределительные дроссели и автоматические выключатели (32 А).
  • При использовании варисторных УЗИП комбинированного типа требования по их монтажу схожим с теми, которые предъявляются к грозовым разрядникам. Однако при этом можно не устанавливать разделительные дроссели и варисторные УЗИП II-го класса.

Рис.11. Подключение защитных устройств к сети ТК-8 с рабочим напряжением 220/380 В

В тех случаях, когда при использовании подобных УЗИП в действующей ЭПУ энергообъекта габаритные характеристики защитных устройств не являются главным критерием и когда нежелательны какие-либо изменения в монтажной схеме ЭПУ, следует устанавливать дополнительные электрощиты для защиты от импульсных токов перенапряжений (ЩЗИП) (Рис. 12...14).

Рис.12. Применение защитных устройств в 4-х проводной сети ТN-С (220/380 В) с 2-мя подземными вводами.

Рис.13. Применение защитных устройств в 4-х проводной сети ТN-С (220/380 В) с 2-мя воздушными вводами (с установкой разделительных дросселей)

Рис.14. Применение защитных устройств в 4-х проводной сети ТN-С (220/380 В) с 2-мя воздушными вводами (без использования в схеме разделительных дросселей)

Существуют схемы, где установлены дополнительные разделительные дроссели между I и II ступенями защиты. Следует заметить, что номинал разделительных дросселей подбирается с учётом максимального тока нагрузки, взятого отдельно для каждой фазы ЭПУ энергообъекта. Для установки на DIN-рейку в модельном ряду производителя предусмотрены разделительные дроссели с номиналом до 63 А. Защитные устройства, способные выдерживать большие токи (до 120 А), обладают значительными габаритными размерами, что может вызвать трудности при их монтаже в распределительные щиты небольших размеров.

Поэтому, при больших габаритах энергообъекта и значительных рабочих токах, имеет практический смысл не использовать разделительные дроссели и устанавливать УЗИП различных ступеней защиты на расстоянии не менее десяти метров в различных распредщитах. Но если разделительные дроссели входят в схему защиты энергообъекта, на вводе в ЭПУ или на той силовой линии, где размещены дроссели, следует устанавливать устройства для защиты дросселей и электрических кабелей от токов импульсного перенапряжения и токов КЗ. В этом случае использование предохранителей, подключенных последовательно с каждым устройством для защиты от токов импульсного перенапряжения, технически нецелесообразно.

Так как номиналы предохранителей, предусмотренные изготовителем защитных устройств, превышают номинальные значения разделительных дросселей (при максимальном токе до 120 А). При отсутствии в схеме защиты необходимых дросселей (Рис. 8 и 10), следует обеспечить защиту ЭПУ от аварийных режимов КЗ в устройствах защиты от импульсного перенапряжения за счёт последовательного подключения предохранителей, номинал которых должен соответствовать ТУ производителя данных устройств. При более низком номинальном значении устройств для защиты от максимальных токов импульсного перенапряжения (защитных автоматических выключателей или предохранителей), установленных перед местом подключения УЗИП, допускается монтаж вышеприведённой схемы без предохранителей.

Важнейшие технические параметры защитных устройств, использованных в вышеприведённых схемах (Рис. 8...14), приведены в Таблице 1.

Таблица 1.

Примечания к таблице 1:

  • Указаны только крайние позиции среди устройств серии 5РС
  • Представлены только 1-фазные устройства серии 8РС

Для эффективной защиты оборудования энергообъекта по вторичному питанию в каждую цепь устанавливаются соответствующие УЗИП (48 В или 60 В). Количество защитных устройств и места их расположения выбираются с учетом конкретного типа электрооборудования и условий прокладки трасс для шин вторичного питания по энергообъекту. На Рис. 11 варисторный УЗИП мод. РIII-60 размещён на DIN-рейке выпрямительного устройства. Последовательно с УЗИП подключен предохранитель 63 АgG, предназначенный для защиты выхода 48 VDC выпрямительного устройства в случае возникновения КЗ в варисторе.

Рис.15. Схема защиты электропитающих установок объекта контейнерного типа по цепям постоянного тока со стороны линий огней системы светового ограждения.

Также на Рис. 15 показана схема защиты ЭПУ энергообъекта контейнерного типа со стороны электропитания и от заноса перенапряжения от линии питания с рабочим напряжением 220 В огней светового ограждения (СОМ), размещённых на антенно-мачтовом сооружении.

Итак, в предыдущих публикациях были рассмотрены физические процессы, лежащие в основе имеющих существенную дальность действия вторичных эффектов при разряде молнии – и . Ознакомившись с материалом, вы непременно придете к выводу о необходимости установки внутренней молниезащиты.

Такая защита, помимо уже рассмотренной ранее , включает также установку устройств защиты от импульсных перенапряжений (УЗИП). Ниже будет дан обзор различных типов этих устройств, принципов работы и правил их установки в системах электрокоммуникаций здания.

Возникающие в электросети импульсные перенапряжения бывают двух типов – противофазные и синфазные. Первые, называемые также поперечными или провод-провод, возникают на клеммах электрооборудования L/N. Для защиты от подобных перенапряжений соответствующий УЗИП устанавливается между фазными L и заземленным PEN проводниками или между фазными L и нулевым N и нулевым N и PE проводниками. Синфазные (продольные или провод – земля) перенапряжения возникают на клеммах N/PE и L/PE. Для защиты от них соответствующий УЗИП устанавливается между L и PE и N и PE проводниками. Более опасными для электрооборудования являются противофазные напряжения, но при проектировании внутренней молниезащиты, как правило, на границах зон используют схемы подключения для защиты от обоих типов перенапряжений.

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ и СВОЙСТВА УЗИП

Подключение УЗИП к линиям электропитания может осуществляться тремя разными способами. Самым оптимальным является применение V-образной конфигурации. В этом случае рабочий ток течет по входящему участку цепи, затем внутри устройства по шунту и далее по исходящему участку. Последовательное подключение в разрыв проводников питания. При использовании такой конфигурации необходимо, чтобы номинальный ток нагрузки устройства I L превышал максимальное значение рабочего тока электроцепи.

И третий вариантТ-образная конфигурация или параллельное подключение позволяет использовать УЗИП в системе электропитания любой мощности, поскольку в этом случае через устройство рабочий ток не проходит. Но при этом длина присоединяющего УЗИП к электросети провода не должна превышать 50 см. Поскольку при крутизне переднего фронта импульса за счет индуктивного сопротивления провода на каждом его метре будет иметь место падение напряжения около 1 кВ, которое прибавится к величине напряжения после УЗИП.

Согласно международного стандарта IEC 61643 УЗИП для силовых линий электропитания разделяются на три типа (1 – 3) согласно трем классам испытаний (І – ІІІ). Принятый на основе этого стандарта российский ГОСТ Р 51992-2002 использует только классы испытаний. В соответствии с немецким стандартом E DIN VDE 0675-6 устройства защиты от перенапряжений разделяются на четыре класса требований, обозначаемых буквами (A, B, C и D).

Класс испытаний І означает проверку импульсом 10/350 мкс, моделирующим воздействие прямого удара молнии. Испытания проводятся в рабочем режиме импульсом тока I imp , величина которого указывается затем на корпусе изделия.

Класс испытаний ІІ включает проверку на возможность УЗИП один раз пропустить и не выйти из строя (то есть без разрушений) импульс тока 8/20 мкс величиной I max .

При этом УЗИП обоих классов обязаны выдерживать серию из пяти нарастающих импульсов амплитудой 0,1; 0,25; 0,5; 0,75 и 1,0 от величины I imp для класса І и от I max – для класса ІІ. Также устройства обоих классов проходят испытания импульсом 8/20 мкс для определения значения номинального импульсного разрядного тока I n , то есть такого воздействия, которое УЗИП может переносить без последствий для работоспособности многократно (не менее 15 импульсов).

При I n часто определяют одну из важнейших характеристик УЗИП – уровень защитного напряжения или уровень защиты U p . Этот параметр показывает, на какую величину устройство способно ограничивать появляющийся на его клеммах импульс напряжения, то есть до какого значения за ним снизиться действующее на электрооборудование импульсное перенапряжение. U p может измеряться и при иных величинах импульса тока, например I max , поэтому на УЗИП обязательно должно указываться при каких параметрах определялся уровень защиты.

Класс испытаний ІІІ означает проверку действия на УЗИП комбинированной волны: при разомкнутой цепи подается испытательный импульс напряжения 1,2/50 мкс, а при коротком замыкании цепи - импульс тока 8/20 мкс. При этом на корпусе устройства указывается значение U oc - напряжения разомкнутой цепи.

Помимо указанных, важными параметрами для всех УЗИП являются также:

  • U n - номинальное рабочее напряжение (то есть на электросеть с каким действующим напряжением рассчитано применение устройства);
  • U c - наибольшее длительно допустимое рабочее напряжение (то есть максимальное напряжение в электросети переменного тока при котором устройство будет нормально работать длительное время);
  • t A - время срабатывания.

Основой любого УЗИП является нелинейный элемент, который резко увеличивает свою проводимость при превышении входящим напряжением определенного значения и восстанавливает ее исходную величину после уменьшения напряжения на входе. В качестве такого нелинейного элемента в УЗИП для бытовых низковольтных (до 1000 В) линий электроснабжения используются варисторы, разрядники и диоды двойной проводимости.

Воздушный разрядник состоит из электродов, разделенных воздушным зазором определенной величины – искровым промежутком. При прохождении импульса перенапряжения за счет электрического пробоя в зазоре зажигается электрическая дуга, обеспечивающая падение напряжения. Искровой промежуток в устанавливаемом в доме разряднике обязательно должен быть герметичным, то есть с защищающим от вылета раскаленных газов и плазмы закрытым корпусом. Такие УЗИП в состоянии отводить импульсы тока величиной свыше I imp = 100 кА и относятся к классу І.

В газонаполненном или газовом разряднике искровой промежуток заполнен инертным газом (аргон, неон и т.п.). Электроды и находящийся под низким давлением газ окружены герметичным металлокерамическим корпусом. Часто с целью улучшения уровня защиты на электроды наносится покрытие из радиоактивного материала для дополнительной ионизации искрового промежутка. Как правило, газовые разрядники предназначены для отвода импульсов тока 8/20 мкс величиной < 40 кА и относятся к классам ІІ или ІІІ.

После окончания действия импульса через разрядник будет проходить поддерживаемый самой электросетью сопровождающий ток, величина которого приближается к значению, рассчитываемому для тока короткого замыкания в месте установки устройства. То есть электрическая дуга замыкает не только импульс перенапряжения, но и цепь электропитания. Если разрядник не сможет погасит этот ток, то длительном воздействии это может привести к возгоранию. Поэтому для установки между проводниками L и N или L и PE (PEN) следует выбирать разрядники, у которых указанное на корпусе значение сопровождающего тока I f выше расчетного тока короткого замыкания в этом месте электроцепи. Время срабатывания УЗИП на основе разрядников t A ≤ 100 нс.

Варистор по сути является полупроводниковым резистором, для которого при характерна нелинейная зависимость электропроводности от приложенного внешнего напряжения. Во время действия импульса перенапряжения сопротивление варистора резко уменьшается и основной всплеск тока протекает через него, а не через электрооборудование. Выделяемая при прохождении через варистор тока энергия рассеивается в виде тепла. После окончания импульса перенапряжения варистор практически мгновенно восстанавливает свое первоначальное большое сопротивление. Во избежание перегрева, вызывающего разрушение с угрозой возгорания, ведущие производители снабжают устройства внутренним терморасцепителем.

Производят варисторы путем спекания при температуре около 1700 о C «таблетки» из порошкообразного полупроводника - оксида цинка (ZnO) или карбида кремния (SiC) и связующего зерна вещества (смолы, жидкое стекло, лаки и т.д.). После этого поверхность такой композитной «таблетки» металлизируется и к ней припаиваются выводы. Нелинейность изменения сопротивления варисторов при прикладываемом напряжении связана со сложными электрофизическими явлениями на поверхности зерен кристаллитов полупроводника и в межзеренной прослойке.

В отличие от разрядника, варистор не имеет сопровождающего тока, но для него характерно наличие тока утечки. То есть при нормальной работе находящегося в режиме ожидания варисторного УЗИП через него протекает ток, величина которого при номинальном рабочем напряжении электросети не превышает 1 мА. Значение напряжения, при котором через конкретный варистор протекает ток в 1 мА, называется классификационным. Поэтому для оптимизации параметров УЗИП производители выпускают модели, в которых последовательно соединяют разрядник и варистор. При этом первым исключается ток утечки, а вторым – сопровождающий ток.

Время срабатывания УЗИП на основе варисторов t A ≤ 25 нс. Используют их в устройствах всех трех классов І, ІІ и ІІІ. Заметим однако, что изготавливать надежные варисторные УЗИП для импульсов 10/350 мкс величиной более 20 кА экономически нецелесообразно. Поэтому не стоит доверять указанному на корпусе устройства І класса значению I imp , превышающему 20 кА.

Высоковольтные лавинные диоды , используемые в качестве нелинейного элемента УЗИП, обладают вольт-амперной характеристикой с резко выраженной нелинейностью. Такое свойство позволяет им ограничивать импульсы перенапряжения с превышающей напряжение лавинного пробоя p-n-перехода амплитудой. Подобные диоды называют также супрессорами или симметричными TVS-диодами. Используются они в УЗИП класса ІІІ со временем срабатывания t A ≤ 5 нс.

Нередко все виды УЗИП не совсем корректно называют грозоразрядниками или ограничителями перенапряжения. Последний термин используют в высоковольтной технике только для варисторных устройств.

В системе электроснабжения помимо коротких импульсов могут также возникать временные перенапряжения длительностью более 10 мс и амплитудой свыше 1,1U n . В случае, если амплитуда временного перенапряжения превысит для установленного УЗИП значение U c , это приведет к выходу устройства из строя с большой вероятностью возгорания. Поэтому последовательно с УЗИП следует устанавливать предохранители типа gG/gL, которые имеют меньшее по сравнению с автоматическими выключателями время срабатывания. Номинал предохранителя указывается в характеристиках УЗИП.

ВЫБОР и УСТАНОВКА УЗИП

Относящиеся к классу I (Типа 1 или класса B) устройства защиты от импульсных перенапряжений в линиях электроснабжения устанавливают на вводе в здание, где проходит граница зон молниезащиты LPZ 0 – LPZ 1. Устройства подобного типа обеспечивают в зоне LPZ 1 уровень защиты U p ≤ 4 кВ. Выбранные УЗИП после вводного автомата монтируются во вводно-распределительном устройстве, главном распределительном щите (ГРЩ) или, при нехватке места, рядом в отдельном щите. В случае установленной системы внешней молниезащиты и, особенно при воздушном вводе в дом линий электроснабжения монтаж внутренней молниезащиты является крайне необходимым.

Выбор параметра I imp для устройств первой линии обороны электрооборудования можно определять исходя из правила, что 50% тока молнии при прямом ударе попадает в дом по внешним токопроводящим коммуникациям. Для загородного дома (ІІІ класс молниезащиты) значение тока разряда молнии принимается равным 100 кА (согласно статистике наблюдений только в 5% случаев разряды молнии превышают это значение).

Для надежного уровня безопасности линий электропитании считают, что весь ток молнии пойдет по силовым кабелям. Таким образом, если в молниеприемник ударил разряд в 100 кА, то 50 кА пройдет по входящим в дом проводам, разделившись по количеству вводов. При прямом ударе в воздушную линию электроснабжения ток приблизительно в равных долях устремится к ТП и в дом. То есть, при двух входящих проводах (система заземления TN-C) на каждом из них можно получить ток 25 кА. Поэтому с учетом возможной неравномерности распределения тока имеем I imp ≤ 30 кА.

Для установленной в доме бытовой техники обеспечиваемого в LPZ 1 уровня защиты недостаточно, поэтому в доме выделяется вторая зона молниезащиты и на границе LPZ 1 - LPZ 2 устанавливаются устройства защиты от импульсных перенапряжений класса II (Типа 2 или класса C). Их монтируют во внутренних распределительных щитах (этажных или других) или в специальных щитах рядом с ними. Установка подобных УЗИП должна обеспечивать в зоне LPZ 1 уровень защиты U p ≤ 2,5 кВ.

Если ГРЩ в доме один или к нему необходимо непосредственно подключит оборудование, которое нуждается в уровне защиты, соответствующем зоне LPZ 2, то в ГРЩ устанавливаются УЗИП классов І и ІІ или готовый модуль І + ІІ. Для правильной очередности срабатывания между устройствами разных классов должно быть образованная проводом электропитания линия задержки длинной не менее 10 метров. Поэтому при установке в одном щите для их согласования необходимо использовать соответствующие дроссели. В готовом модуле такое согласование уже выполнено. С другой стороны, при выходе из строя одного входящего в модуль УЗИП заменять придется весь модуль.

Для еще более чувствительного оборудования (например, компьютеры или серверы, факсовые аппараты и т.д.) выделяется зона молниезащиты LPZ 3. В этом случае на границе LPZ 2 - LPZ 3 устанавливают УЗИП класса III (Типа 3 или класса D), которые обеспечивают уровень защиты U p ≤ 1,5 кВ. Защищаемое оборудования в этом случае не должно размещаться далее 5 метров от защищающего устройства. УЗИП класса III имеют наибольшее разнообразие конструкций: для монтажа в щите на DIN-рейку, для навесного монтажа, для установки в розеточные коробки и кабель-каналы или в виде сетевого адаптера.

Исполнение и схема монтажа УЗИП зависит от того, какая система заземления используется при организации электроснабжения здания – TT, TN-C или TN-S (получаем при разделении на вводе в дом PEN проводника). Поскольку цель данной публикации показать необходимость применения УЗИП для защиты электрооборудования и вкратце рассказать, что они собой представляют и какие имеют важные параметры, мы не будем обсуждать конкретные правила и инструкции их установки.

Если Вы не очень сильны в электротехнике то не рекомендуем самостоятельно монтировать в распределительные щиты дома УЗИП, поскольку эти устройства могут надлежаще выполнять свои функции только при правильной установке. Помимо системы электроснабжения необходимо также устанавливать соответствующие защитные устройства и на линиях слаботочных коммуникаций: спутниковое телевидение, телефонный кабель, витая пара и т.д. Поэтому предоставьте расчет и монтаж внутренней молниезащиты специалистам, проверить компетентность которых Вам помогут публикации сайта.

Импульсное перенапряжение (ИП) – это кратковременное, длящееся доли секунд, и резкое повышение (скачок) напряжения, которое опасно для электрической линии и электрического оборудования своим разрушающим воздействием.

Причины появления ИП

Существует две основных причины появления ИП, это природная и технологическая. В первом случае причиной является прямое или косвенное попадание молнии в линию электропередачи (ЛЭП) или в молниезащиту защищаемого здания. Во втором случае скачки напряжения появляются из-за коммутационных перегрузок на силовых трансформаторных подстанциях.

Назначение УЗИП

Чтобы обезопасить электрическую линию, электрическое оборудование и электрические приборы от резких скачков напряжения и опасных электрических токовых импульсов применяют устройства защиты от импульсных перенапряжений (сокращённо УЗИП).

В состав УЗИП входит как минимум один нелинейный элемент. Если их несколько, то внутреннее подключение УЗИП может выполняться между разными фазами, между фазой и заземлением (землёй), а также между нулём и фазой, между нулём и заземлением. Кроме того, подключение нелинейных элементов выполняется и в виде определённой комбинации.

Виды УЗИП

По количеству вводов УЗИП бывают одновводные и двухвводные. Подключение первого вида выполняется параллельно защищаемой электрической цепи. УЗИП второго вида имеют два комплекта выводов – вводные и выводные.

По типу нелинейного элемента делятся на:

● УЗИП коммутирующего типа;

● УЗИП ограничивающего типа;

● УЗИП комбинированного типа.

  1. УЗИП коммутирующего типа в нормальном рабочем режиме обладает достаточно высоким значением сопротивления. Но в случае резкого скачка напряжения сопротивление УЗИП резко изменяется до очень низкого значения. УЗИП коммутирующего типа основаны на «разрядниках».
  2. УЗИП ограничивающего типа также изначально имеет сопротивление большой величины, но по мере увеличения напряжения в сети и увеличения волны электрического тока, сопротивление постепенно снижается. УЗИП данного типа нередко называют «ограничителями».
  3. Комбинированные УЗИП конструктивно состоят из элементов с функцией коммутации и элементов с функцией ограничения, соответственно они способны коммутировать напряжение, ограничивать повышение напряжения, а также способны выполнять эти две функции одновременно.

Классы УЗИП

УЗИП делят на три класса. УЗИП класса 1 применяют для защиты от ИП, вызванных прямым попаданием молнии в молниезащиту или в линию электропередачи. УЗИП класса 1 обычно монтируют внутри вводного распределительного шкафа (ВРЩ) или внутри главного распределительного щита (ГРЩ). УЗИП класса 1 нормируются импульсным электрическим током с формой волны 10/350 мкс. Это наиболее опасное значение импульсного тока.

УЗИП класса 2 применяются в качестве дополнительной защиты от попаданий молнии. Также их применяют, когда нужно выполнить защиту от коммутационных помех и перенапряжений. Монтаж УЗИП класса 2 выполняется после УЗИП класса 1. УЗИП класса 2 нормируется импульсным током с формой волны 8/20 мкс. Конструкция УЗИП класса 2 – это основание (корпус) и специальные сменные модули, имеющие сигнализирующий индикатор. По индикатору можно узнать о состоянии УЗИП. Зелёный цвет индикатора указывает на нормальный режим работы устройства, оранжевый цвет индикации указывает на необходимость замены сменных модулей. Иногда в конструкции УЗИП используется специальный электрический контакт, который дистанционно передаёт сигнал о том, в каком состоянии находится устройство. Это очень удобно для обслуживания УЗИП.

УЗИП класса 1+2 применяются для защиты отдельных жилых зданий. УЗИП данного типа устанавливаются недалеко от электрооборудования. Они используются в качестве последнего барьера, защищаемого оборудование от небольших остаточных перенапряжений. В качестве УЗИП данного класса выпускаются специализированные электрические вилки, розетки и др.

Использование УЗИП всех трёх классов, позволяет построить трехступенчатую защиту от импульсных перенапряжений.

УЗИП подключаются к однофазной сети 220В или к трёхфазной сети 380В. На промышленных объектах наиболее часто применяются трёхфазные УЗИП. Что касается частных домов и бытовой электрической сети, то используется УЗИП на напряжение 220В. Поэтому полная схема, в которой используется УЗИП, должна быть выполнена на такое напряжение и с применением соответствующего типа УЗИП. Вариант схемы подключения и конструктивного исполнения применяемого УЗИП зависит от режима нейтрали.

Если нейтраль N и защитный проводник PE объединены в один общий проводник PEN, то для защиты от ИП применяется самое простое по конструкции УЗИП, которое состоит всего лишь из одного блока. Схема подключения такого УЗИП выполняется в следующем виде: фазный провод, подключаемый на вход УЗИП – выходной провод, подключённый к PEN-проводнику – параллельно подключённое защищаемое электрооборудование или электрические аппараты.

По современным электротехническим требованиям нейтраль электрической сети должна выполняться отдельно от защитного проводника PE. В таком случае используется УЗИП с двумя модулями и отдельными клеммами L, N, PE. Вариант такой схемы подключения выглядит следующим образом: фазный провод подключается на клемму устройства защитного отключения L и шлейфом идёт на защищаемое оборудование. Нулевой проводник подключается на клемму N устройства УЗИП и шлейфом также идёт на оборудование. Клемма PE устройства УЗИП подключается на защитную шину PE. Аналогично заземляется и защищаемое оборудование.

Таким образом, и в первом и во втором случае при возникновении перенапряжений импульсные токи уходят в землю либо по проводнику PEN либо по защитному проводнику PE, не затрагивая защищаемое электрооборудование.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то