Управление процессами аналитической обработки информации. Обзор и анализ программных технологий разработки WEB-приложений для аналитической обработки данных. Потребление расходных материалов

Аналитическая обработка данных - это анализ данных, требующий соответствующего методического обеспечения и определенного уровня подготовки специалистов.

Современные информационные технологии дают возможность автоматизировать процессы анализа накопленной первичной информации, строить аналитические модели, получать готовые решения и использовать их на практике. Основными требованиями , которые предъявляются к методам анализа, являются эффективность, простота, автоматизм. Эта концепция лежит в основе двух современных технологий: Data Mining и Knowledge Discovery in Databases (KDD).

Data Mining - это процесс обнаружения в сырых данных ранее неизвестных, нетривиальных, практически полезных и доступных интерпретации знаний, необходимых для принятия решений в различных сферах человеческой деятельности (определение Г. Пятецкого-Шапиро - одного из основателей этого направления).

Технология Data Mining направлена на поиск неочевидных закономерностей. Этапами анализа данных являются:

  • 1) классификация (classification ) - обнаружение признаков, характеризующих группы объектов исследуемого набора данных - классы. Методы решения, используемые для задачи классификации: методы ближайшего соседа (nearest neighbor) и ^’-ближайшего соседа (k-nearest neighbor)-, байесовские сети {Bayesian networks)-, индукция деревьев решений; нейронные сети {neural networks)-,
  • 2) кластеризация {clustering) - разбиение объектов на группы, так как классы объектов изначально не определены. Пример метода решения задачи кластеризации: самоорганизующиеся карты Кохонена - нейронная сеть с обучением без учителя. Важной особенностью этих карт является их способность отображать многомерные пространства признаков на плоскость, представив данные в виде двумерной карты;
  • 3) ассоциация {associations) - выявление закономерностей между свя- занными событиями в наборе данных. Эти закономерности выявляются не на основе свойств анализируемого объекта, а между несколькими событиями, которые происходят одновременно, например, алгоритм Apriori;
  • 4) последовательность {sequence), или последовательная ассоциация {sequential association), - поиск временных закономерностей между транзакциями, т.е. устанавливаются закономерности не между одновременно наступающими событиями, а между событиями, связанными во времени. Ассоциация - это последовательности с временным лагом, равным нулю. Правило последовательности: после события X через определенное время произойдет событие У;
  • 5) прогнозирование {forecasting ) - строится на основе особенностей исторических данных, т.е. происходит оценивание опущенных или же будущих значений целевых численных показателей. Для решения задач прогнозирования используются методы математической статистики, нейронные сети и др.;
  • 6) определение отклонений или выбросов {deviation detection), анализ отклонений или выбросов - обнаружение и анализ данных, наиболее отличающихся от общего множества данных;
  • 7) оценивание {estimation) - предсказание непрерывных значений признака;
  • 8) анализ связей {link analysis) - задача нахождения зависимостей в наборе данных;
  • 9) визуализация {visualization, graph mining) - создание графического образа анализируемых данных. Используются графические методы, показывающие наличие закономерностей в данных, например, представление данных в 2D и 3D измерениях;
  • 10) подведение итогов (summarization ) - описание конкретных групп объектов из анализируемого набора данных.

KDD - это процесс выявления полезных знаний из коллекции данных. Эта технология включает в себя вопросы: подготовки данных, выбора информативных признаков, очистки данных, применения методов Data Mining (DM), постобработки данных и интерпретации полученных результатов.

Процесс Knowledge Discovery in Databases состоит из следующих шагов:

  • 1) постановка задачи - анализ задач пользователя и особенности области приложения, выбор набора входных и выходных параметров;
  • 2) подготовка исходного набора данных - создание хранилища данных и организация схемы сбора и обновления данных;
  • 3) предобработка данных - основана на применении методов Data Mining, с точки зрения этого метода данные должны быть качественны и корректны;
  • 4) трансформация, нормализация данных - приведение информации к пригодному для последующего анализа виду;
  • 5) Data Mining - автоматический анализ данных, основанный на применении различных алгоритмов для нахождения знаний (нейронные сети, деревья решений, алгоритмы кластеризации, установления ассоциаций и т.д.);
  • 6) постобработка данных - интерпретация результатов и применение полученных знаний в бизнес приложениях.

УДК 621. 37/39. 061. 2/4

МЕТОДЫ АНАЛИТИЧЕСКОЙ ОБРАБОТКИ ИНФОРМАЦИИ

ГВОЗДИНСКИЙА.Н., КЛИМКО Е.Г., СОРОКОВОЙ А.И.

Проводится аналитический обзор методов интеллектуального анализа данных (также называют: ИАД, data mining, обнаружение знаний в базах данных) с учетом использования определенного метода для условий Украины. Обзор методов аналитической обработки информации в сложных информационных системах рассматривается с точки зрения скорости извлечения данных, сбора обобщенной информации и повышения достоверности процесса.

Процесс интеллектуального анализа данных - это аналитическое исследование больших обьемов информации в целях определения закономерностей и взаимосвязей между переменными, которые можно в дальнейшем применить к новым данным. Полученные сведения преобразуются до уровня информации, которая характеризуется как знание. Этот процесс состоит из трех основных этапов :

Исследование (выявление закономерностей);

Использование выявленных закономерностей для построения модели;

Анализ исключений для обнаружения и объяснения отклонений в найденных закономерностях.

Нахождение нового знания средствами ИАД - новое и быстро развивающееся направление, использующее методы искусственного интеллекта, математики, статистики. Этот процесс включает в себя следующие шаги :

Определение проблемы (постановка задачи);

Подготовка данных;

Сбор данных: оценка их, объединение и очистка, отбор и преобразование;

Построение модели: оценка и интерпретация, внешняя проверка;

Использование модели;

Наблюдение за моделью.

Построить модель и улучшить ее качество помогает формальная проверка данных с помощью последовательности запросов или предварительного интеллектуального анализа данных. Средства такого анализа включают следующие основные методы: нейронные сети, деревья решений, генетические алгоритмы, а также их комбинации .

Нейронные сети относят к классу нелинейных адаптивных систем, строением они условно напоминают нервную ткань из нейронов.

Это набор связанных друг с другом узлов, получающих входные данные, осуществляющих их обработку и вырабатывающих на выходе некоторый результат. На узлы нижнего слоя подаются значения входных параметров, на их основе производятся вычисления, необходимые для принятия решений, прогнозирования развития ситуации и т.д.

Эти значения рассматривают как сигналы, которые передаются в вышележащий слой, усиливаясь или ослабляясь в зависимости от числовых значений (весов), приписываемых межнейронным связям. На выходе нейрона самого верхнего слоя вырабатывается значение, которое рассматривается как ответ, реакция всей сети на введенные начальные значения. Так как каждый элемент нейронной сети частично изолирован от своих соседей, у таких алгоритмов имеется возможность для распараллеливания вычислений. На рис. 1 показано условное

Рис.1. Нейронная сеть

Размер и строение сети должны соответствовать существу исследуемого явления. Построенная сеть подвергается процессу так называемого “обучения” . Нейроны сети обрабатывают входные данные, для которых известны и значения входных параметров, и правильные ответы на них. Обучение состоит в подборе весов межнейронных связей, которые обеспечивают наибольшую близость ответов сети к известным правильным ответам. После обучения на имеющихся данных сеть готова к работе и может быть использована для построения прогнозов поведения объекта в будущем, опираясь на данные его развития в прошлом, производить анализ, выявлять отклонения и сходства. Достоверные прогнозы могут формироваться, не уточняя вид зависимостей, на базе которых он основан.

Нейронные сети используются для решения задач прогнозирования, классификации или управления.

Достоинство - сети могут аппроксимировать любую непрерывную функцию, нет необходимости заранее принимать какие-либо предположения относительно модели. Исследуемые данные могут быть неполными или зашумленными.

Недостаток-необходимость иметь большой объем обучающей выборки. Окончательное решение зависит от начальных установок сети. Данные должны быть обязательно преобразованы к числовому виду. Полученная модель не объясняет обнаруженные знания (так называемый “черный ящик”).

Деревья решений используют разбиение данных на группы на основе значений переменных. В результате получается иерархическая структура операторов “Если... То...”, которая имеет вид дерева. Для классификации объекта или ситуации нужно ответить на вопросы, стоящие в узлах этого дерева, начиная от его корня. Если ответ положительный, переходят к правому узлу следующего уровня, если отрицательный - к левому узлу и т.д. Заканчивая ответы, доходят до одного из конечных узлов, где

РИ, 2000, № 4

указывается, к какому классу надо отнести рассматриваемый объект.

Деревья решений предназначены для решения задач классификации и поэтому весьма ограничено применяются в области финансов и бизнеса.

Достоинство метода - простое и понятное представление признаков для пользователей. В качестве целевой переменной используются как измеряемые, так и не измеряемые признаки - это расширяет область применения метода.

Недостаток-проблема значимости. Данные могут разбиваться на множество частных случаев, возникает “кустистость “ дерева, которое не может давать статистически обоснованных ответов. Полезные результаты получают только в случае независимых признаков.

Генетические алгоритмы имитируют процесс естественного отбора в природе. Для решения задачи, более оптимального с точки зрения некоторого критерия, все решения описываются набором чисел или величин нечисловой природы. Поиск оптимального решения похож на эволюцию популяции индивидов, которые представлены их наборами хромосом. В этой эволюции действуют три механизма, представленных на рис. 2.

Можно выделить следующие механизмы:

Отбор сильнейших наборов хромосом, которым соответствуют наиболее оптимальные решения;

Скрещивание - получение новых индивидов при помощи смешивания хромосомных наборов отобранных индивидов;

Мутации - случайные изменения генов у некоторых ицдивидов популяции.

В результате смены поколений вырабатывается такое решение поставленной задачи, которое уже нельзя дальше улучшить.

Достоинство - метод удобен для решения различ -ных задач комбинаторики и оптимизации, предпочтителен больше как инструмент научного исследования.

Недостаток - возможность эффективно сформулировать задачу, определить критерий отбора хро -мосом и сама процедура отбора являются эвристическими и под силу только специалисту. Постановка задачи в терминах не дает возможности проанализировать статистическую значимость получаемого с их помощью решения.

Компьютерные технологии интеллектуальной аналитической обработки данных позволяют использовать методы искусственного интеллекта, статистики, теории баз данных и дают возможность создавать современные интеллектуальные системы.

В настоящее время остро стоит вопрос о создании информационных хранилищ (хранилище данных, data warehouse) - оптимально организованных баз данных, которые обеспечивают наиболее быстрый и удобный доступ к информации, необходимой для принятия решений. Хранилище накапливает достоверную информацию из различных источников за большой промежуток времени, которая остается неизменной. Данные объединены и хранятся в соответствии с теми областями, которые они описывают (предметно-ориентированы) и удовлетворяют требованиям всего предприятия (интегрированы).

Учитывая сравнительно небольшой срок существования большинства отечественных предприятий, немногочисленность анализируемых данных, нестабильность предприятий, которые подвержены переменам в связи с изменением законодательной базы, возникает трудность в выработке эффективной стратегии принятия решений с помощью систем интеллектуального анализа данных. Поэтому наиболее приемлемым методом исследования данных в области финансов и бизнеса прогнозируются генетические алгоритмы, а для задач классификации образов и фактов лучше использовать методы деревьев решений или нейронные сети.

Литература: 1. Щавелев Л.В. Интеллектуальный анализ данных. http://www.citforum.ru/seminars/cis99/ sch_04.shtml, 2. Буров К. Обнаружение знаний в хранилищах данных / / Открытые системы. 1999. №5-6., http: / /www.osp.ru/os/l999/05-06/14.htm. 3. КиселевМ, Соломатин Е. Средства добычи знаний в бизнесе и финансах // Открытые системы. 1997. №4. С. 41-44. 4. Кречетов Н, Иванов П. Продукты для интеллектуального анализа данных // Computer Week - Москва. 1997. №14-15. С. 32-39. 5. Edelstein H. Интеллектуальные средства анализа и представления данных в информационных хранилищах // Computer Week - Москва. 1996. №16. С. 32-35.

Поступила в редколлегию 22.06.2000

Рецензент: д-р техн. наук, проф. Путятин В.П.

Гвоздинский Анатолий Николаевич, канд. техн. наук, профессор кафедры искусственного интеллекта ХТУРЭ. Научные интересы: оценка эффективности сложных информационных систем управления. Увлечения и хобби: классическая музыка, туризм. Адрес: Украина, 61166, Харьков, ул. акад. Ляпунова, 7, кв. 9, тел. 32-69-08.

Климко Елена Генриховна, ассистент кафедры компьютерных технологий и информационных систем Полтавского государственного технического университета имени Юрия Кондратюка. Аспирантка (без отрыва от производства) кафедры искусственного интеллекта ХТУРЭ. Научные интересы: аналитический анализ данных. Увлечения и хобби: чтение, вязание на спицах. Адрес: Украина, 36021, Полтава, ул. Алмазная, 1-А, кв. 34, тел. (053-22) 3-43-12.

Сороковой Александр Иванович, канд. техн. наук, доцент кафедры компьютерных технологий и информационных систем Полтавского государственного технического университета имени Юрия Кондратюка. Научные интересы: KDD (обнаружение знаний). Увлечения и хобби: собаки. Адрес: Украина, 36022, Полтава, пер. Ломаный, 37А, тел.(053-2) 18-60-87, e-mail: [email protected]

3.4 Способы аналитической обработки данных

Для того чтобы существующие хранилища данных способствовали принятию управленческих решений, информация должна быть представлена аналитику в нужной форме, т. е. он должен иметь развитые инструменты доступа к данным хранилища и их обработки.

Очень часто информационно-аналитические системы, создаваемые в расчете на непосредственное использование лицами, принимающими решения, оказываются чрезвычайно просты в применении, но жестко ограничены в функциональности. Такие статические системы называются Информационными системами руководителя (ИСР), или Executive Information Systems (EIS). Они содержат в себе множества запросов и, будучи достаточными для повседневного обзора, неспособны ответить на все вопросы которые могут возникнуть при принятии решений. Результатом работы такой системы, как правило, являются многостраничные отчеты, после тщательного изучения, которых у аналитика появляется новая серия вопросов. Однако каждый новый запрос, непредусмотренный при проектировании такой системы, должен быть сначала формально описан, закодирован программистом и только затем выполнен. Время ожидания в таком случае может составлять часы и дни, что не всегда приемлемо.

Оперативная аналитическая обработка . Или On-Line Analytical Processing, OLAP – это ключевой компонент организации хранилищ данных. Концепция OLAP была описана в 1993 г. Эдгаром Коддом и имеет следующие требования к приложениям для многомерного анализа:

– многомерное концептуальное представление данных, включая полную поддержку для иерархий и множественных иерархий (ключевое требование OLAP);

– предоставление пользователю результатов анализа за приемлемое время (обычно не более 5 с), пусть даже ценой менее детального анализа;

– возможность осуществления любого логического и статистического анализа, характерного для данного приложения, и его сохранения в доступном для конечного пользователя виде;

– многопользовательский доступ к данным с поддержкой соответствующих механизмов блокировок и средств авторизованного доступа;

– возможность обращаться к любой нужной информации независимо от ее объема и места хранения.

OLAP-система состоит из множества компонент. На самом высоком уровне представления система включает в себя источник данных, многомерную базу данных (МБД), предоставляющая возможность реализации механизма составления отчетов на основе технологии OLAP, OLAP-сервер и клиента. Система построена по принципу клиент-сервер и обеспечивает удаленный и многопользовательский доступ к серверу МБД.

Рассмотрим составные части OLAP-системы.

Источники. Источником в OLAP-системах является сервер, поставляющий данные для анализа. В зависимости от области использования OLAP-продукта источником может служить хранилище данных, наследуемая база данных, содержащая общие данные, набор

таблиц, объединяющих финансовые данные или любая комбинация перечисленного.

Хранилище данных . Исходные данные собираются и помещаются в хранилище, спроектированное в соответствии с принципами построения хранилищ данных. ХД представляет из себя реляционную базу данных (РБД). Основная таблица ХД (таблица фактов) содержит числовые значения показателей, по которым собирается статистическая информация.

Многомерная база данных .Хранилище данных служит поставщиком информации для многомерной базы данных, которая является набором объектов. Основными классами этих объектов являются измерения и показатели. К измерениям относятся множества значений (параметров), по которым происходит индексация данных, например, время, регионы, тип учреждения и пр. Каждое измерение заполняется значениями из соответствующих таблиц измерений хранилища данных. Совокупность измерений определяет пространство исследуемого процесса. Под показателями понимаются многомерные кубы данных (гиперкубы). В гиперкубе содержатся сами данные, а также агрегатные суммы по измерениям, входящим в состав показателя. Показатели составляют основное содержание МБД и заполняются в соответствии с таблицей фактов. Вдоль каждой оси гиперкуба данные могут быть организованы в виде иерархии, представляющей различные уровни их детализации. Это позволяет создавать иерархические измерения, по которым при последующем анализе данных будут осуществляться агрегирование или детализация представления данных. Типичным примером иерархического измерения служит список территориальных объектов сгруппированных по районам, областям, округам.

Сервер. Прикладной частью OLAP-системы является OLAP-сервер. Эта составляющая выполняет всю работу (в зависимости от модели системы), и хранит в себе всю информацию, к которой обеспечивается активный доступ. Архитектурой сервера управляют различные концепции. В частности, основной функциональной характеристикой OLAP-продуктов является использование МБД либо РБД для хранения данных.

Клиентское приложение .Данные, структурированные соответствующим образом и хранимые в МБД доступны для анализа с помощью клиентского приложения. Пользователь получает возможность удаленного доступа к данным, формулирования сложных запросов, генерации отчетов, получения произвольных подмножеств данных. Получение отчета сводится к выбору конкретных значений измерений и построению сечения гиперкуба. Сечение определяется выбранными значениями измерений. Данные по остальным измерениям суммируются.

OLAP на клиенте и на сервере. Многомерный анализ данных может быть проведен с помощью различных средств, которые условно можно разделить на клиентские и серверные OLAP-средства.

Клиентские OLAP-средства (например, Pivot Tables в Excel 2000 фирмы Microsoft или ProClarity фирмы Knosys) представляют собой приложения, осуществляющие вычисление агрегатных данных и их отображение. При этом сами агрегатные данные содержатся в кэше внутри адресного пространства такого OLAP-средства.

Если исходные данные содержатся в настольной СУБД, вычисление агрегатных данных производится самим OLAP-средством. Если же источник исходных данных – серверная СУБД, многие из клиентских OLAP-средств посылают на сервер SQL-запросы и в результате получают агрегатные данные, вычисленные на сервере.

Как правило, OLAP-функциональность реализована в средствах статистической обработки данных и в некоторых электронных таблицах.

Многие средства разработки содержат библиотеки классов или компонентов, позволяющие создавать приложения, реализующие простейшую OLAP-функциональность (такие, например, как компоненты Decision Cube в Borland Delphi и Borland C++ Builder). Помимо этого многие компании предлагают элементы управления ActiveX и другие библиотеки, реализующие подобную функциональность.

Клиентские OLAP-средства применяются, как правило, при малом числе измерений (обычно не более шести) и небольшом разнообразии значений этих параметров – поскольку полученные агрегатные данные должны умещаться в адресном пространстве подобного средства, а их количество растет экспоненциально при увеличении числа измерений.

Многие клиентские OLAP-средства позволяют сохранить содержимое кэша с агрегатными данными в виде файла, для того чтобы не производить их повторное вычисление. Однако нередко такая возможность используется для отчуждения агрегатных данных с целью передачи их другим организациям или для публикации.

Идея сохранения кэша с агрегатными данными в файле получила свое дальнейшее развитие в серверных OLAP-средствах (например, Oracle Express Server или Microsoft OLAP Services), в которых сохранение и изменение агрегатных данных, а также поддержка содержащего их хранилища осуществляются отдельным приложением или процессом, называемым OLAP-сервером. Клиентские приложения могут запрашивать подобное многомерное хранилище и в ответ получать те или иные данные. Некоторые клиентские приложения могут также создавать такие хранилища или обновлять их в соответствии с изменившимися исходными данными.

Преимущества применения серверных OLAP-средств по сравнению с клиентскими OLAP-средствами сходны с преимуществами применения серверных СУБД по сравнению с настольными: в случае применения серверных средств вычисление и хранение агрегатных данных происходят на сервере, а клиентское приложение получает лишь результаты запросов к ним, что позволяет в общем случае снизить сетевой трафик, время выполнения запросов и требования к ресурсам, потребляемым клиентским приложением.

3.5 Технические аспекты многомерного хранения данных

Многомерность в OLAP-приложениях может быть разделена на три уровня:

1. Многомерное представление данных – средства конечного пользователя, обеспечивающие многомерную визуализацию и манипулирование данными; слой многомерного представления абстрагирован от физической структуры данных и воспринимает данные как многомерные.

    Многомерная обработка – средство (язык) формулирования многомерных запросов (традиционный реляционный язык SQL здесь оказывается непригодным) и процессор, умеющий обработать и выполнить такой запрос.

    Многомерное хранение – средства физической организации данных, обеспечивающие эффективное выполнение многомерных запросов.

Первые два уровня в обязательном порядке присутствуют во всех OLAP-средствах. Третий уровень, хотя и является широко распространенным, не обязателен, так как данные для многомерного представления могут извлекаться и из обычных реляционных структур. Процессор многомерных запросов, в этом случае, транслирует многомерные запросы в SQL-запросы, которые выполняются реляционной СУБД.

В любом хранилище данных – и в обычном, и в многомерном – наряду с детальными данными, извлекаемыми из оперативных систем, хранятся и агрегированные показатели (суммарные показатели), такие, как суммы объемов продаж по месяцам, по категориям товаров и т. д. Агрегаты хранятся в явном виде с единственной целью – ускорить выполнение запросов. Ведь, с одной стороны, в хранилище накапливается, как правило, очень большой объем данных, а с другой – аналитиков в большинстве случаев интересуют не детальные, а обобщенные показатели. И если каждый раз для вычисления суммы продаж за год пришлось бы суммировать миллионы индивидуальных продаж, скорость, скорее всего, была бы неприемлемой. Поэтому при загрузке данных в многомерную БД вычисляются и сохраняются все суммарные показатели или их часть.

Тем не менее, использование агрегированных данных чревато недостатками. Основными недостатками являются увеличение объема хранимой информации (при добавлении новых измерений объем данных, составляющих куб, растет экспоненциально) и времени на их загрузку. Причем объем информации может увеличиваться в десятки и даже в сотни раз. Например, в одном из опубликованных стандартных тестов полный подсчет агрегатов для 10 Мб исходных данных потребовал 2,4 Гб, т. е. данные выросли в 240 раз!

Степень увеличения объема данных при вычислении агрегатов зависит от количества измерений куба и структуры этих измерений, т. е. соотношения количества «родителей» и «потомков» на разных уровнях измерения. Для решения проблемы хранения агрегатов применяются сложные схемы, позволяющие при вычислении далеко не всех возможных агрегатов достигать значительного повышения производительности выполнения запросов.

Как исходные, так и агрегатные данные могут храниться либо в

реляционных, либо в многомерных структурах. В связи с этим в настоящее время применяются три способа хранения многомерных данных:

MOLAP (Multidimensional OLAP) – исходные и агрегатные данные хранятся в многомерной базе данных. Хранение данных в многомерных структурах позволяет манипулировать данными как многомерным массивом, благодаря чему скорость вычисления агрегатных значений одинакова для любого из измерений. Однако в этом случае многомерная база данных оказывается избыточной, так как многомерные данные полностью содержат исходные реляционные данные.

Эти системы обеспечивают полный цикл OLAP-обработки. Они либо включают в себя, помимо серверного компонента, собственный интегрированный клиентский интерфейс, либо используют для связи с пользователем внешние программы работы с электронными таблицами.

ROLAP (Relational OLAP) – исходные данные остаются в той же реляционной базе данных, где они изначально и находились. Агрегатные же данные помещают в специально созданные для их хранения служебные таблицы в той же базе данных.

HOLAP (Hybrid OLAP) – исходные данные остаются в той же реляционной базе данных, где они изначально находились, а агрегатные данные хранятся в многомерной базе данных.

Некоторые OLAP-средства поддерживают хранение данных только в реляционных структурах, некоторые – только в многомерных. Однако большинство современных серверных OLAP-средств поддерживают все три способа хранения данных. Выбор способа хранения зависит от объема и структуры исходных данных, требований к скорости выполнения запросов и частоты обновления OLAP-кубов.

3.6 Интеллектуальный анализ данных (Data Mining )

Термин Data Mining обозначает процесс поиска корреляций, тенденций и взаимосвязей посредством различных математических и статистических алгоритмов: кластеризации, регрессионного и корреляционного анализа и т. д. для систем поддержки принятия решений. При этом накопленные сведения автоматически обобщаются до информации, которая может быть охарактеризована как знания.

В основу современной технологии Data Mining положена концепция шаблонов, отражающих закономерности, свойственные подвыборкам данных и составляющие так называемые скрытые знания.

Поиск шаблонов производится методами, не использующими никаких априорных предположений об этих подвыборках. Важной особенностью Data Mining является нестандартность и неочевидность разыскиваемых шаблонов. Иными словами, средства Data Mining отличаются от инструментов статистической обработки данных и средств OLAP тем, что вместо проверки заранее предполагаемых пользователями взаимосвязей

между данными, они на основании имеющихся данных способны самостоятельно находить такие взаимосвязи, а также строить гипотезы об их характере.

В общем случае процесс интеллектуального анализа данных (Data Mining) состоит из трёх стадий

    выявление закономерностей (свободный поиск);

    использование выявленных закономерностей для предсказания неизвестных значений (прогностическое моделирование);

    анализ исключений, предназначенный для выявления и толкования аномалий в найденных закономерностях.

Иногда в явном виде выделяют промежуточную стадию проверки достоверности найденных закономерностей между их нахождением и использованием (стадия валидации).

Выделяют пять стандартных типов закономерностей, выявляемых методами Data Mining:

1.Ассоциация позволяет выделить устойчивые группы объектов, между которыми существуют неявно заданные связи. Частота появления отдельного предмета или группы предметов, выраженная в процентах, называется распространенностью. Низкий уровень распространенности (менее одной тысячной процента) говорит о том, что такая ассоциация не существенна. Ассоциации записываются в виде правил: A => B , где А - посылка, В - следствие. Для определения важности каждого полученного ассоциативного правила необходимо вычислить величину, которую называют доверительность А к В (или взаимосвязь А и В). Доверительность показывает, как часто при появлении А появляется В. Например, если д(A/B) =20%, то это значит, что при покупке товара А в каждом пятом случае приобретается и товар В.

Типичным примером применения ассоциации является анализ структуры покупок. Например, при проведении исследования в супермаркете можно установить, что 65 % купивших картофельные чипсы берут также и «кока-колу», а при наличии скидки за такой комплект «колу» приобретают в 85 % случаев. Подобные результаты представляют ценность при формировании маркетинговых стратегий.

2.Последовательность - это метод выявления ассоциаций во времени. В данном случае определяются правила, которые описывают последовательное появление определенных групп событий. Такие правила необходимы для построения сценариев. Кроме того, их можно использовать, например, для формирования типичного набора предшествующих продаж, которые могут повлечь за собой последующие продажи конкретного товара.

3.Классификация - инструмент обобщения. Она позволяет перейти от рассмотрения единичных объектов к обобщенным понятиям, которые характеризуют некоторые совокупности объектов и являются достаточными для распознавания объектов, принадлежащих этим совокупностям (классам). Суть процесса формирования понятий заключается в нахождении закономерностей, свойственных классам. Для описания объектов используются множества различных признаков (атрибутов). Проблема формирования понятий по признаковым описаниям была сформулирована М.М. Бонгартом. Ее решение базируется на применении двух основных процедур: обучения и проверки. В процедурах обучения строится классифицирующее правило на основе обработки обучающего множества объектов. Процедура проверки (экзамена) состоит в использовании полученного классифицирующего правила для распознавания объектов из новой (экзаменационной) выборки. Если результаты проверки признаны удовлетворительными, то процесс обучения заканчивается, в противном случае классифицирующее правило уточняется в процессе повторного обучения.

4.Кластеризация – это распределение информации (записей) из БД по группам (кластерам) или сегментам с одновременным определением этих групп. В отличие от классификации здесь для проведения анализа не требуется предварительного задания классов.

5.Прогнозирование временных рядов является инструментом для определения тенденций изменения атрибутов рассматриваемых объектов с течением времени. Анализ поведения временных рядов позволяет прогнозировать значения исследуемых характеристик.

Для решения таких задач используются различные методы и алгоритмы Data Mining. Ввиду того, что Data Mining развивалась и развивается на стыке таких дисциплин, как статистика, теория информации, машинное обучение, теория баз данных, вполне закономерно, что большинство алгоритмов и методов Data Mining были разработаны на основе различных методов из этих дисциплин.

Из многообразия существующих методов исследования данных можно выделить следующие:

    регрессионный, дисперсионный и корреляционный анализ (реализован в большинстве современных статистических пакетов, в частности, в продуктах компаний SAS Institute, StatSoft и др.);

    методы анализа в конкретной предметной области, базирующиеся на эмпирических моделях (часто применяются, например, в недорогих средствах финансового анализа);

    нейросетевые алгоритмы – метод имитации процессов и явлений, позволяющий воспроизводить сложные зависимости. Метод основан на использовании упрощенной модели биологического мозга и заключается в том, что исходные параметры рассматриваются как сигналы, преобразующиеся в соответствии с имеющимися связями между «нейронами», а в качестве ответа, являющегося результатом анализа, рассматривается отклик всей сети на исходные данные. Связи в этом случае создаются с помощью так называемого обучения сети посредством выборки большого объема, содержащей как исходные данные, так и правильные ответы. Нейронные сети широко применяются для решения задач классификации;

    нечеткая логика применяется для обработки данных с размытыми значениями истинности, которые могут быть представлены разнообразными лингвистическими переменными. Нечеткое представление знаний широко применяется для решения задач классификации и прогнозирования, например, в системе XpertRule Miner (Attar Software Ltd., Великобритания), а также в AIS, NeuFuz и др;

    индуктивные выводы позволяют получить обобщения фактов, хранящихся в БД. В процессе индуктивного обучения может участвовать специалист, поставляющий гипотезы. Такой способ называют обучением с учителем. Поиск правил обобщения может осуществляться без учителя путем автоматической генерации гипотез. В современных программных средствах, как правило, сочетаются оба способа, а для проверки гипотез используются статистические методы. Примером системы с применением индуктивных выводов является XpertRule Miner, разработанная фирмой Attar Software Ltd. (Великобритания);

    рассуждения на основе аналогичных случаев (метод «ближайшего соседа») (Case-based reasoning – CBR) основаны на поиске в БД ситуаций, описания которых сходны по ряду признаков с заданной ситуацией. Принцип аналогии позволяет предполагать, что результаты похожих ситуаций также будут близки между собой. Недостаток этого подхода заключается в том, что здесь не создается каких-либо моделей или правил, обобщающих предыдущий опыт. Кроме того, надежность выводимых результатов зависит от полноты описания ситуаций, как и в процессах индуктивного вывода. Примерами систем, использующих CBR, являются: KATE Tools (Acknosoft, Франция), Pattern Recognition Workbench (Unica, США);

    деревья решений – метод структурирования задачи в виде древовидного графа, вершины которого соответствуют продукционным правилам, позволяющим классифицировать данные или осуществлять анализ последствий решений. Этот метод дает наглядное представление о системе классифицирующих правил, если их не очень много. Простые задачи решаются с помощью этого метода гораздо быстрее, чем с использованием нейронных сетей. Для сложных проблем и для некоторых типов данных деревья решений могут оказаться неприемлемыми. Кроме того, для этого метода характерна проблема значимости. Одним из последствий иерархической кластеризации данных является отсутствие большого числа обучающих примеров для многих частных случаев, в связи с чем классификацию нельзя считать надежной. Методы деревьев решений реализованы во многих программных средствах, а именно: С5.0 (RuleQuest, Австралия), Clementine (Integral Solutions, Великобритания), SIPINA (University of Lyon, Франция), IDIS (Information Discovery, США);

    эволюционное программирование – поиск и генерация алгоритма, выражающего взаимозависимость данных, на основании изначально заданного алгоритма, модифицируемого в процессе поиска; иногда поиск взаимозависимостей осуществляется среди каких-либо определенных видов функций (например, полиномов);

алгоритмы ограниченного перебора , вычисляющие комбинаций простых логических событий в подгруппах данных.

3.7 Интеграция OLAP и Data Mining

Оперативная аналитическая обработка (OLAP) и интеллектуальный анализ данных (Data Mining) – две составные части процесса поддержки принятия решений. Однако сегодня большинство систем OLAP заостряет внимание только на обеспечении доступа к многомерным данным, а большинство средств Data Mining, работающих в сфере закономерностей, имеют дело с одномерными перспективами данных. Для увеличения эффективности обработки данных для систем поддержки принятия решений эти два вида анализа должны быть объединены.

В настоящее время появляется составной термин «OLAP Data Mining» (многомерный интеллектуальный анализ) для обозначения такого объединения.

Существует три основных способа формирования «OLAP Data Mining»:

    «Cubing then mining». Возможность выполнения интеллектуального анализа должна обеспечиваться над любым результатом запроса к многомерному концептуальному представлению, то есть над любым фрагментом любой проекции гиперкуба показателей.

    «Mining then cubing». Подобно данным, извлечённым из хранилища, результаты интеллектуального анализа должны представляться в гиперкубической форме для последующего многомерного анализа.

    «Cubing while mining». Этот гибкий способ интеграции позволяет автоматически активизировать однотипные механизмы интеллектуальной обработки над результатом каждого шага многомерного анализа (перехода) между уровнями обобщения, извлечения нового фрагмента гиперкуба и т. д.).

    11 класса [Текст... им как часть всей системы ... доцент ... Чебоксары , 2009. № 10. С. 44 -49 ... . Авторы-составители : Н. ... конспекты лекций , ...

  • Учебно-методическое пособие

    ... лекций . Подготовка лекции по математике. Написание конспекта лекции лекции . Использование информационных технологий ...

  • И к кондаурова с в лебедева научно-исследовательская деятельность будущего учителя математики творческие задания по элементарной математике и методике её преподавания

    Учебно-методическое пособие

    ... лекций . Подготовка лекции по математике. Написание конспекта лекции . Подготовка наглядных пособий. Методика чтения лекции . Использование информационных технологий ...

  • М ОНИТОРИНГ СМИ Модернизация профессионального образования Март - август 2011г

    Краткое содержание

    ... 11 .08.2011 "Мертвые души-2" В РНИМУ им ... 3,11 -3,44 . ... публичные лекции руководителей... Чебоксарах ... и строчащая конспекты аудитория - ... информационные системы и технологии . ... системой образования, - говорит доцент ... составителей ... части повышения реального содержания ...

Аналитические технологии бизнес- процессов

Системы бизнес интеллекта - Business Intelligence (BI) объединяют в себе различные средства и технологии анализа и обработки данных масштаба предприятия. На основе этих средств создаются BI-системы, цель которых - повысить качество информации для принятия управленческих решений.

К BI относятся программные продукты следующих классов:

· системы оперативной аналитической обработки (OLAP);

· средства интеллектуального анализа данных (DM);

Программные продукты каждого класса выполняют определенный набор функций или операций с использованием специальных технологий.

OLAP (On-Line Analytical Processing) - оперативная аналитическая обработка - это название не конкретного продукта, а целой технологии. В основе концепции OLAP лежит многомерное представление данных.

В 1993 году основоположник реляционного подхода к построению баз данных Эдгар Кодд с партнерами (Edgar Codd, математик и стипендиат IBM), опубликовали статью, инициированную компанией и озаглавленную "Обеспечение OLAP (оперативной аналитической обработки) для пользователей-аналитиков", в которой были сформулированы 12 критериев технологии OLAP, впоследствии ставшие основным содержанием новой и очень перспективной технологии.

Позднее они были переработаны в тест FASMI, который определяет требования к продуктам OLAP:

· FAST (быстрый). Приложение OLAP должно обеспечивать минимальное время доступа к аналитическим данным - в среднем порядка 5 секунд;

· ANALYSIS (анализ). Приложение OLAP должно давать пользователю возможность осуществлять числовой и статистический анализ;

· SHARED (разделяемый доступ). Приложение OLAP должно предоставлять возможность работы с информацией многим пользователям одновременно;

· MULTIDIMENSIONAL (многомерность);

· INFORMATION (информация). Приложение OLAP должно давать пользователю возможность получать нужную информацию, в каком бы электронном хранилище данных она не находилась.

На основе FASMI можно дать следующее определение: OLAP приложения - это системы быстрого многопользовательского доступа к многомерной аналитической информации с возможностями числового и статистического анализа.

Основная идея OLAP заключается в построении многомерных кубов, которые будут доступны для пользовательских запросов. Многомерные кубы (рис.5.3) строятся на основе исходных и агрегированных данных, которые могут храниться как в реляционных, так и в многомерных базах данных. Поэтому в настоящее время применяются три способа хранения данных: MOLAP (Multidimensional OLAP), ROLAP (Relational OLAP) и HOLAP (Hybrid OLAP).

Соответственно, OLAP-продукты по способу хранения данных делятся на три аналогичные категории:

1. В случае MOLAP, исходные и многомерные данные хранятся в многомерной БД или в многомерном локальном кубе. Такой способ хранения обеспечивает высокую скорость выполнения OLAP-операций. Но многомерная база в этом случае чаще всего будет избыточной. Куб, построенный на ее основе, будет сильно зависеть от числа измерений. При увеличении количества измерений объем куба будет экспоненциально расти. Иногда это может привести к "взрывному росту" объема данных.

2. В ROLAP-продуктах исходные данные хранятся в реляционных БД или в плоских локальных таблицах на файл-сервере. Агрегатные данные могут помещаться в служебные таблицы в той же БД. Преобразование данных из реляционной БД в многомерные кубы происходит по запросу OLAP-средства. При этом скорость построения куба будет сильно зависеть от типа источника данных.

3. В случае использования гибридной архитектуры исходные данные остаются в реляционной базе, а агрегаты размещаются в многомерной. Построение OLAP-куба выполняется по запросу OLAP-средства на основе реляционных и многомерных данных. Такой подход позволяет избежать взрывного роста данных. При этом можно достичь оптимального времени исполнения клиентских запросов.

Используя OLAP-технологии, пользователь может осуществлять гибкий просмотр информации, получать различные срезы данных, выполнять аналитические операции детализации, свертки, сквозного распределения, сравнения во времени, т.е. производить составление и динамическую публикацию отчётов и документов.

Структура базы данных хранилища обычно разрабатывается таким образом, чтобы максимально облегчить анализ информации. Данные должно быть удобно «раскладывать» по разным направлениям (называемым измерениями). Например, сегодня пользователь хочет посмотреть сводку поставок деталей по поставщикам, чтобы сравнить их деятельность. Завтра этому же пользователю понадобится картина изменения объема поставок деталей по месяцам, чтобы проследить динамику поставок. Структура базы данных должна обеспечивать проведение подобных типов анализа, позволяя выделять данные, соответствующие заданному набору измерений.

В основе оперативной аналитической обработки данных лежит принцип организации информации в гиперкубическую модель. Простейший трехмерный куб данных по поставкам деталей для ранее рассмотренной тестовой базы данных приведен на рис. 3.11. Каждая его ячейка соответствует «факту» – например, объему поставки детали. Вдоль одной грани куба (одного измерения) располагаются месяцы, в течение которых выполнялись отражаемые кубом поставки. Второе измерение составляют виды деталей, а третье – соответствует поставщикам. В каждой ячейке содержится объем поставки для соответствующей комбинации значений по всем трем измерениям. Следует отметить, что при заполнении куба выполнена агрегация значений по поставкам каждого месяца из тестовой базы данных.


3.11. Вариант упрощенного гиперкуба для анализа поставок деталей

Системы класса OLAP различаются по способу представления данных.

Многомерный OLAP (MOLAP ) – в основу этих систем положена многомерная, основанная на динамических массивах структура данных с соответствующими методами доступа. MOLAP реализуется на патентованных технологиях организации многомерных СУБД. Преимуществом этого подхода является удобство выполнения вычислений над ячейками гиперкуба, т.к. под все сочетания измерений заведены соответствующие ячейки (как в электронной таблице). К классическим представителям таких систем можно отнести Oracle Express, SAS Institute MDDB.

Реляционный OLAP (ROLAP) – поддерживает многомерные аналитические модели над реляционными БД. К данному классу систем можно отнести Meta Cube Informix, Microsoft OLAP Services,Hyperion Solutions, SAS Institute Relational OLAP.

Настольный OLAP (Desktop OLAP) – средства генерации многомерных запросов и отчетов для локальных информационных систем (электронные таблицы, плоские файлы). Можно выделить следующие системы – Business Objects, Cognos Power Play.

Э.Ф. Кодд определил двенадцать правил, которым должен удовлетворять продукт класса OLAP, включая многомерное концептуальное представление данных, прозрачность, доступность, устойчивую производительность, клиент-серверную архитектуру, равноправие измерений, динамическую обработку разреженных матриц, поддержку многопользовательского режима, неограниченную поддержку кроссмерных операций, интуитивное манипулирование данными, гибкий механизм генерации отчетов, неограниченное количество измерений и уровней агрегации.



Наиболее распространены системы класса ROLAP. Они позволяют организовать информационную модель над реляционно-полным хранилищем любой структуры либо над специальной витриной данных.

Рис. 3.12. Схема типа «звезда» аналитической витрины по поставкам деталей

Для большинства хранилищ данных самым эффективным способом моделирования N-мерного куба является «звезда». На рис. 3.11 приведена модель гиперкуба для анализа поставок деталей, в котором информация консолидирована по четырем измерениям (поставщик, деталь, месяц, год). В основе схемы «звезда» лежит таблица фактов. Таблица фактов содержит столбец, где указан объем поставки, а также столбцы с указанием внешних ключей для всех таблиц измерений. Каждое измерение куба представлено таблицей значений, являющейся справочником по отношению к таблице фактов. Для организации уровней обобщения информации над справочниками измерений организованы категорные входы (например, «материал-деталь», «город-поставщик»).

Причина, по которой схема на рис. 3.12 названа «звездой», достаточно очевидна. Концы «звезды» образуются таблицами измерений, а их связи с таблицей фактов, расположенной в центре, образуют лучи. При такой структуре базы данных большинство запросов из области делового анализа объединяют центральную таблицу фактов с одной или несколькими таблицами измерений. Например, запрос для получения объемов поставок всех деталей в 2004 году по месяцам с разбивкой по поставщикам выглядит следующим образом:

SELECT SUM(VALUE), SUPPLIER.SUPPLIER_NAME, FACT.MONTH_ID

FROM FACT, SUPPLIER

WHERE FACT.YEAR_ID=2004

AND FACT.SUPPLIER_CODE=SUPPLIER.SUPPLIER_CODE

GROUP_BY SUPPLIER_CODE, MONTH_ID

ORDER_BY SUPPLIER_CODE, MONTH_ID.

На рис. 3.13 приведен фрагмент отчета, сформированного в результате заданного запроса.

Термин оперативная аналитическая обработка (On-Line Analytical Processing- OLAP) впервые был упомянут в докладе, подготовленном для корпорации Arbor Software Corp. в 1993 году, хотя определение этого термина, как и в случае с хранилищами данных, было сформулировано намного позже. Понятие, обозначенное этим термином, может быть определено как "интерактивный процесс создания, сопровождения, анализа данных и выдачи отчетов". Кроме того, обычно добавляют, что рассматриваемые данные должны восприниматься и обрабатываться таким образом, как если бы они хранились в многомерном массиве. Но прежде чем приступить к обсуждению собственно многомерного представления, рассмотрим соответствующие идеи в терминах традиционных таблиц SQL.

Первая особенность состоит в том, что при аналитической обработке непременно требуется некоторое агрегирование данных, обычно выполняемое сразу с помощью нескольких различных способов или, иными словами, в соответствии с многими различными критериями группирования. В сущности, одной из основных проблем аналитической обработки является то, что количество всевозможных способов группирования

очень скоро становится слишком большим. Тем не менее, пользователям необходимо рассмотреть все или почти все такие способы. Безусловно, теперь в стандарте SQL поддерживается подобное агрегирование, но любой конкретный запрос SQL вырабатывает в качестве своего результата только одну таблицу, а все строки в этой результирующей таблице имеют одинаковую форму и одну и ту же интерпретацию10 (по крайней мере, так

9 Приведем совет из книги по хранилищам данных: "[Откажитесь] от нормализации… По пытки нормализовать любую из таблиц в многомерной базе данных исключительно ради экономии дис кового пространства [именно так!] - напрасная трата времени… Таблицы размерности не должны быть нормализованы… Нормализованные таблицы размерности исключают возможность просмотра".

10 Если только эта таблица результатов не включает какие-либо неопределенные значения, или NULL-значения (см. главу 19, раздел 19.3, подраздел "Дополнительные сведения о предикатах"). На самом деле конструкции SQL: 1999, которые должны быть описаны в данном разделе, можно охаракте ризовать как "основанные на использовании" этого весьма не рекомендуемого средства SQL (?); в дей ствительности, они подчеркивают тот факт, что в своих различных проявлениях неопределенные значе ния могут иметь разный смысл, и поэтому позволяют представить в одной таблице много разных преди катов (как будет показано ниже).

было до появления стандарта SQL: 1999). Поэтому, чтобы реализовать п различных способов группирования, необходимо выполнить п отдельных запросов и создать в результате л отдельных таблиц. Например, рассмотрим приведенную ниже последовательность запросов, выполняемых в базе данных поставщиков и деталей.

1. Определить общее количество поставок.

2. Определить общее количество поставок по поставщикам.

3. Определить общее количество поставок по деталям.

4. Определить общее количество поставок по поставщикам и деталям.

(Безусловно, "общее" количество для данного поставщика и для данной детали - это просто фактическое количество для данного поставщика и данной детали. Пример был бы более реалистичным, если бы использовалась база данных по ставщиков, деталей и проектов. Но, чтобы не усложнять этот пример, мы все же остановились на обычной базе поставщиков и деталей.)

Теперь предположим, что есть только две детали, с номерами Р1 и Р2, а таблица поставок выглядит следующим образом.

Многомерные базы данных

До сих пор предполагалось, что данные OLAP хранятся в обычной базе данных, использующей язык SQL (не считая того, что иногда мы все же касались терминологии и концепции многомерных баз данных). Фактически мы, не указывая явно, описывали так называемую систему ROLAP (Relational OLAP- реляционная OLAP). Однако многие считают, что использование системы MOLAP (Multi-dimensional OLAP - многомерная OLAP) - более перспективный путь. В этом подразделе принципы построения систем MOLAP будут рассмотрены подробнее.

Система MOLAP обеспечивает ведение многомерных баз данных, в которых данные концептуально хранятся в ячейках многомерного массива.

Примечание. Хотя выше и было сказано о концептуальном способе организации хранения, в действительности физическая организация данных в MOLAP очень похожа на их логическую организацию.

Поддерживающая СУБД называется многомерной. В качестве простого примера можно привести трехмерный массив, представляющий, соответственно, товары, заказчиков и периоды времени. Значение каждой отдельной ячейки может представлять общий объем указанного товара, проданного заказчику в указанный период времени. Как отмечалось выше, перекрестные таблицы из предыдущего подраздела также могут считаться такими массивами.

Если имеется достаточно четкое понимание структуры совокупности данных, то могут быть известны и все связи между данными. Более того, переменные такой совокупности (не в смысле обычных языков программирования), грубо говоря, могут быть разделены на зависимые и независимые. В предыдущем примере товар, заказчик и период времени можно считать независимыми переменными, а количество - единственной зависимой переменной. В общем случае независимые переменные - это переменные, значения которых вместе определяют значения зависимых переменных (точно так же, как, если воспользоваться реляционной терминологией, потенциальный ключ является множеством

столбцов, значения которых определяют значения остальных столбцов). Следовательно, независимые переменные задают размерность массива, с помощью которого организуются данные, а также образуют схему адресации11 для данного массива. Значения зависимых переменных, которые представляют фактические данные, сохраняются в ячейках массива.

Примечание. Различие между значениями независимых, или размерных, переменных,

и значениями зависимых, или неразмерных, переменных, иногда характеризуют как различие между местонахождением и содержанием.

" Поэтому ячейки массива адресуются символически, а не с помощью числовых индексов, которые обычно применяются для работы с массивами.

К сожалению, приведенная выше характеристика многомерных баз данных слишком упрощена, поскольку большинство совокупностей данных изначально остаются не изученными в полной мере. По этой причине мы обычно стремимся, в первую очередь, проанализировать данные, чтобы лучше их понять. Часто недостаточное понимание может быть настолько существенным, что заранее невозможно определить, какие переменные являются независимыми, а какие зависимыми. Тогда независимые переменные выбираются согласно текущему представлению о них (т.е. на основании некоторой гипотезы), после чего проверяется результирующий массив для определения того, насколько удачно выбраны независимые переменные (см. раздел 22.7). Подобный подход приводит к тому, что выполняется множество итераций по принципу проб и ошибок. Поэтому система обычно допускает замену размерных и неразмерных переменных, и эту операцию называют сменой осей координат (pivoting). Другие поддерживаемые операции включают транспозицию массива и переупорядочение размерностей. Должен быть также предусмотрен способ добавления размерностей.

Между прочим, из предыдущего описания должно быть ясно, что ячейки массива часто оказываются пустыми (и чем больше размерностей, тем чаще наблюдается такое явление). Иными словами, массивы обычно бывают разреженными. Предположим, например, что товар р не продавался заказчику с в течение всего периода времени t. Тогда ячейка [с,р, t] будет пустой (или в лучшем случае содержать нуль). Многомерные СУБД поддерживают различные методы хранения разреженных массивов в более эффективном, сжатом представлении12. К этому следует добавить, что пустые ячейки соответствуют отсутствующей информации и, следовательно, системам необходимо предоставлять некоторую вычислительную поддержку для пустых ячеек. Такая поддержка действительно обычно имеется, но стиль ее, к сожалению, похож на стиль, принятый в языке SQL. Обратите внимание на тот факт, что если данная ячейка пуста, то информация или не известна, или не была введена, или не применима, или отсутствует в силу других причин

(см. главу 19).

Независимые переменные часто связаны в иерархии, определяющие пути, по которым может происходить агрегирование зависимых данных. Например, существует временная

иерархия, связывающая секунды с минутами, минуты с часами, часы с сутками, сутки с неделями, недели с месяцами, месяцы с годами. Или другой пример: возможна иерархия

композиции, связывающая детали с комплектом деталей, комплекты деталей с узлом, узлы с модулем, модули с изделием. Часто одни и те же данные могут агрегироваться многими разными способами, т.е. одна и та же независимая переменная может принадлежать ко многим различным иерархиям. Система предоставляет операторы для прохождения вверх (drill up) и прохождения вниз (drill down) по такой иерархии. Прохождение вверх означает переход от нижнего уровня агрегирования к верхнему, а прохождение вниз -

переход в противоположном направлении. Для работы с иерархиями имеются и другие операции, например операция для переупорядочения уровней иерархии.

Примечание. Между операциями прохождения вверх (drill up) и накопления итогов (roll

up) есть одно тонкое различие: операция накопления итогов - это операция реализации

12 Обратите внимание на отличие от реляционных систем. В настоящем реляционном аналоге этого примера в строке Ic, p, t) не было бы пустой "ячейки" количества, в связи с тем, что строка (с,р, t) просто бы отсутствовала. Поэтому при использовании реляционной модели, в отличие от многомерных массивов, нет необходимости поддерживать "разреженные массивы", или скорее "разреженные таблицы", а значит, не требуются искусные методы сжатия для работы с такими таблицами.

требуемых способов группирования и агрегирования, а операция прохождения вверх- это операция доступа к результатам реализации этих способов. А примером операции прохождения вниз может служить такой запрос: "Итоговое количество поставок известно; получить итоговые данные для каждого отдельного поставщика". Безусловно, для ответа на этот запрос должны быть доступными (или вычислимыми) данные более детализированных уровней.

В продуктах многомерных баз данных предоставляется также ряд статистических и других математических функций, которые помогают формулировать и проверять гипотезы (т.е. гипотезы, касающиеся предполагаемых связей). Кроме того, предоставляются инструменты визуализации и генерации отчетов, помогающие решать подобные задачи. Но, к сожалению, для многомерных баз данных пока еще нет никакого стандартного языка запросов, хотя ведутся исследования в целях разработки исчисления, на котором мог бы базироваться такой стандарт. Но ничего подобного реляционной теории нормализации, которая могла бы служить научной основой для проектирования многомерных баз данных, пока, к сожалению, нет.

Завершая этот раздел, отметим, что в некоторых продуктах сочетаются оба подхода - ROLAP и MOLAP. Такую гибридную систему OLAP называют HOLAP. Проводятся широкие дискуссии с целью выяснить, какой из этих трех подходов лучше, поэтому стоит и нам попытаться сказать по данному вопросу несколько слов13. В общем случае системы MOLAP обеспечивают более быстрое проведение расчетов, но поддерживают меньшие объемы данных по сравнению с системами ROLAP, т.е. становятся менее эффективными по мере возрастания объемов данных. А системы ROLAP предоставляют более развитые возможности масштабируемости, параллельности и управления по сравнению с аналогичными возможностями систем MOLAP. Кроме того, недавно был дополнен стандарт SQL и в него включены многие статистические и аналитические функции (см. раздел 22.8). Из этого следует, что в настоящее время продукты ROLAP способны к тому же предоставлять расширенные функциональные возможности.

OLAP (Online Analytical Processing – оперативная аналитическая обработка) – это информационный процесс, который дает возможность пользователю запрашивать систему, проводить анализ и т.д. в оперативном режиме (онлайн). Результаты генерируются в течении секунд.

OLAP системы выполнены для конечных пользователей, в то время как OLTP системы делаются для профессиональных пользователей ИС. В OLAP предусмотрены такие действия, как генерация запросов, запросы нерегламентированных отчетов, проведение статистического анализа и построение мультимедийных приложений.

Для обеспечения OLAP необходимо работать с хранилищем данных (или многомерным хранилищем), а также с набором инструментальных средств, обычно с многомерными способностями. Этими средствами могут быть инструментарий запросов, электронные таблицы, средства добычи данных (Data Mining), средства визуализации данных и др.

В основе концепции OLAP лежит принцип многомерного представления данных. Э. Кодд рассмотрел недостатки реляционной модели, в первую очередь указав на невозможность объединять, просматривать и анализировать данные с точки зрения множественности измерений, то есть самым понятным для корпоративных аналитиков способом, и определил общие требования к системам OLAP, расширяющим функциональность реляционных СУБД и включающим многомерный анализ как одну из своих характеристик.

12 правил, которым должен удовлетворять программный продукт класса OLAP. Эти правила:

1. Многомерное концептуальное представление данных.

2. Прозрачность.

3. Доступность.

4. Устойчивая производительность.

5. Клиент – серверная архитектура.

6. Равноправие измерений.

7. Динамическая обработка разреженных матриц.

8. Поддержка многопользовательского режима.

9. Неограниченная поддержка кроссмерных операций.

10. Интуитивное манипулирование данными.

11. Гибкий механизм генерации отчетов.

12. Неограниченное количество измерений и уровней агрегации.

Набор этих требований, послуживший фактическим определением OLAP, следует рассматривать как рекомендательный, а конкретные продукт оценивать по степени приближения к идеально полному соответствию всем требованиям.


Интеллектуальный анализ данных (Data Mining) и знаний (Knowledge Мining). Управление и анализ больших объемов данных (Big data). Системы бизнес-аналитики (Business Intelligence, BI).

Интеллектуальный анализ данных (ИАД) – общий термин для обозначения анализа данных с активным использованием математических методов и алгоритмов (методы оптимизации, генетические алгоритмы, распознавание образов, статистические методы, Data Mining и т.д.), использующих результаты применения методов визуального представления данных.

В общем случае процесс ИАД состоит из трех стадий:

1) выявление закономерностей (свободный поиск);

2) использование выявленных закономерностей для предсказания неизвестных значений (прогнозирование);

3) анализ исключений для выявления и толкования аномалий в найденных закономерностях.

Иногда выделяют промежуточную стадию проверки достоверности найденных закономерностей (стадия валидации) между их нахождением и использованием.

Все методы ИАД по принципу работы с исходными данными подразделяются на две группы:

Методы рассуждений на основе анализа прецедентов – исходные данные могут храниться в явном детализированном виде и непосредственно использоваться для прогнозирования и/или анализа исключений. Недостатком этой группы методов является сложность их использования на больших объемах данных.

Методы выявления и использования формализованных закономерностей, требующие извлечения информации из первичных данных и преобразования ее в некоторые формальные конструкции, вид которых зависит от конкретного метода.

Data Mining (DM)– это технология обнаружения в «сырых» данных ранее неизвестных нетривиальных, практически полезных и доступных интерпретации знаний, необходимых для принятия решений в различных сферах человеческой деятельности. Алгоритмы, используемые в Data Mining, требуют большого количества вычислений, что ранее являлось сдерживающим фактором широкого практического применения этих методов, однако рост производительности современных процессоров снял остроту этой проблемы.

Рынок Business Intelligence состоит из 5 секторов:

1. OLAP-продукты;

2. Инструменты добычи данных;

3. Средства построения Хранилищ и Витрин данных (Data Warehousing);

4. Управленческие информационные системы и приложения;

5. Инструменты конечного пользователя для выполнения запросов и построения отчетов.

В настоящее время среди лидеров корпоративных BI-платформ можно выделить MicroStrategy, Business Objects, Cognos, Hyperion Solutions, Microsoft, Oracle, SAP, SAS Institute и другие (в приложении Б приведен сравнительный анализ некоторых функциональных возможностей BI-систем).

Аналитическая обработка информации является непосредственно аналитической процедурой, в связи с чем выдвигаются серьезные требования к ее организации, а именно, соответствующее методическое обеспечение, определенный уровень подготовки аналитиков, их обеспеченность техническими средствами проведения анализа.
Качество и обоснованность принимаемых управленческих решений в значительной степени определяются не только достоверно-стью, полнотой, доступностью, оперативностью получения информации, но также и эффективностью используемых при ее обработке методов. Совершенствование технологии аналитической обработки экономической информации - один из ключевых элементов совершенствования технологии управления.
Качественное информационное обеспечение процесса управления хозяйственной деятельностью возможно только при использовании на практике новейших информационных технологий: средств вычислительной техники, телекоммуникаций и программного обеспечения, а также автоматизированных систем управления.
Условия хозяйственной деятельности, предполагающие широкие права предприятий по формированию учетной политики, воз-можности ее изменения, смене форм собственности; процессы ре- структуризации, объединение компаний и т. п., диктуют необходи-мость обработки большого объема аналитической информации. Усложнились и сами расчеты, применяемые при отражении тех или иных финансово-хозяйственных операций. Широкие права предприятий по выбору способов начисления амортизации по объектам основных средств делают практически невыполнимой задачу расчета сумм амортизационных отчислений при условии ручной обработки информации.
Возрастают требования к степени оперативности, достоверности информации, необходимой для принятия управленческих решений. Именно организация экономического анализа в компьютерной среде позволила значительно повысить оперативность сбора и регистрации учетной информации, существенно снизить вероятность арифметических ошибок и, как следствие, уменьшить трудоемкость работы аналитических служб на предприятиях.
Сложность информационных потоков, несовершенство каналов получения информации, методов и техники сбора, хранения и обработки информации нередко приводят к ее существенному запаздыванию, а следовательно, и к потере ее"качества. Основой своевременного получения информации служит интеграция ее сбора и обработки, что обеспечивает взаимодействие хозяйственной деятельности и экономического анализа, приводит к постепенному слиянию автоматизации расчетов с информационной системой предприятия.
Автоматизированная система сбора, обработки и хранения, представляющая собой разветвленную сеть регистрирующих устройств, линий связи и ЭВМ, сокращает время между возникновением информации и ее использованием в аналитической работе. Технические средства обеспечивают своевременное доведение информации о процессах, происходящих на предприятии, до руководителей и других работников управления. Применение современных информационных технологий дает возможность выполнить быстрый поиск и трудоемкие расчеты, а также отображать результаты в приемлемой форме.
Ведущее место в процедурах преобразования экономической информации занимает ее систематизация и обработка. При использовании вычислительной техники обработка информации стала органичной частью единого информационного технологического процесса. Современные компьютеры не только изменили связи этого процесса с другими, создав возможности технологического единства информационных процессов, но и оказали влияние на содержание понятия «обработка данных». Если при ручном или механизи- рованном выполнении аналитических работ под обработкой понимались преимущественно арифметические действия, то сегодня для обработки применяются сложнейшие логические и статистические операции.
Большая часть экономической информации, полученной в результате обработки, направляется руководителям, специалистам, менеджерам в конкретные сроки, предусмотренные календарным графиком сбора и обработки данных. При формировании регламентированной экономической информации установление сроков ее подготовки не представляет особой сложности, так как они обычно обусловлены условиями производства. Трудность представляет проектирование сбора и обработки нерегламентированной информации для принятия управленческих решений в произвольные моменты времени. Для получения такой информации система должна формировать данные, характеризующие результаты работ, ход выполнения планов, динамику экономического и социального развития, с задаваемым периодом.
Такая система требует иного подхода к проектированию тех- , нологического процесса сбора и обработки данных, предусматривающего различные режимы получения информации. Наиболее перспективен интерактивный режим, обеспечивающий непосредственное взаимодействие пользователей с ЭВМ. Для принятия оперативных управленческих решений менеджеры на основе опреде- т ленных диалоговых процедур выбирают необходимую информацию, отражающую обеспеченность и использование материальных, трудовых и финансовых ресурсов, ход производственных и других хозяйственных процессов.
В обработанном, взаимосвязанном и скоординированном виде информация передается отделам и службам экономического управления, ответственным за анализ хозяйственной деятельности и принятие решений. Для управления экономикой им необходима особая информация прогнозного характера, позволяющая не только фиксировать положение дел на предприятии, но и анализировать тенденции развития того или"иного процесса, явления и принимать на основе этого оптимальные и своевременные решения. Такой тип управления предполагает наличие не только данных об управляемом объекте и его окружении, но и проанализированной информации, пригодной для прогнозирования. Информация о прошлом поведении системы и окружающей ее среды применяется для выработки управленческих решений на основе предвидимого решения с помо-щью средств экономического моделирования, экспертных и прогнозных программных систем.

OLTP-это системы обработки трансакций в реальном времени. OLTP рассчитаны на быстрое обслуживание относительно простых запросов большого числа пользователей. Их харак-ет малое время ожидания выполнения запросов. Эти системы работают с небольшими трансакциями, но идущими большими потоками.

Осн. св-ва:1)Атомарность-выполнение операций полностью или невыполнение вообще.

2)Согласованность-гарантия взаимной целостности данных

3)Изолированность-выполнение операций изолированно в пользовательской сети

4)Долговечность-если трансакция выполнена успешно, то произведенные в ней изменения в БД не б/т потеряны ни при каких обстоятельствах

31. Технология olap (On-Line Analytical Processing оперативная аналитическая обработка).

OLAP-система поддержки принятия решений,ориентир-ые на выполнение более сложных запросов, требующих статистической обработки исторических данных, накопленных за определен-ый промежуток времени.

OLAP основ-ся на Data Mining. Data Mining- сов-ть методов или технологий интелек-го анализа данных с целью выявления в данных ранее неизвестных, нетривиальных(непростых), практически полезных и доступных интерпретации знаний, необходимых для принятия решений. OLAP вкл-ет в себя: 1)ср-ва обработки инф-ции на основе методов искусственного интеллекта

2) ср-ва графического представления данных.

OLAP-технологии основывается при помощи многомерной БД, называемых OLAP-кубами.

32.Хранилище данных (ХД), понятие и концепции построения .

ХД-это предметно-ориентированная, интегрированная, неизменная, поддерживающая хронологию электрон-я коллекция (собрание) данных для принятия реш-ия, т.е ХД яв-ся местом складывания собираемых в системе дан-х и информац-х источников для реш-ия задач анализа и принятия реш-ий.

Св-ва (принципы)организации ХД:

1)предметно-ориентированное. Инф-ция в ХД организована в соот-ии с основ-ми аспектами деят-ти п/п, т.е бизнес-процессами. Данные объедин-ся в категории и хранятся в соот-ии и с областями, кот-е они описывают

2)интегрированность -исходные данные извлек-ся из операц-х БД, проверяются, очищаются, приводятся к единому виду, в нужной степени агрегируются и загружаются в ХД

3)неизменность (некорректируемость)-попав в опред-ый исторический слой ХД, данные уже никогда не б/т изменены. Данные в ХД не создаются, т.е поступают из внешних источников, не корректир-ся и не удаляются

4)поддержание хронологии (истории)- привязка ко времени,или завис-ть от времени, т.е данные в ХД напрямую связаны с опреде-ым периодом времени.

ХД-организация и поддержка предметно-ориентированной, интегрированной, слабо изменяемой по внутренней структуре и поддерживающей хронологию электронной коллекции данных для обработки (анализа) с целью извлечения (добычи) новых данных или обобщения имеющихся.

ХД –структурно-расширяемая, вычислительная среда, спроектированная для анализа неизменяемых во времени данных, кот-е логически и физически преобразованы из различных источников и соответ-ая направлениям бизнеса, обновляемая и поддерживаемая в длительный период времени, выраженная в простых терминах и обобщенная (суммированная) для быстрого анализа.

33. Data Mining – это совокупность методов обнаружения в БД ранее неизвестных, нетривиальных (непростых), практически полезных, доступных для интерпретации знаний, необходимых для принятия решений в различных сферах человеческой жизни.

Datamining– это процесс выделения из БД неявной и не структурированной информации с представлением её в виде пригодной для использования.

Задачи DM:

    Классификация – процесс группировки объектов исследования или наблюдения в соответствии с их общими признаками. В результате решения этой задачи обнаруживаются признаки, которые характеризуют группы объектов, исследуемого набора данных, т.е. классы. По этим признакам новый объект можно отнести к тому или иному классу.

    Кластеризация – задача разбития заданной ситуации на подмножества, называемые кластерами.

    Ассоциация – поиск закономерностей, осуществляемый не на основе свойств объекта, а между несколькими событиями, которые происходят одновременно.

    Прогнозирование – на основе исторических данных оцениваются пропущенные или же будущие значения целевых численных показателей.

34. 1С:Предприятие - программный продукт компании , предназначенный для автоматизации деятельности на предприятии.

1С:Предприятие - это (одновременно) и технологическая платформа, и пользовательский режим работы. Технологическая платформа предоставляет объекты (данных и метаданных) и механизмы управления объектами. Объекты (данные и метаданные) описываются в виде конфигураций. При автоматизации какой-либо деятельности составляется своя конфигурация объектов, которая и представляет собой законченное прикладное решение. Конфигурация создаётся в специальном режиме работы программного продукта под названием «Конфигуратор», затем запускается режим работы под названием «1С:Предприятие», в котором пользователь получает доступ к основным функциям, реализованным в данном прикладном решении (конфигурации).

Типовые конфигурации:

    Конфигурация «1С:Бухгалтерия 8»

Основные возможности: ведение учёта по нескольким организациям в одной базе; ведение как бухгалтерского, так и налогового учёта (на раздельных планах счетов); возможность ведения учёта по упрощённой системе налогообложения (для каждой организации система налогообложения может быть выбрана независимо); более гибкие возможности по учётной политике (задаётся раздельно для бухгалтерского и налогового учёта), закрытию счетов, расчёту амортизации, учёту НДС , в том числе включение/исключение из стоимости с учётом ЕНВД в розничной торговле.

    Конфигурация «1С:Управление Торговлей 8»

Предназначена для ведения торгово-складского учёта на предприятиях. Функциональность по сравнению с конфигурацией «1С: Торговля и склад 7.7» расширена: появились возможности управления отношениями с клиентами (CRM), а также возможность планирования продаж и закупок.

    Конфигурация «1С:Зарплата и управление персоналом 8»

Предназначена для реализации кадровой политики предприятия и денежных расчётов с персоналом по следующим направлениям:

    планирование потребностей в персонале;

    управление финансовой мотивацией персонала;

    эффективное планирование занятости персонала;

    учёт кадров и анализ кадрового состава;

    начисление и выплата заработной платы;

    исчисление регламентированных законодательством налогов и взносов с фонда оплаты труда;

    отражение начисленной зарплаты и налогов в затратах предприятия.

    Конфигурация «1С:Управление производственным предприятием 8»

Наиболее интересные особенности, которые в подавляющем большинстве других систем не встречаются:

    Имеются конфигурации: «Управление производственным предприятием» (для России), «Управление производственным предприятием для Украины» и «Управление производственным предприятием для Казахстана», и это именно разные конфигурации, а не разные варианты настроек.

    Существует возможность изменения учтённых (проведённых) документов.Уровень техподдержки зависит от фирмы-партнера (так называемых «франчайзи»). Для поиска партнера существует специальный ресурс: «Выбор аттестованных франчайзи» .

Архитектура 1С:Предприятие 8

1) Общие механизмы. Система 1С:Предприятие 8 имеет в своей основе ряд механизмов, определяющих концепцию создания прикладных решений. Наличие этих механизмов позволяет максимально соотнести технологические возможности с бизнес-схемой разработки и внедрения прикладных решений.

В качестве ключевых моментов можно выделить изоляцию разработчика от технологических подробностей, алгоритмическое программирование только бизнес-логики приложения, использование собственной модели базы данных и масштабируемость прикладных решений без их доработки.

2) Прикладные механизмы. Состав прикладных механизмов 1С:Предприятия ориентирован на решение задач автоматизации учета и управления предприятием. Использование проблеммно-ориентированных объектов позволяет разработчику решать самый широкий круг задач складского, бухгалтерского, управленческого учета, расчета зарплаты, анализа данных и управления на уровне бизнес-процессов. 3) Интерфейсные механизмы. В 1С:Предприятии 8 реализован современный дизайн интерфейса и повышена комфортность работы пользователей при работе с системой в течение длительного времени.

4) Масштабируемость. Технологическая платформа обеспечивает различные варианты работы прикладного решения: от персонального однопользовательского, до работы в масштабах больших рабочих групп и предприятий. Ключевым моментом масштабируемости является то, что повышение производительности достигается средствами платформы, и прикладные решения не требуют доработки при увеличении количества одновременно работающих пользователей.

5) Интеграция. Система 1С:Предприятие 8 является открытой системой. Предоставляется возможность для интеграции практически с любыми внешними программами и оборудованием на основе общепризнанных открытых стандартов и протоколов передачи данных.

35. ИКИС «Галактика» входит в комплекс бизнес-решений Галактика Business Suite, главное назначение которой – выполнение в едином информационном пространстве типовых и специализированных задач управления предприятием, холдингом, группой компаний в условиях современной экономики.

Система Галактика ориентирована на автоматизацию решения задач, возникающих на всех стадиях управленческого цикла: прогнозирование и планирование, учет и контроль реализации планов, анализ результатов, коррекция прогнозов и планов. Основной структурной единицей системы является модуль, предназначенный для решения отдельных задач определенной предметной области (например, «Управление сбытом», «Планирование производства»). Модули, в свою очередь, объединены в функциональные контуры. Допустимо как изолированное использование отдельных модулей, так и их произвольные комбинации, в зависимости от производственно-экономической необходимости. Стоит отметить, что в системе Галактика ERP сделан первый шаг к реализации концепции компонентной модели: логически модули системы состоят из компонент, взаимодействующих друг с другом через специальные интерфейсы.

Контур планирования и управления финансами системы Галактика ERP – это надежный инструмент для управления финансовыми ресурсами компании. Он адресован руководителям и специалистам финансовых и планово-экономических служб. С его помощью можно выполнять планирование финансово-хозяйственной деятельности предприятия, осуществлять моделирование и согласование финансовых планов, проводить анализ их фактического исполнения, вести оперативный финансовый менеджмент. Контур планирования и управления финансами системы Галактика ERP состоит из трех модулей – «Управление бюджетом», «Платежный календарь» и «Финансовый анализ».

Бюджетирование – процесс управления финансовыми ресурсами, включающий в себя следующие этапы:

Планирование и моделирование различных вариантов бюджетов;

Согласование и утверждение бюджетов;

Формирование фактических показателей бюджета;

Проведение корректировок бюджета.

Назначение модуля «Платежный календарь» - решение задач опертивного финансового управления денежными потоками. Модуль является инструментом контроля исполнения финансовых обязательств, обеспечения абсолютной ликвидности платежных средств, минимизации риска неплатежеспособности.

Основная задача финансового анализа – оценка финансового состояния предприятия и выявление перспектив его дальнейшего развития. Анализ финансового состояния может производится по нескольким методикам, позволяющим рассчитывать значения одних и тех же показателей с помощью разных формул, описывающих соотношение показателей в старом и новом стандарте. Финансовый анализ производится на основе данных баланса предприятия, а так же на основе различных справок и приложений. Экономический анализ производится после выполнения функции импорта отчетов, как из внешних источников, так и из других модулей системы.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то