Виды защиты информации. Методы и способы ее защиты. Классификация методов защиты информации

Административная защита информации

Административная защита информации- это комплекс мер, направленных на создание системы защиты, организацию всех ее остальных форм, повышение их надежности. Меры административной защиты могут приниматься на различных уровнях, имеющих определенную степень иерархии: страны, республики, региона, отрасли и т.д.

Административная защита информации предусматривает:

1. Определение стратегии, планирование, координацию и руководство процессами представления информации, обработки, хранений и коммуникации данных;

2. Планирование и организацию системы мероприятий по предотвращению несанкционированного доступа к информации;

3. Планирование аварийных работ по спасению информации в нештатных ситуациях;

Программная защита данных

Программная защита данных - это комплекс мероприятий по разработке, внедрению и организации функционирования специализированного программно-информационного обеспечения, предназначенного для защиты данных.

1. Защита операционной системы:

1.1. Ограничение доступа к компьютеру и операционной системе,

1.2. Программная организация доступа.

2. Защита информационных систем:

2.1. Защита ее содержания и целостности,

2.2. Защита от несанкционированного доступа и копирования.

3. Система криптографии данных.

4. Защита программ от несанкционированного использования:

4.1. Жесткая защита информации,

4.2. Защита дискет от копирования,

4.3. программная защита данных при передаче данных.

5. Программная защита интеллектуальной собственности.

6. Защита целостности и точности данных.

7. Создание распределенной дисковой системы.

8. Программное восстановление данных.

Физико-техническая защита данных

Физико-техническая (физическая) защита данных - это комплекс таких производственных профилактических мероприятий по сохранению информации и средств, предназначенных для хранения и передачи данных. Эти мероприятия не связаны непосредственно с процессами программирования, компьютерной обработки и коммуникации, относятся, в основном, к функциям технико-операторского обслуживания и профилактики, осуществляемый на уровне пользователей и специальных групп людей.

Методы физико-технической защиты информации:

Ø Защита машинных носителей данных (винчерстеров, дискет, бумаг и пр.).

Ø Защита технического обеспечения компьютерных систем (процессора, оргтехники. Работа на аппаратуре, не удовлетворяющей необходимым требованиям безопасности и качества, может привести к аварийной ситуации, непредсказуемым последствиям, искажению или потере информации.

Ø Выбор и защита средств коммуникации.

Ø Дополнительные технические средства защиты данных.

Ø Профилактические работы по защите данных.

Ø Архивация данных.

Ø Антивирусология. Для борьбы с вирусами применяются следующие средства и меры: аппаратные (специальные платы в процессоре), программные (полифаги, ревизоры, вакцины, сторожа). Более подробную информацию о вирусах, их природе и классификации, методах и средствах борьбы с ними можно получить в сети Интернет (сайты AVP Касперского, Доктор Веб и др.).

Ø Антивирусная профилактика. Соблюдение правил, которым желательно следовать в целях защиты от вирусов и программ-вандалов.

1. Нельзя загружать в ОП программу, не зная всех последствий ее работы. Опасно приобретать программы "контрабандным" путем.

2. Убедитесь в чистоте программы от вирусов.

3. Имейте аварийную базу данных.

4. Обновляйте антивирусную систему.

Заключение

Таким образом, принцип современной защиты информации - это поиск оптимального соотношения между доступностью и безопасностью.

К сожалению, абсолютной защиты быть не может, но все же мы можем обеспечить ее.

Перечисленные выше способы и методы защиты информации, профилактические мероприятия позволяют надеяться на относительную защищенность данных в персональном компьютере. Необходимо следовать тем правилам, нормативным актам, использовать необходимые средства защиты, чтобы оградить себя от потери, кражи или изменения необходимой информации. Таким средствами могут быть антивирусы, резервное копирование, шифрование компьютерных данных.

В настоящее время применяемые на практике подходы и средства нередко страдают существенными недостатками и не обладают объявленной надежностью. поэтому необходимо ориентироваться во всем спектре вопросов обеспечения информационной безопасности, понимая их комплексный и взаимообусловленный характер.

Список использованной литературы

В сентябре 2000 года президентом России была подписана: «Доктрина информационной безопасности РФ», на оснований которой был принят закон об информации. В этом законе выделяются следующие виды информации которые принадлежат защите со стороны государства:

Криптографические методы:

Проблема защиты информации путем ее преобразования, исключающего ее прочтение посторонним лицом волновала человеческий ум с давних времен. История криптографии - ровесница истории человеческого языка. Более того, первоначально письменность сама по себе была криптографической системой, так как в древних обществах ею владели только избранные. Священные книги Древнего Египта, Древней Индии тому примеры.

С широким распространением письменности криптография стала формироваться как самостоятельная наука. Первые криптосистемы встречаются уже в начале нашей эры. Так, Цезарь в своей переписке использовал уже более менее систематический шифр, получивший его имя.

Бурное развитие криптографические системы получили в годы первой и второй мировых войн. Начиная с послевоенного времени и по нынешний день появление вычислительных средств ускорило разработку и совершенствование криптографических методов.

Почему проблема использования криптографических методов в информационных системах (ИС) стала в настоящий момент особо актуальна?

С одной стороны, расширилось использование компьютерных сетей, в частности глобальной сети Интернет, по которым передаются большие объемы информации государственного, военного, коммерческого и частного характера, не допускающего возможность доступа к ней посторонних лиц.

С другой стороны, появление новых мощных компьютеров, технологий сетевых и нейронных вычислений сделало возможным дискредитацию криптографических систем еще недавно считавшихся практически не раскрываемыми.

Проблемой защиты информации путем ее преобразования занимается криптология (kryptos - тайный, logos - наука). Криптология разделяется на два направления - криптографию и криптоанализ. Цели этих направлений прямо противоположны.

Криптография занимается поиском и исследованием математических методов преобразования информации.

Сфера интересов криптоанализа - исследование возможности расшифровывания информации без знания ключей.

Современная криптография включает в себя четыре крупных раздела:

  • 1. Симметричные криптосистемы.
  • 2. Криптосистемы с открытым ключом.
  • 3. Системы электронной подписи.
  • 4. Управление ключами.

Основные направления использования криптографических методов - передача конфиденциальной информации по каналам связи (например, электронная почта), установление подлинности передаваемых сообщений, хранение информации (документов, баз данных) на носителях в зашифрованном виде.

Системы с открытым ключом:

Как бы ни были сложны и надежны криптографические системы - их слабое мест при практической реализации - проблема распределения ключей. Для того, чтобы был возможен обмен конфиденциальной информацией между двумя субъектами ИС, ключ должен быть сгенерирован одним из них, а затем каким-то образом опять же в конфиденциальном порядке передан другому. Т.е. в общем случае для передачи ключа опять же требуется использование какой-то криптосистемы.

Для решения этой проблемы на основе результатов, полученных классической и современной алгеброй, были предложены системы с открытым ключом.

Суть их состоит в том, что каждым адресатом ИС генерируются два ключа, связанные между собой по определенному правилу. Один ключ объявляется открытым, а другой закрытым. Открытый ключ публикуется и доступен любому, кто желает послать сообщение адресату. Секретный ключ сохраняется в тайне.

Исходный текст шифруется открытым ключом адресата и передается ему. Зашифрованный текст в принципе не может быть расшифрован тем же открытым ключом. Дешифрование сообщение возможно только с использованием закрытого ключа, который известен только самому адресату.

Криптографические системы с открытым ключом используют так называемые необратимые или односторонние функции, которые обладают следующим свойством: при заданном значении x относительно просто вычислить значение f(x), однако если y =f(x ), то нет простого пути для вычисления значения x.

Множество классов необратимых функций и порождает все разнообразие систем с открытым ключом. Однако не всякая необратимая функция годится для использования в реальных ИС.

В самом определении необратимости присутствует неопределенность. Под необратимостью понимается не теоретическая необратимость, а практическая невозможность вычислить обратное значение используя современные вычислительные средства за обозримый интервал времени.

Поэтому чтобы гарантировать надежную защиту информации, к системам с открытым ключом (СОК) предъявляются два важных и очевидных требования:

  • 1. Преобразование исходного текста должно быть необратимым и исключать его восстановление на основе открытого ключа.
  • 2. Определение закрытого ключа на основе открытого также должно быть невозможным на современном технологическом уровне. При этом желательна точная нижняя оценка сложности (количества операций) раскрытия шифра.

Алгоритмы шифрования с открытым ключом получили широкое распространение в современных информационных системах. Так, алгоритм RSA стал мировым стандартом де-факто для открытых систем и рекомендован МККТТ.

Вообще же все предлагаемые сегодня криптосистемы с открытым ключом опираются на один из следующих типов необратимых преобразований:

Разложение больших чисел на простые множители.

Вычисление логарифма в конечном поле.

Вычисление корней алгебраических уравнений.

Здесь же следует отметить, что алгоритмы криптосистемы с открытым ключом (СОК) можно использовать в трех назначениях.

  • 1. Как самостоятельные средства защиты передаваемых и хранимых данных.
  • 2. Как средства для распределения ключей. Алгоритмы СОК более трудоемки, чем традиционные криптосистемы. Поэтому часто на практике рационально с помощью СОК распределять ключи, объем которых как информации незначителен. А потом с помощью обычных алгоритмов осуществлять обмен большими информационными потоками.

Средства аутентификации пользователей.

Электронная подпись

В 1991 г. Национальный институт стандартов и технологии (NIST) предложил для появившегося тогда алгоритма цифровой подписи DSA (Digital Signature Algorithm) стандарт DSS (Digital Signature Standard), в основу которого положены алгоритмы Эль-Гамаля и RSA.

В чем состоит проблема аутентификации данных?

В конце обычного письма или документа исполнитель или ответственное лицо обычно ставит свою подпись. Подобное действие обычно преследует две цели. Во-первых, получатель имеет возможность убедиться в истинности письма, сличив подпись с имеющимся у него образцом. Во-вторых, личная подпись является юридическим гарантом авторства документа. Последний аспект особенно важен при заключении разного рода торговых сделок, составлении доверенностей, обязательств и т.д.

Если подделать подпись человека на бумаге весьма непросто, а установить авторство подписи современными криминалистическими методами - техническая деталь, то с подписью электронной дело обстоит иначе. Подделать цепочку битов, просто ее скопировав, или незаметно внести нелегальные исправления в документ сможет любой пользователь.

С широким распространением в современном мире электронных форм документов (в том числе и конфиденциальных) и средств их обработки особо актуальной стала проблема установления подлинности и авторства безбумажной документации.

В разделе криптографических систем с открытым ключом было показано, что при всех преимуществах современных систем шифрования они не позволяют обеспечить аутентификацию данных. Поэтому средства аутентификации должны использоваться в комплексе и криптографическими алгоритмами.

Иногда нет необходимости зашифровывать передаваемое сообщение, но нужно его скрепить электронной подписью. В этом случае текст шифруется закрытым ключом отправителя и полученная цепочка символов прикрепляется к документу. Получатель с помощью открытого ключа отправителя расшифровывает подпись и сверяет ее с текстом. В 1991 г. Национальный институт стандартов и технологии (NIST) предложил для появившегося тогда алгоритма цифровой подписи DSA (Digital Signature Algorithm) стандарт DSS (Digital Signature Standard), в основу которого положены алгоритмы Эль-Гамаля и RSA.

Методы защиты информации в Internet:

Сегодня самая актуальная для Internet тема - проблема защиты информации. Сеть стремительно развивается в глобальных масштабах, и все большее распространение получают системы внутренних сетей (intranet, интрасети). Появление на рынке новой огромной ниши послужило стимулом как для пользователей, так и для поставщиков сетевых услуг к поиску путей повышения безопасности передачи информации через Internet.

Проблема безопасности в Internet подразделяется на две категории: общая безопасность и вопросы надежности финансовых операций. Успешное разрешение проблем в сфере финансовой деятельности могло бы открыть перед Internet необозримые перспективы по предоставлению услуг для бизнеса. В борьбу за решение этой проблемы включились такие гиганты в области использовани кредитных карточек, как MasterCard и Visa, а также лидеры компьютерной индустрии Microsoft и Netscape. Все это касается "денежных" дел; наша же статья посвящена проблеме общей безопасности.

Задача исследований в этой области - решение проблемы конфиденциальности. Рассмотрим для примера передачу сообщений электронной почты с одного SMTP-сервера на другой. В отдельных случаях эти сообщения просто переписываются с одного жесткого диска на другой как обыкновенные текстовые файлы, т. е. прочитать их смогут все желающие. Образно говоря, механизм доставки электронной почты через Internet напоминает ситуацию, когда постиранное белье вывешивается на улицу, вместо того чтобы отжать его в стиральной машине. Не важно, содержатся ли в послании какая-то финансовая информация или нет; важно следующее - любая пересылаемая по Internet информаци должна быть недоступна для посторонних.

Кроме конфиденциальности пользователей также волнует вопрос гарантий, с кем они сейчас "беседуют". Им необходима уверенность, что сервер Internet, с которым у них сейчас сеанс связи, действительно является тем, за кого себя выдает; будь то сервер World-Wide Web, FTP, IRC или любой другой. Не составляет особого труда имитировать (то ли в шутку, то ли с преступными намерениями) незащищенный сервер и попытаться собрать всю информацию о вас. И, конечно же, поставщики сетевых услуг также хотели бы быть уверенными, что лица, обращающиеся к ним за определенными ресурсами Internet, например, электронной почтой и услугами IRC, действительно те, за кого себя выдают.

Метод парольной защиты:

Законность запроса пользователя определяется по паролю, представляющему собой, как правило, строку знаков. Метод паролей считается достаточно слабым, так как пароль может стать объектом хищения, перехвата, перебора, угадывания. Однако простота метода стимулирует поиск путей его усиления.

Для повышения эффективности парольной защиты рекомендуется:

выбирать пароль длиной более 6 символов, избегая распространенных, легко угадываемых слов, имен, дат и т.п.;

  • 1. использовать специальные символы;
  • 2. пароли, хранящиеся на сервере, шифровать при помощи односторонней функции;
  • 3. файл паролей размещать в особо защищаемой области ЗУ ЭВМ, закрытой для чтения пользователями;
  • 4. границы между смежными паролями маскируются;
  • 5. комментарии файла паролей следует хранить отдельно от файла;
  • 6. периодически менять пароли;
  • 7. предусмотреть возможность насильственной смены паролей со стороны системы через определенный промежуток времени;
  • 8. использовать несколько пользовательских паролей: собственно пароль, персональный идентификатор, пароль для блокировки/разблокировки аппаратуры при кратковременном отсутствии и т.п.
  • 9. В качестве более сложных парольных методов используется случайная выборка символов пароля и одноразовое использование паролей. В первом случае пользователю (устройству) выделяется достаточно длинный пароль, причем каждый раз для опознавания используется часть пароля, выбираемая случайно. При одноразовом использовании пароля пользователю выделяется не один, а большое количество паролей, каждый из которых используется по списку или по случайной выборке один раз. В действительно распределенной среде, где пользователи имеют доступ к нескольким серверам, базам данных и даже обладают правами удаленной регистрации, защита настолько осложняется, что администратор все это может увидеть лишь в кошмарном сне.

Административные меры защиты:

Проблема защиты информации решается введением контроля доступа и разграничением полномочий пользователя.

Распространённым средством ограничения доступа (или ограничения полномочий) является система паролей. Однако оно ненадёжно. Опытные хакеры могут взломать эту защиту, «подсмотреть» чужой пароль или войти в систему путём перебора возможных паролей, так как очень часто для них используются имена, фамилии или даты рождения пользователей. Более надёжное решение состоит в организации контроля доступа в помещения или к конкретному ПК в ЛВС с помощью идентификационных пластиковых карточек различных видов.

Использование пластиковых карточек с магнитной полосой для этих целей вряд ли целесообразно, поскольку, её можно легко подделать. Более высокую степень надёжности обеспечивают пластиковые карточки с встроенной микросхемой - так называемые микропроцессорные карточки (МП - карточки, smart - card). Их надёжность обусловлена в первую очередь невозможностью копирования или подделки кустарным способом. Кроме того, при производстве карточек в каждую микросхему заносится уникальный код, который невозможно продублировать. При выдаче карточки пользователю на неё наносится один или несколько паролей, известных только её владельцу. Для некоторых видов МП - карточек попытка несанкционированного использования заканчивается её автоматическим «закрытием». Чтобы восстановить работоспособность такой карточки, её необходимо предъявить в соответствующую инстанцию.

Установка специального считывающего устройства МП - карточек возможна не только на входе в помещения, где расположены компьютеры, но и непосредственно на рабочих станциях и серверах сети.

Защита корпоративной информации:

Однако при решении этой проблемы предприятия часто идут на поводу у компаний-подрядчиков, продвигающих один или несколько продуктов, решающих, как правило, частные задачи. Ниже рассмотрим наиболее общие подходы к комплексному решению задачи обеспечения безопасности информации.

Наиболее типичной ошибкой при построении системы защиты является стремление защитить всё и от всего сразу. На самом деле определение необходимой информации (файлов, каталогов, дисков) и иных объектов информационной структуры, которые требуется защитить - первый шаг в построении системы информационной безопасности. С определения этого перечня и следует начать: следует оценить, во сколько может обойтись потеря (удаление или кража) той или иной базы данных или, например, простой одной рабочей станции в течение дня.

Второй шаг - определение источников угроз. Как правило, их несколько. Выделить источник угроз - значит, оценить его цели (если источник преднамеренный) или возможное воздействие (непреднамеренный), вероятность (или интенсивность) его появления. Если речь идет о злоумышленных действиях лица (или группы лиц), то требуется оценить его организационные и технические возможности для доступа к информации (ведь злоумышленник может быть и сотрудником фирмы).

После определения источника угроз можно сформулировать угрозы безопасности информации. То есть что с информацией может произойти. Как правило, принято различать следующие группы угроз:

  • § несанкционированный доступ к информации (чтение, копирование или изменение информации, ее подлог и навязывание);
  • § нарушение работоспособности компьютеров и прикладных программ
  • § уничтожение информации.

В каждой из этих трех групп можно выделить десятки конкретных угроз, однако пока на этом остановимся. Заметим только, что угрозы могут быть преднамеренными и случайными, а случайные, в свою очередь, естественными (например, стихийные бедствия) и искусственными (ошибочные действия персонала). Случайные угрозы, в которых отсутствует злой умысел, обычно опасны только в плане потери информации и нарушения работоспособности системы, от чего достаточно легко застраховаться. Преднамеренные же угрозы более серьезны с точки зрения потери для бизнеса, ибо здесь приходится бороться не со слепым (пусть и беспощадным в своей силе) случаем, но с думающим противником.

Построение системы защиты полезно проводить с принципами защиты, которые достаточно универсальны для самых разных предметных областей (инженерное обеспечение в армии, физическая безопасность лиц и территорий, и т. д.)

  • § Адекватность (разумная достаточность). Совокупная стоимость защиты (временные, людские и денежные ресурсы) должна быть ниже стоимости защищаемых ресурсов. Если оборот компании составляет 10 тыс. долларов в месяц, вряд ли есть смысл развертывать систему на миллион долларов (так, же как и наоборот).
  • § Системность. Важность этого принципа особо проявляется при построении крупных систем защиты. Он состоит в том, что система защиты должна строиться не абстрактно (защита от всего), а на основе анализа угроз, средств защиты от этих угроз, поиска оптимального набора этих средств и построения системы.
  • § Прозрачность для легальных пользователей. Введение механизмов безопасности (в частности аутентификации пользователей) неизбежно приводит к усложнению их действий. Тем не менее, никакой механизм не должен требовать невыполнимых действий (например, еженедельно придумывать 10-значный пароль и нигде его не записывать) или затягивать процедуру доступа к информации.
  • § Равностойкость звеньев. Звенья - это элементы защиты, преодоление любого из которых означает преодоление всей защиты. Понятно, что нельзя слабость одних звеньев компенсировать усилением других. В любом случае, прочность защиты (или ее уровня, см. ниже) определяется прочностью самого слабого звена. И если нелояльный сотрудник готов за 100 долларов «скинуть на дискету» ценную информацию, то злоумышленник вряд ли будет выстраивать сложную хакерскую атаку для достижения той же цели.
  • § Непрерывность. В общем-то, та же равностойкость, только во временной области. Если мы решаем, что будем что-то и как-то защищать, то надо защищать именно так в любой момент времени. Нельзя, например, решить по пятницам делать резервное копирование информации, а в последнюю пятницу месяца устроить «санитарный день». Закон подлости неумолим: именно в тот момент, когда меры по защите информации будут ослаблены, произойдет то, от чего мы защищались. Временный провал в защите, так же, как и слабое звено, делает ее бессмысленной.
  • § Многоуровневость. Многоуровневая защита встречается повсеместно, достаточно побродить по руинам средневековой крепости. Зачем защита строится в несколько уровней, которые должен преодолевать как злоумышленник, так и легальный пользователь (которому, понятно, это делать легче)? К сожалению, всегда существует вероятность того, что какой-то уровень может быть преодолен либо в силу непредвиденных случайностей, либо с ненулевой вероятностью. Простая математика подсказывает: если один уровень гарантирует защиту в 90%, то три уровня (ни в коем случае не повторяющих друг друга) дадут вам 99,9%. Это, кстати, резерв экономии: путем эшелонирования недорогих и относительно ненадежных средств защиты можно малой кровью добиться очень высокой степени защиты.

Учет этих принципов поможет избежать лишних расходов при построении системы защиты информации и в то же время добиться действительно высокого уровня информационной безопасности бизнеса.

Оценка эффективности систем защиты программного обеспечения

Системы защиты ПО широко распространены и находятся в постоянном развитии, благодаря расширению рынка ПО и телекоммуникационных технологий. Необходимость использования систем защиты (СЗ) ПО обусловлена рядом проблем, среди которых следует выделить: незаконное использование алгоритмов, являющихся интеллектуальной собственностью автора, при написании аналогов продукта (промышленный шпионаж); несанкционированное использование ПО (кража и копирование); несанкционированная модификация ПО с целью внедрения программных злоупотреблений; незаконное распространение и сбыт ПО (пиратство).

Системы защиты ПО по методу установки можно подразделить на системы, устанавливаемые на скомпилированные модули ПО; системы, встраиваемые в исходный код ПО до компиляции; и комбинированные.

Системы первого типа наиболее удобны для производителя ПО, так как легко можно защитить уже полностью готовое и оттестированное ПО (обычно процесс установки защиты максимально автоматизирован и сводится к указанию имени защищаемого файла и нажатию "Enter"), а потому и наиболее популярны. В то же время стойкость этих систем достаточно низка (в зависимости от принципа действия СЗ), так как для обхода защиты достаточно определить точку завершения работы "конверта" защиты и передачи управления защищенной программе, а затем принудительно ее сохранить в незащищенном виде.

Системы второго типа неудобны для производителя П.О, так как возникает необходимость обучать персонал работе с программным интерфейсом (API) системы защиты с вытекающими отсюда денежными и временными затратами. Кроме того, усложняется процесс тестирования П.О и снижается его надежность, так как кроме самого П.О ошибки может содержать API системы защиты или процедуры, его использующие. Но такие системы являются более стойкими к атакам, потому что здесь исчезает четкая граница между системой защиты и как таковым П.О.

Для защиты ПО используется ряд методов, таких как:

  • § Алгоритмы запутывания - используются хаотические переходы в разные части кода, внедрение ложных процедур - "пустышек", холостые циклы, искажение количества реальных параметров процедур ПО, разброс участков кода по разным областям ОЗУ и т.п.
  • § Алгоритмы мутации - создаются таблицы соответствия операндов - синонимов и замена их друг на друга при каждом запуске программы по определенной схеме или случайным образом, случайные изменения структуры программы.
  • § Алгоритмы компрессии данных - программа упаковывается, а затем распаковывается по мере выполнения.
  • § Алгоритмы шифрования данных - программа шифруется, а затем расшифровывается по мере выполнения.
  • § Вычисление сложных математических выражений в процессе отработки механизма защиты - элементы логики защиты зависят от результата вычисления значения какой-либо формулы или группы формул.
  • § Методы затруднения дизассемблирования - используются различные приемы, направленные на предотвращение дизассемблирования в пакетном режиме.
  • § Методы затруднения отладки - используются различные приемы, направленные на усложнение отладки программы.
  • § Эмуляция процессоров и операционных систем - создается виртуальный процессор и/или операционная система (не обязательно реально существующие) и программа-переводчик из системы команд IBM в систему команд созданного процессора или ОС, после такого перевода ПО может выполняться только при помощи эмулятора, что резко затрудняет исследование алгоритма ПО.
  • § Нестандартные методы работы с аппаратным обеспечением - модули системы защиты обращаются к аппаратуре ЭВМ, минуя процедуры операционной системы, и используют малоизвестные или недокументированные её возможности.

3.1. Понятие коммерческой информации

и источники ее получения

Информация (лат. - information) - сообщение о чем-

Коммерческая информация - это сведения о сложившейся ситуации на рынке различных товаров и услуг. Сюда относят количественные и качественные показатели торговой деятельности фирмы (коммерческой структуры, торгового предприятия и т. п.), различные сведения и данные о коммерческой деятельности (цены, поставщики, конкуренты, условия поставок, расчеты, ассортимент товаров и др.).

Назначение коммерческой информации состоит в том, что она позволяет торговым организациям (предприятиям) проводить анализ своей коммерческой деятельности, планировать ее, осуществлять контроль за результатами этой деятельности (эффективностью работы).

Коммерсанту для успешной работы необходима как воздух коммерческая информация. Ему нужна постоянная информация о клиентах, конкурентах, дилерах (дельцах-по- средниках). Оперативные данные для анализа, планирования, контроля. Рыночная ситуация постоянно меняется или может измениться в любую минуту. И если не налажено непрерывное поступление (обновление) информационных данных, фирма может вовремя не отреагировать на те или иные изменения (перемены), а значит, не избежать самых неприятных последствий. Тот, кто владеет информацией, действу-

предлагается база данных под названием “Партнер-2”, содержащая 3,5 тыс. наиболее крупных экспортеров и импортеров с указанием их адресов, факсов, телефонов, полной номенклатуры товаров, которыми торгует та или иная фирма.

3.2. Коммерческая тайна и ее содержание

Что такое коммерческая тайна? Видимо, всем известно понятие государственной (военной) тайны. Во всем мире под государственной тайной понимают сведения, относящиеся к внешней политике, обороне, национальной безопасности.

В советский период содержание государственной тайны было очень расширено - от здоровья руководителей партии и государства до рецептуры хлеба и вареной колбасы. На многих ведомственных документах существовал гриф “Для служебного пользования”.

Сейчас в условиях рыночной экономики такого грифа в большинстве случаев нет, однако появилось понятие - коммерческая тайна, что означает ограничение прав на определенную информацию для юридических и физических лиц, являющихся конкурентами.

Коммерческая тайна - явление, присущее только рыночной, капиталистической экономике. Не случайно один из первых декретов В. И. Ленина был декрет об отмене коммерческой тайны. В условиях конкурентной борьбы коммерческая тайна - эффективное средство повышения конкурентоспособности продукции и услуг.

Итак, что такое коммерческая тайна? Исходя из вышеизложенного, ей можно дать следующее определение: “Преднамеренно скрываемые по коммерческим соображениям экономические, технические, организационные и прочие данные и сведения о различных сторонах и сферах хозяйственной деятельности фирмы, охрана которых обусловлена интересами конкуренции и возможной угрозой экономической безопасности фирмы (предприятия)”.

Коммерческая тайна возникает тогда, когда она представляет интерес для конкурентов. В отличие от государственной тайны коммерческая тайна не определена конкретным перечнем, поскольку она всегда разная применительно к разным предприятиям или фирмам.

В законодательстве России понятие коммерческой тайны появилось в 1990 г. в тексте Закона о предприятиях и предпринимательской деятельности. Позднее в 1994 г. в п. 1 ст. 139 Гражданского кодекса РФ (далее - ГК РФ) “Служебная и коммерческая тайна” было дано определение информации, составляющей служебную или коммерческую тайну.

Наиболее полно и развернуто в правовом отношении коммерческая тайна получила изложение в Федеральном законе от 29 июля 2004 г. № 98-ФЗ “О коммерческой тайне”. Положения настоящего Федерального закона распространяются на информацию, составляющую коммерческую тайну, независимо от вида носителя, на котором она зафиксирована.

Дальнейшее развитие положение о коммерческой тайне получили в IV части ГК РФ. Этому посвящена гл. 75 “Право на секрет производства (ноу-хау)”.

Секретом производства (ноу-хау) признаются сведения любого характера (производственные, технические, экономические, организационные и другие), в том числе о результатах интеллектуальной деятельности в научно-техни- ческой сфере, а также сведения о способах осуществления профессиональной деятельности, которые имеют действительную или потенциальную коммерческую ценность в силу неизвестности их третьим лицам, к которым у третьих лиц нет свободного доступа на законном основании и в отношении которых обладателем таких сведений введен режим коммерческой тайны.

Обладателю секрета производства принадлежит исключительное право использования его в соответствии со ст. 1229

срока после расторжения договора о найме. Кроме того, во время действия подобного ограничения этому лицу должно выплачиваться вознаграждение. В российской практике такие соглашения пока неизвестны.

3. Информация о рационализаторском предложении, изобретении и т. п., находящихся на стадии разработки, несомненно, относится к коммерческой тайне.

Рационализаторское предложение даже после его оформления и выдачи авторского свидетельства может оставаться коммерческой тайной, поскольку представляет собой техническое решение задачи, новое для данной фирмы.

Изобретение после выдачи на него патента имеет специальную правовую охрану и поэтому не нуждается в защите путем отнесения к коммерческой тайне. Другое дело, если по соглашению с автором изобретения фирма примет решение не подавать заявку в Роспатент России. Тогда охрана информации полностью возлагается на фирму. Следует под-

правилу, если работодатель в течение трех месяцев с момента уведомления его автором о сделанном изобретении не подаст заявку на него, автор вправе сам подать заявку и получить патент.

4. Особое внимание следует уделить охране договоров, заключаемых предприятием. Большая их часть, безуслов-

но, относится к коммерческой тайне. Причем в определенных случаях охране подлежит не только текст договора, но и сам факт его заключения.

Руководитель фирмы должен установить строгий порядок хранения первых экземпляров договоров и работы с ними. Их следует хранить в определенном месте у ответственного лица и выдавать только под расписку с письменного разрешения руководителя фирмы. На лица, ответственные за хранение договоров и работу с ними, возлагается персональная ответ-

ственность за утерю договоров или утечку информации из них. Все это необходимо потому, что деятельность коммерческих структур строится в большей степени на договорных началах и конкурент или партнер по переговорам, обладая информацией в этой сфере, может составить довольно полную картину производственного и финансового положения фирмы. Пропажа (похищение) первых экземпляров договоров ведет к значительным затруднениям и даже невозможности доказать те или иные положения при возникновении спора и его разрешении в судебном порядке. При подписании договора рекомендуется, чтобы представители сторон ставили подписи не только в конце договора, но и на каждом листе во избежание замены одного текста другим.

Итак, что же относится к коммерческой тайне и требует защиты от утечки информации и ее похищения?

Деловая информация:

финансовые сведения;

данные о цене (стоимости) продукции и услуг, технологии;

деловые планы и планы производства новой продук-

списки клиентов и продавцов, контракты, преференции и планы;

информация о маркетинге;

соглашения, предложения, квоты;

списки персонала, организационные схемы и информация о сотрудниках (их характеристики).

Техническая информация:

научно-исследовательские проекты;

конструкторские разработки по производству какойлибо продукции и ее технические параметры;

заявки на патенты;

дизайн, эффективность и возможности производственных методов, оборудования и систем;

информационный процесс;

программное обеспечение ЭВМ.

К сведениям, которые не могут составлять коммерческую тайну, относятся следующие:

1) содержащиеся в учредительных документах юридического лица, документах, подтверждающих факт внесения записей о юридических лицах и об индивидуальных предпринимателях в соответствующие государственные ресурсы;

2) содержащиеся в документах, дающих право на осуществление предпринимательской деятельности;

3) о составе имущества государственного или муниципального унитарного предприятия, государственного учреждения и об использовании ими средств соответствующих бюджетов;

4) о загрязнении окружающей среды, состоянии противопожарной безопасности, санитарно-эпидемиологической и

радиационной обстановке, безопасности пищевых продуктов и других факторах, оказывающих негативное воздействие на обеспечение безопасного функционирования производственных объектов, безопасности каждого гражданина и безопасности населения в целом;

5) о численности, о составе работников, о системе оплаты труда, об условиях труда, в том числе об охране труда, о показателях производственного травматизма и профессиональной заболеваемости и о наличии свободных рабочих мест;

6) о задолженности работодателей по выплате заработной платы и по иным социальным выплатам;

7) о нарушениях законодательства Российской Федерации и фактах привлечения к ответственности за совершение этих нарушений;

8) об условиях конкурсов или аукционов по приватизации объектов государственной или муниципальной собственности;

9) об условиях и структуре доходов некоммерческих организаций, о размерах и составе их имущества, об их расхо-

Информация сегодня – важный ресурс, потеря которого чревата неприятными последствиями. Утрата конфиденциальных данных компании несет в себе угрозы финансовых потерь, поскольку полученной информацией могут воспользоваться конкуренты или злоумышленники. Для предотвращения столь нежелательных ситуаций все современные фирмы и учреждения используют методы защиты информации.

Безопасность информационных систем (ИС) – целый курс, который проходят все программисты и специалисты в области построения ИС. Однако знать виды информационных угроз и технологии защиты необходимо всем, кто работает с секретными данными.

Виды информационных угроз

Основным видом информационных угроз, для защиты от которых на каждом предприятии создается целая технология, является несанкционированный доступ злоумышленников к данным. Злоумышленники планируют заранее преступные действия, которые могут осуществляться путем прямого доступа к устройствам или путем удаленной атаки с использованием специально разработанных для кражи информации программ.

Кроме действий хакеров, фирмы нередко сталкиваются с ситуациями потери информации по причине нарушения работы программно-технических средств.

В данном случае секретные материалы не попадают в руки злоумышленников, однако утрачиваются и не подлежат восстановлению либо восстанавливаются слишком долго. Сбои в компьютерных системах могут возникать по следующим причинам:

  • Потеря информации вследствие повреждения носителей – жестких дисков;
  • Ошибки в работе программных средств;
  • Нарушения в работе аппаратных средств из-за повреждения или износа.

Современные методы защиты информации

Технологии защиты данных основываются на применении современных методов, которые предотвращают утечку информации и ее потерю. Сегодня используется шесть основных способов защиты:

  • Препятствие;
  • Маскировка;
  • Регламентация;
  • Управление;
  • Принуждение;
  • Побуждение.

Все перечисленные методы нацелены на построение эффективной технологии , при которой исключены потери по причине халатности и успешно отражаются разные виды угроз. Под препятствием понимается способ физической защиты информационных систем, благодаря которому злоумышленники не имеют возможность попасть на охраняемую территорию.

Маскировка – способы защиты информации, предусматривающие преобразование данных в форму, не пригодную для восприятия посторонними лицами. Для расшифровки требуется знание принципа.

Управление – способы защиты информации, при которых осуществляется управление над всеми компонентами информационной системы.

Регламентация – важнейший метод защиты информационных систем, предполагающий введение особых инструкций, согласно которым должны осуществляться все манипуляции с охраняемыми данными.

Принуждение – методы защиты информации, тесно связанные с регламентацией, предполагающие введение комплекса мер, при которых работники вынуждены выполнять установленные правила. Если используются способы воздействия на работников, при которых они выполняют инструкции по этическим и личностным соображениям, то речь идет о побуждении.

На видео – подробная лекция о защите информации:

Средства защиты информационных систем

Способы защиты информации предполагают использование определенного набора средств. Для предотвращения потери и утечки секретных сведений используются следующие средства:

  • Физические;
  • Программные и аппаратные;
  • Организационные;
  • Законодательные;
  • Психологические.

Физические средства защиты информации предотвращают доступ посторонних лиц на охраняемую территорию. Основным и наиболее старым средством физического препятствия является установка прочных дверей, надежных замков, решеток на окна. Для усиления защиты информации используются пропускные пункты, на которых контроль доступа осуществляют люди (охранники) или специальные системы. С целью предотвращения потерь информации также целесообразна установка противопожарной системы. Физические средства используются для охраны данных как на бумажных, так и на электронных носителях.

Программные и аппаратные средства – незаменимый компонент для обеспечения безопасности современных информационных систем.

Аппаратные средства представлены устройствами, которые встраиваются в аппаратуру для обработки информации. Программные средства – программы, отражающие хакерские атаки. Также к программным средствам можно отнести программные комплексы, выполняющие восстановление утраченных сведений. При помощи комплекса аппаратуры и программ обеспечивается резервное копирование информации – для предотвращения потерь.

Организационные средства сопряжены с несколькими методами защиты: регламентацией, управлением, принуждением. К организационным средствам относится разработка должностных инструкций, беседы с работниками, комплекс мер наказания и поощрения. При эффективном использовании организационных средств работники предприятия хорошо осведомлены о технологии работы с охраняемыми сведениями, четко выполняют свои обязанности и несут ответственность за предоставление недостоверной информации, утечку или потерю данных.

Законодательные средства – комплекс нормативно-правовых актов, регулирующих деятельность людей, имеющих доступ к охраняемым сведениям и определяющих меру ответственности за утрату или кражу секретной информации.

Психологические средства – комплекс мер для создания личной заинтересованности работников в сохранности и подлинности информации. Для создания личной заинтересованности персонала руководители используют разные виды поощрений. К психологическим средствам относится и построение корпоративной культуры, при которой каждый работник чувствует себя важной частью системы и заинтересован в успехе предприятия.

Защита передаваемых электронных данных

Для обеспечения безопасности информационных систем сегодня активно используются методы шифрования и защиты электронных документов. Данные технологии позволяют осуществлять удаленную передачу данных и удаленное подтверждение подлинности.

Методы защиты информации путем шифрования (криптографические) основаны на изменении информации с помощью секретных ключей особого вида. В основе технологии криптографии электронных данных – алгоритмы преобразования, методы замены, алгебра матриц. Стойкость шифрования зависит от того, насколько сложным был алгоритм преобразования. Зашифрованные сведения надежно защищены от любых угроз, кроме физических.

Электронная цифровая подпись (ЭЦП) – параметр электронного документа, служащий для подтверждения его подлинности. Электронная цифровая подпись заменяет подпись должностного лица на бумажном документе и имеет ту же юридическую силу. ЭЦП служит для идентификации ее владельца и для подтверждения отсутствия несанкционированных преобразований. Использование ЭЦП обеспечивает не только защиту информации, но также способствует удешевлению технологии документооборота, снижает время движения документов при оформлении отчетов.

Классы безопасности информационных систем

Используемая технология защиты и степень ее эффективности определяют класс безопасности информационной системы. В международных стандартах выделяют 7 классов безопасности систем, которые объединены в 4 уровня:

  • D – нулевой уровень безопасности;
  • С – системы с произвольным доступом;
  • В – системы с принудительным доступом;
  • А – системы с верифицируемой безопасностью.

Уровню D соответствуют системы, в которых слабо развита технология защиты. При такой ситуации любое постороннее лицо имеет возможность получить доступ к сведениям.

Использование слаборазвитой технологии защиты чревато потерей или утратой сведений.

В уровне С есть следующие классы – С1 и С2. Класс безопасности С1 предполагает разделение данных и пользователей. Определенная группа пользователей имеет доступ только к определенным данным, для получения сведений необходима аутентификация – проверка подлинности пользователя путем запроса пароля. При классе безопасности С1 в системе имеются аппаратные и программные средства защиты. Системы с классом С2 дополнены мерами, гарантирующими ответственность пользователей: создается и поддерживается журнал регистрации доступа.

Уровень В включает технологии обеспечения безопасности, которые имеют классы уровня С, плюс несколько дополнительных. Класс В1 предполагает наличие политики безопасности, доверенной вычислительной базы для управления метками безопасности и принудительного управления доступом. При классе В1 специалисты осуществляют тщательный анализ и тестирование исходного кода и архитектуры.

Класс безопасности В2 характерен для многих современных систем и предполагает:

  • Снабжение метками секретности всех ресурсов системы;
  • Регистрацию событий, которые связаны с организацией тайных каналов обмена памятью;
  • Структурирование доверенной вычислительной базы на хорошо определенные модули;
  • Формальную политику безопасности;
  • Высокую устойчивость систем к внешним атакам.

Класс В3 предполагает, в дополнение к классу В1, оповещение администратора о попытках нарушения политики безопасности, анализ появления тайных каналов, наличие механизмов для восстановления данных после сбоя в работе аппаратуры или .

Уровень А включает один, наивысший класс безопасности – А. К данному классу относятся системы, прошедшие тестирование и получившие подтверждение соответствия формальным спецификациям верхнего уровня.

На видео – подробная лекция о безопасности информационных систем:

Современные методы обработки, передачи и накопления информации способствовали появлению угроз, связанных с возможностью потери, искажения и раскрытия данных, адресованных или принадлежащих конечным пользователям. Поэтому обеспечение информационной безопасности компьютерных систем и сетей является одним из ведущих направлений развития ИТ.

Рассмотрим основные понятия защиты информации и информационной безопасности компьютерных систем и сетей с учетом определений ГОСТ Р 50922-96 .

Защита информации - это деятельность по предотвращению утечки защищаемой информации, несанкционированных и непреднамеренных воздействий на защищаемую информацию.

Объект защиты - информация, носитель информации или информационный процесс, в отношении которых необходимо обеспечивать защиту в соответствии с поставленной целью защиты информации.

Цель защиты информации - это желаемый результат защиты информации. Целью защиты информации может быть предотвращение ущерба собственнику, владельцу, пользователю информации в результате возможной утечки информации и/или несанкционированного и непреднамеренного воздействия на информацию.

Эффективность защиты информации - степень соответствия результатов защиты информации поставленной цели.

Защита информации от утечки - деятельность по предотвращению неконтролируемого распространения защищаемой информации от ее разглашения, несанкционированного доступа (НСД) к защищаемой информации и получения защищаемой информации злоумышленниками.

Защита информации от разглашения - деятельность по предотвращению несанкционированного доведения защищаемой информации до неконтролируемого количества получателей информации.

Защита информации от НСД - деятельность по предотвращению получения защищаемой информации заинтересованным субъектом с нарушением установленных правовыми документами или собственником либо владельцем информации прав или правил доступа к защищаемой информации. Заинтересованным субъектом, осуществляющим НСД к защищаемой информации, может выступать государство, юридическое лицо, группа физических лиц, в т. ч. общественная организация, отдельное физическое лицо.

Система защиты информации - совокупность органов и/или исполнителей, используемая ими техника защиты информации, а также объекты защиты, организованные и функционирующие по правилам, установленным соответствующими правовыми, организационно-распорядительными и нормативными документами по защите информации.

Под информационной безопасностью понимают защищенность информации от незаконного ознакомления, преобразования и уничтожения, а также защищенность информационных ресурсов от воздействий, направленных на нарушение их работоспособности. Природа этих воздействий может быть самой разнообразной.

Это и попытки проникновения злоумышленников, и ошибки персонала, и выход из строя аппаратных и программных средств, и стихийные бедствия (землетрясение, ураган, пожар) и т. п.

Современная автоматизированная система (АС) обработки информации представляет собой сложную систему, состоящую из большого числа компонентов различной степени автономности, которые связаны между собой и обмениваются данными. Практически каждый компонент может подвергнуться внешнему воздействию или выйти из строя. Компоненты АС можно разбить на следующие группы:

  • аппаратные средства - компьютеры и их составные части (процессоры, мониторы, терминалы, периферийные устройства - дисководы, принтеры, контроллеры, кабели, линии связи и т. д.);
  • программное обеспечение - приобретенные программы, исходные, объектные, загрузочные модули; ОС и системные программы (компиляторы, компоновщики и др.), утилиты, диагностические программы и т. д.;
  • данные - хранимые временно и постоянно, на магнитных носителях, печатные, архивы, системные журналы и т. д.;
  • персонал - обслуживающий персонал и пользователи.

Одной из особенностей обеспечения информационной безопасности в АС является то, что таким абстрактным понятиям, как информация, объекты и субъекты системы, соответствуют физические представления в компьютерной среде:

  • для представления информации - машинные носители информации в виде внешних устройств компьютерных систем (терминалов, печатающих устройств, различных накопителей, линий и каналов связи), оперативной памяти, файлов, записей и т. д.;
  • объектам системы - пассивные компоненты системы, хранящие, принимающие или передающие информацию. Доступ к объекту означает доступ к содержащейся в нем информации;
  • субъектам системы - активные компоненты системы, которые могут стать причиной потока информации от объекта к субъекту или изменения состояния системы. В качестве субъектов могут выступать пользователи, активные программы и процессы.

Информационная безопасность компьютерных систем достигается обеспечением конфиденциальности, целостности И ДОСтоверности обрабатываемых данных, а также доступности и целостности информационных компонентов и ресурсов системы. Перечисленные выше базовые свойства информации нуждаются в более полном толковании.

Конфиденциальность данных - это статус, предоставленный данным и определяющий требуемую степень их защиты. К конфиденциальным данным можно отнести, например, следующие: личную информацию пользователей; учетные записи (имена и пароли); данные о кредитных картах; данные о разработках и различные внутренние документы; бухгалтерские сведения. Конфиденциальная информация должна быть известна только допущенным и прошедшим проверку (авторизованным) субъектам системы (пользователям, процессам, программам). Для остальных субъектов системы эта информация должна быть неизвестной.

Установление градаций важности защиты защищаемой информации (объекта защиты) называют категорированием защищаемой информации.

Под целостностью информации понимается свойство информации сохранять свою структуру и/или содержание в процессе передачи и хранения. Целостность информации обеспечивается в том случае, если данные в системе не отличаются в семантическом отношении от данных в исходных документах, т. е. если не произошло их случайного или преднамеренного искажения или разрушения. Обеспечение целостности данных является одной из сложных задач защиты информации.

Достоверность информации - свойство информации, выражающееся в строгой принадлежности субъекту, который является ее источником, либо тому субъекту, от которого эта информация принята.

Юридическая значимость информации означает, что документ, являющийся носителем информации, обладает юридической силой.

Доступность данных. Работа пользователя с данными возможна только в том случае, если он имеет к ним доступ.

Доступ к информации - получение субъектом возможности ознакомления с информацией, в том числе при помощи технических средств. Субъект доступа к информации - участник правоотношений в информационных процессах.

Оперативность доступа к информации - это способность информации или некоторого информационного ресурса быть доступными для конечного пользователя в соответствии с его оперативными потребностями.

Собственник информации - субъект, в полном объеме реализующий полномочия владения, пользования, распоряжения информацией в соответствии с законодательными актами.

Владелец информации - субъект, осуществляющий владение и пользование информацией и реализующий полномочия распоряжения в пределах прав, установленных законом и/или собственником информации.

Пользователь (потребитель) информации - субъект, пользующийся информацией, полученной от ее собственника, владельца или посредника в соответствии с установленными правами и правилами доступа к информации либо с их нарушением.

Право доступа к информации - совокупность правил доступа к информации, установленных правовыми документами или собственником либо владельцем информации.

Правило доступа к информации - совокупность правил, регламентирующих порядок и условия доступа субъекта к информации и ее носителям.

Различают санкционированный и несанкционированный доступ к информации.

Санкционированный доступ к информации - это доступ к информации, не нарушающий установленные правила разграничения доступа. Правила разграничения доступа служат для регламентации права доступа к компонентам системы.

Несанкционированный доступ к информации - нарушение установленных правил разграничения доступа. Лицо или процесс, осуществляющие НСД к информации, являются нарушителями правил разграничения доступа. НСД является наиболее распространенным видом компьютерных нарушений.

Ответственным за защиту компьютерной системы от НСД к информации является администратор защиты.

Доступность информации подразумевает также доступность компонента или ресурса компьютерной системы, т. е. свойство компонента или ресурса быть доступным для законных субъектов системы. Примерный перечень ресурсов, которые могут быть доступны, включает: принтеры, серверы, рабочие станции, данные пользователей, любые критические данные, необходимые для работы.

Целостность ресурса или компонента системы - это свойство ресурса или компонента быть неизменным в семантическом смысле при функционировании системы в условиях случайных или преднамеренных искажений или разрушающих воздействий.

С допуском к информации и ресурсам системы связана группа таких важных понятий, как идентификация, аутентификация, авторизация. С каждым субъектом системы (сети) связывают некоторую информацию (число, строку символов), идентифицирующую субъект. Эта информация является идентификатором субъекта системы (сети). Субъект, имеющий зарегистрированный идентификатор, является законным (легальным) субъектом. Идентификация субъекта - это процедура распознавания субъекта по его идентификатору. Идентификация выполняется при попытке субъекта войти в систему (сеть). Следующим шагом взаимодействия системы с субъектом является аутентификация субъекта. Аутентификация субъекта - это проверка подлинности субъекта с данным идентификатором. Процедура аутентификации устанавливает, является ли субъект именно тем, кем он себя объявил. После идентификации и аутентификации субъекта выполняют процедуру авторизации. Авторизация субъекта - это процедура предоставления законному субъекту, успешно прошедшему идентификацию и аутентификацию, соответствующих полномочий и доступных ресурсов системы (сети).

Под угрозой безопасности АС понимаются возможные действия, способные прямо или косвенно нанести ущерб ее безопасности. Ущерб безопасности подразумевает нарушение состояния защищенности информации, содержащейся и обрабатывающейся в системе (сети). С понятием угрозы безопасности тесно связано понятие уязвимости компьютерной системы (сети). Уязвимость компьютерной системы - это присущее системе неудачное свойство, которое может привести к реализации угрозы. Атака на компьютерную систему - это поиск и/или использование злоумышленником той или иной уязвимости системы. Иными словами, атака - это реализация угрозы безопасности.

Противодействие угрозам безопасности является целью средств защиты компьютерных систем и сетей.

Защищенная система - это система со средствами защиты, которые успешно и эффективно противостоят угрозам безопасности.

Способ защиты информации - порядок и правила применения определенных принципов и средств защиты информации.

Средство защиты информации - техническое, программное средство, вещество и/или материал, предназначенные или используемые для защиты информации

Комплекс средств защиты (КСЗ) - совокупность программных и технических средств, создаваемых и поддерживаемых для обеспечения информационной безопасности системы (сети). КСЗ создается и поддерживается в соответствии с принятой в данной организации политикой безопасности.

Техника защиты информации - средства защиты информации, средства контроля эффективности защиты информации, средства и системы управления, предназначенные для обеспечения защиты информации.

Корпоративные сети относятся к распределенным автоматизированным системам (АС), осуществляющим обработку информации. Обеспечение безопасности АС предполагает организацию противодействия любому несанкционированному вторжению в процесс функционирования АС, а также попыткам модификации, хищения, выведения из строя или разрушения ее компонентов, т. е. защиту всех компонентов АС - аппаратных средств, программного обеспечения (ПО), данных и персонала. Конкретный подход к проблеме обеспечения безопасности основан на разработанной для АС политике безопасности .

Политика безопасности - это совокупность норм, правил и практических рекомендаций, регламентирующих работу средств защиты компьютерной системы от заданного множества угроз. Более подробные сведения о видах политики безопасности и процессе ее разработки приводятся в гл. 3.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то