VR в бизнесе: Как компании используют технологии виртуальной реальности в продвижении. Виртуальная реальность

Последние несколько лет постоянно на слуху у тех, кто интересуется технологиями и современной электроникой, находится аббревиатура VR. Под нее разрабатываются гарнитуры, создаются мощные компьютеры и смартфоны. О том, как развивалась эта технология, расскажет наша статья.

VR - это аббревиатура, которая происходит от английского словосочетания virtual reality, то есть, виртуальная реальность. Под этим термином принято понимать искусственно созданный, с помощью компьютерных технологий, мир, который воспринимается человеком, как настоящий. Ощущения могут передаваться с помощью зрения, слуха, осязания, обоняния и т.д. Идея воссоздать виртуальную реальность далеко не нова, о создании искусственной среды, воспринимаемой как действительность, задумывались с древнейших времен.

Предшественники VR

Виртуальная реальность корнями уходит к кинематографу, еще в начало 20 столетия. Тогда инженеры задумались, как добиться эффекта более полного погружения человека в происходящее на экране, с помощью технических средств.

Наиболее простым в реализации оказалось внедрение многоканального стереозвука в 40-х гг ХХ в. Несколько динамиков, установленных в зале кинотеатра в разных местах, воспроизводили звук с параллельных независимых каналов, придавая ему объемности. Однако с виртуальной реальностью этот прием имел мало общего. Несмотря на то, что звук стал восприниматься реалистично, картинка на дисплее по-прежнему оставалась плоской, к тому же, нередко, черно-белой.

Следующим шагом к виртуальной реальности стало стереокино, которое начало популяризоваться в 50-х годах. Наиболее распространенным стал анаглифный метод, использующий эффект цветового смещения. В специальных очках объекты на экране принимали объемные формы и становились ближе к зрителю. Позже были изобретены и более продвинутые методы 3D-кинематографа (вроде IMAX), которые хоть и приблизились к виртуальной реальности, но таковой не являются.

Недостатки предшественников ВР

В условиях технологий середины 20 века предшественники ВР могли воздействовать только на зрение и слух человека. Передача тактильных, обонятельных, вкусовых сигналов, обеспечивающих полное погружение, была невозможной. Да и изображение передавалось на громоздкое статичное оборудование (экраны), ни о какой свободе перемещения речи не шло.

«Истинная» VR

«Истинная» виртуальная реальность стала активно развиваться лишь в 21 веке. Появление мощных компьютеров и улучшение качества компактных дисплеев позволило сделать передовые технологии доступными рядовым пользователям. Использование специальных кресел, рулей и других органов управления в 1990-х годах открыло путь к созданию реалистичных симуляторов транспортных средств, где создаются не только зрительные и звуковые эффекты, но и тактильные.

Первым методом определения положения тела пользователя стало использование специальных плащей, накидок, перчаток, оснащенных датчиками и средствами передачи тактильных ощущений.

Однако для смартфонов и VR-гарнитур, подключаемых к компактным устройствам, они не подходят. Решением стало применение камер, которые отслеживают положение рук пользователя и улавливают движения его пальцев. Ориентация в пространстве и отрисовка правильной картинки производятся с помощью данных датчиков – акселерометров, гироскопов, компасов.

Из первых прототипов, представлявших собой громоздкий шлем, ВР-гарнитуры превратились в относительно компактные очки, которые можно подключить к компьютеру. Первые массовые устройства, вроде Oculus Rift, оснащены двумя дисплеями, картинка с которых проецируется на глаз с помощью системы линз. Технология виртуального 3D-звука позволяет ограничиться всего двумя динамиками наушников, вместо 6, 8 или 10 колонок в кинотеатрах.

VR для смартфонов

Большим прорывом, сделавшим виртуальную реальность доступной каждому, стал выход очков Google CardBoard в 2014 году. Разработанные в качестве эксперимента, они обрели большую популярность, так как позволили лично узнать, что такое VR и как она работает, любому обладателю смартфона. Пассивное устройство, стоимостью около 10 долларов, оснащено лишь ремнем крепления и простой системой линз, а основным источником виртуальной реальности выступает сам мобильный девайс.

На дисплее мобильного устройства вставленного в гарнитуру, в специальном приложении отображается стереоскопическая картинка, разделенная на части для левого и правого глаза. Она проецируется через линзы на глаза, создавая эффект погружения. При просмотре объектов ВР смартфон отслеживает положение с помощью акселерометра и гироскопа, и меняет картинку на экране. Таким образом достигается эффект присутствия. С помощью изображения с камеры становится возможным создание дополненной реальности: объединение реального мира с объектами на дисплее.

Более дорогим приспособлением для VR является гарнитура Samsung Gear VR. Она работает по тому же принципу, что продукт Google, но также оснащена сенсорной панелью для управления, регуляторами фокусировки и громкости, а также собственными датчиками, повышающими точность работы. Есть варианты устройства для многих флагманов Samsung. Подключение к смартфону производится по USB OTG. О некоторых очках виртуальной реальности мы писали в этой подборке .

А ниже демо-ролик возможностей Oculus совместно с Facebook

На сегодняшний день образование считается одним из наиболее перспективных направлений для развития и внедрения технологий виртуальной реальности. Идея применения виртуальной реальности с целью обучения уже далеко не новая, и VR технологии уже давно используются от виртуальных экскурсий на уроках истории или географии до обучения управления самолетом или скоростным поездом.

Преимущества внедрения VR в образовании

Виртуальная реальность открывает новые возможности для изучения теории и отработки практики, ведь традиционные методы могут быть весьма затратными или слишком сложными. Существует 5 основных преимуществ использования AR/VR в сфере образования.

  • Наглядность. 3D-графика позволяет воспроизвести детализацию даже самых сложных процессов, невидимых человеческому оку, вплоть до распада ядра атома или химических реакций. К тому же, ничто не мешает увеличить уровень детализации и увидеть движение электронов или воспроизвести механическую модель, к примеру, развития клетки человеческого организма на разных этапах. Virtual Reality позволяет воспроизвести или смоделировать любые процессы или явления, о которых знает современная наука.
  • Безопасность. Практические основы управления летательными или сверхскоростными аппаратами, можно абсолютно безопасно отработать на устройстве виртуальной реальности. Еще VR дает возможность отрабатывать сверхсложные медицинские операции или манипуляции, без вреда и опасности для кого-либо.
  • Вовлечение. VR-технологии дают возможность смоделировать любую механику действий или поведение объекта, решать сложные математические задания в форме игры и прочее. Виртуальная реальность позволяет путешествовать во времени, просматривая основные сценарии важных исторических событий или увидеть человека из внутри на уровне движения эритроцита в крови.
  • Фокусировка. Пространство, смоделированное в VR можно легко рассмотреть в панорамном диапазоне 360 градусов, не отвлекаясь на внешние факторы.

Возможность проведения виртуальных уроков. Благодаря возможности отображения смоделированного пространства от первого лица и возникновения эффекта собственного участия в виртуальных событиях, стало возможным проведение целых уроков в режиме Virtual Reality.

Форматы VR в сфере образования

Внедрение новых технологий влечет за собой переформатирование всего учебного процесса, с целью адаптации к использованию новых возможностей изучения теории и отработки усвоенных знаний на практике.

Стационарное образование

Технологии виртуальной реальности предоставляют отличные возможности для того, чтобы усвоить материал эмпирического характера. Традиционный формат урока практически не меняется, а лишь дополняется погружением в VR на 5-10 минут.

Возможно деление одного занятия на несколько этапов, в каждом из которых наиболее сложные моменты визуализируются в виртуальном мире. Как и раньше, основой изложения нового материала остается лекция. Но виртуальная реальность дает возможность усовершенствовать урок, вовлекая учеников полностью погрузиться в учебный процесс, визуализируя ключевые моменты пройденного материала.

Дистанционное образование

В случае с дистанционным обучением, ученики могут быть в любой точке планеты, аналогично, как и преподаватель. У каждого из них будет создан образ-аватар, который будет присутствовать в виртуальном классе. При всем этом, ученики могут дистанционно слушать лекции, выполнять индивидуальные или групповые задачи.

Аватары учеников в виртуальном классе.

Виртуальная реальность позволяет избавиться от границ, что могут возникать во время видеоконференций или дистанционных уроков, создавая эффект личного присутствия. Преподаватель сможет увидеть, когда ученику необходимо «выйти» из «класса», к примеру, такие модели VR-шлемов, как Oculus Rift или HTC ViveТакже имеют встроенные датчики освещения, которые позволяют понять, когда устройство используется человеком, а когда нет.

Образование смешанного типа

Если существуют обстоятельства, которые мешают посещать занятия, в ученика есть возможность проходить уроки дистанционно. Чтобы это стало возможным, класс или аудиторию необходимо оборудовать специальными камерами, которые позволяют производить съемку в формате кругового обзора (360 градусов) с которых будет транслироваться урок в режиме online. Ученики, которые по той или иной причине не могут присутствовать в классе, могут быть вместе со своими одноклассниками во время урока, конспектируя материал или решая задачи прямо со своего места за партой.

Самообразование

Практически каждый образовательный курс можно адаптировать для самостоятельного прохождения материала и его усвоения. Уроки с разных предметов можно размещать в популярных онлайн-магазинах, таких как Steam, App Store, Google Play Market и другие. Таким образом, у каждого появиться возможность проходить урок в любое удобное для него время или делать это повторно для лучшего усвоения знаний со сложной темы.

Недостатки внедрения VR в образование

На данном этапе самые новые модели VR-устройств еще не проработаны на 100% для их полноценного применения с целью обучения в школе или ВУЗе, поэтому потенциально использование виртуальной реальности может иметь ряд недостатков.

  • Объем. Практически каждая учебная дисциплина обладает огромным объемом важного материала, поэтому создание одного такого курса несет большую трудоемкость для создания виртуального контента. Это может быть, как отдельный урок на каждую тему, так и десятки отдельных приложений. Компании, которые планируют заниматься разработкой уроков в формате виртуальной реальности, должны быть готовыми к тому, что этот процесс будет занимать большой объем времени и ресурсов без возможности получить прибыль до создания и выхода полноценного урока или целого курса, состоящего из десятка уроков.
  • Стоимость. Если речь идет о дистанционным обучении, то ученикам стоит позаботится о наличии гаджетов способных визуализировать виртуальную реальность, в свою же очередь учебным заведениям необходимо будет закупить дорогостоящее оборудование для классов, в которых будут проходить виртуальные уроки, что требует немалых финансовых вливаний.
  • Функциональность. Virtual Reality, как и любая другая аналогичная технология, нуждается в использовании собственного языка. Нужно подобрать правильные инструменты, чтобы создать качественное наполнение виртуального урока. Существующие приложения виртуальной реальности для обучения не могут использовать на 100% все потенциальные возможности технологии и поэтому не выполняют своей основной функции.

Урок химии в Virtual Reality

С целью проверки и испытания эффективности и целесообразности применения VR-технологий в образовательном процессе, разработчики стартапа Mel создали виртуальный урок химии в качестве эксперимента. Для прохождения исследования были задействованы дети школьного возраста (от 6 до 17 лет), а также их родители или родственники. После прохождения, участники должны были дать ответ на три поставленных вопроса: хорошо ли усваивается материал, поданный в таком виде, как относятся дети к обучению в режиме VR и какие школьные дисциплины более предпочтительны для визуализации в режиме виртуальной реальности.

Темой урока были различные химические реакции проводимые в реальном времени в виртуальной реальности. После того, как участник надевал VR-очки, он попадал в комнату с партой, на которой были представлены колбы с различными хим. составами. Следующим этапом было смешение ингредиентов, и проведение самой химической реакции. В одном уроке приняло участие порядка 6 учеников, он проводился одним учителем и проходил около 5-7 минут. По окончанию лекции участники заполняли опросники.

Уровень усвоения материала и личное отношения к VR-урокам

Результаты опроса

Участники должны были дать ответ на несколько закрытых тематических вопроса из проведенных опытов. Преимущественное большинство респондентов показали отличный результат, и только 8,5% участников так и не смогли усвоить новый материал.

Если говорить об отношении участников к урокам в таком формате, то исходя из данных Cerevrum , 148 из 153 респондентов (больше 97%) положительно восприняли урок в режиме Virtual Reality и были бы не против того, чтобы аналогичные уроки проводились в школах. В пункте о том, для каких именно дисциплин стоит разрабатывать VR-уроки в первую очередь, большинство дали ответ: физика или химия.

Таким образом, эксперимент, который провели инженеры Mel, дал успешный результат. Технология виртуальной реальности может применяться в сфере образования и, скорее всего, в скором времени мы сможем наблюдать настоящий прорыв в данной отрасли и массу интересных открытий.

Сегодня прогресс достиг действительно небывалых высот, а новое поколение способно использовать такие возможности, о которых еще 10-15 лет назад люди лишь мечтали. То, что было мистикой и волшебством, сегодня стало техническим прогрессом. Один из таких моментов – это виртуальная реальность. Сегодня мы поговорим о том, что такое VR и как ее используют в различных сферах.

Определение виртуальной реальности

Виртуальная реальность – это созданный с помощью технического и программного обеспечения виртуальный мир, передающийся человеку через осязание, слух, а также зрение и, в некоторых случаях, обоняние. Именно объединение всех этих воздействий на чувства человека в сумме носит название интерактивного мира

Она, VR, способна с высокой точностью имитировать воздействия окружающей виртуальной действительности на человека, но для того, чтобы создать действительно правдоподобный компьютерный синтез из реакций и свойств в рамках интерактивного мира, все процессы синтеза просчитываются, анализируются и выводятся в качестве поведения в реальном времени.

Использование виртуальной реальности многогранно: в 99 процентах случаев одушевленным и неодушевленным предметам, созданным при помощи такой технологии, присущи точно такие свойства, поведение и движение, какие есть у их настоящих прототипов. При этом пользователь в состоянии оказывать на все одушевленные и неодушевленные объекты влияние согласно реальным законам физики (если игровым процессом не предусмотрены другие законы физики, что случается крайне редко).

Принцип работы

Многим интересно, как именно действует технология. Вот три главных компонента, которые используются практически при любом взаимодействии с виртуальной средой:

  1. Голова . Виртуальная среда внимательно, при помощи специализированной гарнитуры, отслеживает положение головы. Так, гарнитура двигает картинку согласно тому, в какие из сторон и когда пользователь поворачивает свою голову – в бок, вниз или вверх. Такая система официально называется шестью степенями свободы.
  2. Движения . В более дорогих модификациях технического обеспечения отслеживаются и движения пользователя, при этом виртуальная картинка будет двигаться согласно им. Речь идет здесь не об играх, в которых пользователь просто находится на месте и взаимодействует с окружением, но о тех, где он перемещается в виртуальном пространстве.
  3. Глаза . Еще один основополагающий в реальности датчик анализирует то направление, в котором смотрят глаза. Благодаря этому игра позволяет пользователю погрузиться в интерактивную реальность более глубоко.

Эффект полного присутствия

Уже по термину полного присутствия понятно, о чем именно идет речь: мир – это виртуальная реальность. Это значит, что пользователь будет ощущать себя именно там, где находится игра, и он может взаимодействовать с ней. Пользователь поворачивает голову – персонаж тоже поворачивает голову, человек шагает в своей комнате – игрок движется в интерактивной реальности. До сих пор идут споры — возможно ли

The Leap – отслеживание пальцев и кистей

Эффект от полного присутствия достигается за счет устройства The Leap. Это устройство, использующее сложную систему отслеживания каждого движения, все еще остается частью очень дорогих и ТОПовых шлемов. Однако алгоритм работы достаточно прост, и он присутствует в немного измененном виде в другом устройстве, а именно в шлеме HTC Vive.

Как контроллер, так и шлем в HTC Vive, оснащены множеством фотодиодов – небольших приборов, преобразовывающих световую энергию в электрическую.

Важный момент! Вообще человек ежедневно сталкивается с фотодиодами и их работой. Как пример, это фотодиод, отвечающий за освещение смартфона. Фотодиод определяет, сколько именно освещения падает на него, и, на основе этих данных, регулирует уровень яркости

Такой же принцип полного присутствия используется и в шлеме. В комплекте со стандартным ВР-шлемом идут две станции, которые через временные интервалы пускают пару лучей – это горизонтальный и вертикальный лучи. Они пронизывают комнату и добираются до фотодиодов на устройстве шлема и контроллера. После этого фотодиоды начинают свою работу, и за несколько секунд происходит обмен информационными данными, в ходе которого датчики передают положение контроллеров и шлема.

В этом заключается алгоритм создания полного присутствия.

Какие существует разновидности VR

Официально сейчас существует три разновидности виртуальной реальности:

  1. Имитация и компьютерное моделирование.
  2. Мнимая деятельность.
  3. Киберпространство и аппаратные средства.

VR шлемы

Главная разница между этими тремя гаджетами заключается лишь в компаниях-производителях. В остальном же они похожи. Все три шлема отличаются портативностью и обеспечением полного погружения в игровой процесс.

Плюсы и минусы виртуальной реальности

Плюсы:

  1. Возможность полностью окунуться в интерактивное измерение.
  2. Получение новых эмоций.
  3. Профилактика стресса.
  4. Создание электронных информационных и обучающих ресурсов.
  5. Проведение конференций.
  6. Создание объектов культурного наследия.
  7. Возможность визуализации различных объектов и физических явлений.
  8. Возможность для каждого перейти на новый уровень развлечений.

Минусы:

К минусам можно отнести следующие моменты:

  1. Зависимость.
  2. Еще один явный минус: виртуальная реальность и ее психологическое воздействие на человека – оно далеко не всегда бывает позитивным, так как есть риск слишком сильно погрузиться в виртуальным мир, что иногда влечет за собой проблемы в социальной и других сферах жизни.
  3. Высокая стоимость устройств.

Применение виртуальной реальности

VR можно использовать в таких сферах, как:

  1. Обучение . Сегодня интерактивная реальность позволяет смоделировать тренировочную среду в тех сферах и для тех занятий, для которых необходимой и важной является предварительная подготовка. Как пример, это может быть операция, управление техникой и другие сферы.
  2. Наука . VR дает возможность значительно ускорить исследования как атомного, так и молекулярного мира. В мире компьютерной реальности человек способен манипулировать даже атомами так, словно это конструктор.
  3. Медицина . Как и было отмечено, при помощи VR можно тренировать и обучать медицинских специалистов: проводить операции, изучать оборудование, улучшать профессиональные навыки.
  4. Архитектура и дизайн . Что может быть лучше, чем показать заказчику макет нового дома или любого другого строительного объекта при помощи такой реальности? Именно она позволяет создавать эти объекты в виртуальном пространстве, в полном размере, для демонстрации, тогда как раньше использовались ручные макеты и воображение. Это касается не только строительных объектов, но и техники.
  5. Развлечение . VR безумно популярен в игровой среде. Причем, спросом пользуются как игры, так и культурные мероприятия и туризм.

VR – вредно это или нет?

Пока что можно отметить, что никаких глобальных исследований в этой области не проводилось, однако первые выводы сделать уже можно. Так как VR еще только-только разрабатывается (и это действительно так), у многих могут появляться неприятные ощущения при продолжительном использовании этой технологии. В частности, человек будет ощущать головокружение и тошноту.

Пока что нет никаких доказательств того, что . Отрицательный эффект, несомненно, есть, однако он не настолько велик, чтобы бить тревогу. Поэтому пока неизвестно, виртуальная реальность, что это такое – вред или польза.

VR – что ждет в будущем?

Сегодня виртуальная реальность не до конца доделана, поэтому могут появляться неприятные ощущения. В будущем же появится множество устройств, копий и аналогов, которые не будут отрицательно действовать на человеческий организм и психику.

Также устройства VR смогут решить проблемы с потреблением информационных данных, а сеансы станут такими же стандартными и обыденными, как и обычные игры на компьютере или приставках в наши дни.

Вывод

Виртуальная реальность – пока что бездонная пропасть для исследования и улучшения алгоритмов работы. Сегодня технологии продвигаются очень быстро, поэтому можно с уверенностью сказать, что в ближайшем будущем рыночная стоимость комплекта будет по карману человеку со средним достатком.

О том, на какие тенденции в мире IT стоит обратить внимание в будущем 2017 году. Одним из пунктов обозначили виртуальную реальность, и не зря. Интерес к VR сильно вырос за последние 2–3 года и продолжает расти, появляется всё больше различного оборудования и технологий, а главное - новых идей, для реализации которых нужны разработчики.

В этой вводной статье мы поговорим о свойствах, типах и областях применения VR - это поможет лучше сориентироваться тем, кто хочет начать свой путь в развивающейся и актуальной сфере.

Виртуальная реальность - это генерируемая с помощью компьютера трехмерная среда, с которой пользователь может взаимодействовать, полностью или частично в неё погружаясь.

Свойства VR

Полный набор встретить можно редко, но ниже перечислены те особенности, на которые нужно ориентироваться при создании виртуальной реальности.

  • Правдоподобная - поддерживает у пользователя ощущение реальности происходящего.
  • Интерактивная - обеспечивает взаимодействие со средой.
  • Машинно-генерируемая - базируется на мощном аппаратном обеспечении.
  • Доступная для изучения - предоставляет возможность исследовать большой детализированный мир.
  • Создающая эффект присутствия - вовлекает в процесс как мозг, так и тело пользователя, воздействуя на максимально возможное число органов чувств.

Типы VR

VR с эффектом полного погружения

Этот тип подразумевает наличие трех факторов:

  1. Правдоподобная симуляция мира с высокой степенью детализации.
  2. Высокопроизводительный компьютер, способный распознавать действия пользователя и реагировать на них в режиме реального времени.
  3. Специальное оборудование, соединенное с компьютером, которое обеспечивает эффект погружения в процессе исследования среды. О нём мы чуть позже поговорим более подробно.

VR без погружения

Не каждому и не всегда необходимо полное погружение в альтернативную реальность. К типу «без погружения» относятся симуляции с качественным изображением, звуком и контроллерами, в идеале транслируемые на широкоформатный экран. Также в эту категорию попадают такие проекты, как археологические 3D-реконструкции древних поселений или модели зданий, которые архитекторы создают для демонстрации своей работы клиенту. Все перечисленные выше примеры не отвечают стандартам VR в полной мере, но позволяют прочувствовать моделируемый мир на несколько уровней глубже, чем другие средства мультимедиа, а потому причисляются к виртуальной реальности.

VR с совместной инфраструктурой

Сюда можно отнести «виртуальные миры» вроде Second Life и Minecraft . Единственное свойство из перечисленного выше, которого им не хватает для полного комплекта - создание эффекта присутствия: такие миры не обеспечивают полного погружения (в случае с Minecraft это касается только стандартного управления - у игры уже существует версия для виртуальной реальности , поддерживающая шлемы Oculus Rift и Gear VR). Тем не менее, в виртуальных мирах хорошо прописано взаимодействие с другими пользователями, чего часто не хватает продуктам «настоящей» виртуальной реальности.

Виртуальные миры используются не только в игровой индустрии: благодаря таким платформам, как 3D Immersive Collaboration и Open Cobalt можно организовывать рабочие и учебные 3D-пространства - это называется «совместная работа с эффектом присутствия».

Создание возможности одновременного взаимодействия в сообществе и полного погружения сейчас является одним из важных направлений развития VR (вспомним тот же Minecraft).

VR на базе интернет-технологий

Специалисты в области компьютерных наук разработали способ создания виртуальных миров в Интернете, используя технологию Virtual Reality Markup Language , аналогичную HTML. Она на какое-то время была обделена вниманием и сейчас считается устаревшей, но учитывая возрастающий интерес Facebook к VR, в будущем виртуальная реальность обещает основываться не только на взаимодействии, но и на интернет-технологиях.

Еще есть AR, не путать с VR

AR (augmented reality) - это дополненная реальность. Да, PokemonGo (про который, кстати, все уже забыли), относится именно к этой категории, хотя и является несколько упрощенным примером. В отличие от VR, в которой мы намеренно отгораживаемся от окружающей среды, дополненная реальность позволяет создать наложение виртуального мира на реальный в поле восприятия пользователя. Таким образом мы можем одновременно получать информацию из двух источников.

Технически, AR - это не виртуальная реальность, но вопросы, возникающие при её создании сходны с теми, что возникают при создании VR (например, как заставить устройство вычислять своё точное расположение и подстраиваться под мельчайшие изменения, вносимые пользователем в реальном времени). Поэтому технологии AR и VR считают довольно тесно связанными.

  1. Для компьютера - работают в связке с ПК или консолями: Oculus Rift , HTC Vive, Playstation VR.
  2. Для мобильных устройств - называются гарнитурами и работают в связке со смартфонами, представляют из себя держатель с линзами: Google Cardboard, Samsung Gear VR, YesVR.
  3. Независимые очки виртуальной реальности - самостоятельные устройства, работают под управлением специальных или адаптированных ОС: Sulon Q, DeePoon, AuraVisor.

Альтернатива для тех, кто не хочет испортить прическу - изображения в данном случае транслируются не в шлем, а на стены помещения, часто представляющие собой дисплеи MotionParallax3D (хотя для более полного UX в некоторых таких комнатах нужно надевать 3D-очки или даже комбинировать CAVE и HMD). Есть мнение , что VR-комнаты гораздо лучше VR-шлемов: более высокое разрешение, нет необходимости таскать на себе громоздкое устройство, в котором некоторых даже укачивает, и самоидентификация происходит проще благодаря тому, что пользователь имеет возможность постоянно себя видеть. Тем не менее, приобретение такой комнаты, понятное дело, выйдет гораздо дороже, чем покупка шлема.

Информационные перчатки / Datagloves

Для удовлетворения инстинктивной потребности пользователя потрогать руками то, что он находит для себя интересным в процессе изучения среды, были созданы перчатки с сенсорами для захвата движений кистей и пальцев рук. Техническое обеспечение такого процесса варьируется - возможно использование оптоволоконных кабелей, тензометрических или пьезоэлектрических датчиков, а также электромеханических приспособлений (таких как потенциометры).

Джойстики (геймпады) / Wands

Специальные устройства для взаимодействия с виртуальной средой, содержащие встроенные датчики положения и движения, а также кнопки и колеса прокрутки, как у мыши. Сейчас их все все чаще делают беспроводными, чтобы избежать неудобств и нагромождений при подсоединении к компьютеру.

Области применения VR

Обучение

VR используется для моделирования среды тренировок в тех занятиях, в которых необходима предварительная подготовка: например, управление самолетом, прыжки с парашютом и даже операции на мозге.

Наука

VR позволяет улучшить и ускорить исследование молекулярного и атомного мира: погружаясь в виртуальную среду, ученый может обращаться с частицами так, будто это кубики LEGO.

Медицина

Кроме помощи в обучении хирургов, технология VR оказывается полезной и на самих операциях: врач, используя специальное оборудование, может управлять движениями робота, получая при этом возможность лучше контролировать процесс.

Промышленный дизайн и архитектура

Вместо того, чтобы строить дорогостоящие модели машин, самолетов или зданий, можно создать виртуальную модель, позволяющую не только исследовать проект изнутри, но и проводить тестирование его технических характеристик.

Игры и развлечения

На данный момент это самая известная и самая широкая область использования VR: сюда входят как игры, так и кино, виртуальный туризм и посещение различных мероприятий.

Как мы уже говорили, VR продолжает интегрироваться с разными сферами нашей жизни и из мифа научной фантастики она превратилась в (виртуальную) реальность, так что выбирайте область для разработки, и - вперед. Стандартизацией технологий VR сейчас занимается международная организация

Спор о том, чем же является наша реальность (и существует ли она вообще) — один из основных в философии. И, пока философы сквозь века сходятся в словесных баталиях, пионеры высоких технологии создают реальность виртуальную. Concepture разбирается, что из себя представляет технология VR умноженную сущность или необходимость?

Что?

Виртуальная реальность (Virtual Reality, VR) — искусственный мир (объекты и субъекты), который создаётся с помощью технических устройств. Неотъемлемой частью VR является воздействие на основные органы чувств человека: зрение, слух, обоняние, осязание и другие. В отличии от физической реальности, которая является внутренним состоянием индивидуума, виртуальность - это процессуальное взаимодействие между материально-техническими процессами и психикой человека.

Так выглядит вторая версия Oculus Rift под названием Development Kit 2.

Современное VR, помимо очевидного наличия правдоподобной картинки и звуков, так же симулирует и физические явления, тем самым предоставляя возможность пользователю взаимодействовать с виртуальными объектами, либо объектам взаимодействовать с пользователем.

Как?

Совершить погружение в VR не сложно, достаточно воспользоваться специальными периферийными устройствами, которые сегодня ассоциируются со следующими компаниями: Google, Samsung, HTC, Facebook и Sony. Сегодня для того, чтобы создать более-менее достоверную симуляцию необходимо качественно воздействовать на два основных перцептивных канала — слуховой и зрительный.

Самое просто и незамысловатое VR-устройство - Google Cardboard. На деле просто картонная коробка со смартфоном.

С этой целью были разработаны и введены в эксплуатацию так называемые HMD-гарнитуры (head mounted display). Самое простое из них - Google Cardboard. Это картонный «шлем», в котором предусмотрено ложе для смартфона. Подобное «устройство» не сможет обмануть человека полностью, но подарит ему несколько новых впечатлений от просмотра специальных роликов в приложении.

Гораздо более совершенные машины — Playstation VR от Sony, или пионер VR-движения Oculus Rift - не только транслируют картинку, но и отслеживают положение головы в пространстве и подстраивают звук в зависимости от того, насколько далеко от пользователя виртуальный источник звука. В таких «шлемах» установлены жк-мониторы высокого разрешения, продвинутая аудиосистема и линзы перед экранами, что в полной мере позволяет называть их «очками виртуальной реальности».

Теперь поговорим подробнее о трекинге движений. Любая продвинутая VR-гарнитура опирается на технологию 6DoF (Six degrees of freedom), которая занимается анализом положения головы по осям x, y, z (вперёд/назад, от плеча к плечу, из стороны в сторону). В сочетание с дополнительными устройствами (акселерометр, магнитометр и гироскоп внутри, отслеживающая камера или датчики снаружи) достигается эффект движения картинки, относительно поворотов головы и её нахождения в пространстве.

В деле трекинга крайне важно достигнуть низкой задержки (меньше 50 мс). Самый впечатляющий результат у Oculus Rift — около 30 миллисекунд, но и другие крупные игроки, вроде HTC Vive и Playstation VR не превышают критической отметки скорости отклика.

Для чего?

Может показаться, что технология VR — вещь сугубо развлекательная. Да, уже сегодня достигнут тот этап развития, на котором «виртуальный гейминг» перестал быть уделом энтузиастов и медленно, но верно превращается в полноценный коммерческий рынок со своей аудиторией пользователей.

Пока основная преграда — высокая цена «стартового пакета» всех необходимых устройств: Playstation VR (вместе с покупкой Playstation 4 Pro, PS4 Cam и парой Move’ов) обойдётся в 40-50 тысяч рублей; HTC Vive и Oculus Rift стоят 70 и 50 тысяч соответственно, но помимо этого к ним нужен мощный персональный компьютер, заточенный под игры. Google Cardboard дешёв и сердит (от 240 рублей), но и поиграть во что-то серьёзно на нём не получится.

Благо, не одними игрушками жив VR. Исследования университета штата Вашингтон показывают, что виртуальную реальность можно применять в терапевтических целях. «Результаты исследования показывают, что виртуальная реальность не только изменяет характер восприятия человеком боли, она изменяет также характер реальной активности различных областей мозга», — говорит Хантер Хоффман, директор исследовательского центра по виртуальному обезболиванию (VR Analgesia Research Center).

Пациенты испытывали боль на 40-50% меньше, когда проходили через болезненные процедуры погружёнными в виртуальную реальность! Подобное влияние может снизить долю использования обезболивающих на основе морфия, а следовательно и опасности возникновения привыкания к наркотическим, по сути, препаратам.

Другая область применения — экспериментальная психология. VR качественно отличается от традиционных лабораторных инструментов. Во-первых, виртуальная реальность обладает высокой степенью экологической валидности, то есть симулирует комплексные условия для более точного тестирования когнитивных функций в условиях, максимально приближенных к естественным.

Вот знаменитый Virtualizer от Cyberith. Комплекс включает Omni, всенаправленную беговую дорожку Oculus Rift, 2 контроллера Skyrim и Wii.

Во-вторых, это введение фактора времени, появление возможности простроить эпизод от прошлого к будущему, и целиком пережить его. Третье — установление полного контроля за вниманием испытуемого, от виртуальной реальности тяжело отвлечься, а значит исследование не будет испорчено стимуляциями извне. Одних этих особенностей достаточно, чтобы продвинуть экспериментальную психологию далеко вперёд. А так же, создать новый подход к психотерапии.

Такой же благотворный эффект VR уже оказывает на образование, в частности, Google продвигает свои недорогие шлемы в школах и университетах. С их помощью ученики не только могут побывать на полях известных исторических сражений, но и своими глазами увидеть взрыв Сверхновой или развитие личинки внутри куколки. Образовательные процессы давно требуют свежего методологического подхода и «виртуальная реальность» может стать достойным ответом на стремительное устаревание существующих образовательных программ.

Инновационные возможности VR также подходят для: сферы продаж, транслирования мероприятий в прямом эфире, проектирования и военной промышленности. Впрочем, это не перспективы, а почти повседневность.

Недостатки?

Есть, как и у любой современной технологии. В независимости от сферы применения основным минусом является высокая цена устройств. Гипотетически, справиться с этим должна сама индустрия, выпускающая всё более качественные составляющие по всё более низкой цене. Ориентировочно «доступными» VR-шлемы, похожие на Oculus или Playstation VR, станут через пять-десять лет.

Перед вами HTC-Vive один из самых удобных шлемов на сегодняшний день.

Второй большой минус - это размеры. Тотальное «облегчение» очков (замена металлических деталей высококачественным пластиком) не спасает от габаритов, VR-очки всё равно выглядят массивно и слишком «гиковски», чтобы представить их на голове серьёзного бизнесмена или домохозяйки. Путь решения, опять же, будет найдено в ходе естественного развития индустрии и постепенного уменьшения аппаратного обеспечения.

Третье - принципиальное несовершенство технологии. Несмотря на экраны высокого разрешения и отличный трекинг, VR-шлемы всё ещё могут вызывать сильную тошноту. Потому требуется разрабатывать специализированный контент, адаптированный для человеческого вестибулярного аппарата. Перемещаться в виртуальности, при этом в реальности оставаясь неподвижным — прямой путь к использованию ведёрка не по назначению. Исключение составляет, разве что, управление каким-нибудь транспортом, потому что здесь наш мозг чувствует себя вполне в своей тарелке.

Для решения этой проблемы необходима разработка специализированной платформы, которая бы позволяла ходить в реальности, при этом не рискуя разбить нос об косяк. Хотя, боюсь даже представить, сколько она будет стоить.

Вывод

Технологии VR - будущее человечества, в которое наступило равно на половину. С удешевлением устройств, совершенствованием систем трекинга и решением «вестибулярного вопроса» недалёк тот день счастливого нового мира, где с помощью высокоорганизованных виртуальных симуляций будут делать операции, операторы боевых дронов ещё эффективнее будут бомбить очередных террористов, а население развитых стран перестанет выходить из дома в поисках социального контакта.

Но как обычно, кому-то это может и не понравиться.

Возможно вы не знали:

6DoF - (Шесть степеней свободы от англ. Six degrees of freedom ) — указывает на возможность геометрической фигуры совершать геометрические движения в (трёхмерном) пространстве, а именно: двигаться вперёд/назад, вверх/вниз, влево/вправо (в декартовой трёхмерной системе координат), включая повороты вокруг каждой из трёх взаимно перпендикулярных осей (рыскание, тангаж, крен).

Head-mounted display (сокращенно HMD) - представляет собой дисплейное устройство, которое надевается на голову или как часть шлема, у которого есть небольшая оптическая система под один (монокулярный HMD) или каждый глаз (бинокулярный HMD). HMD имеет много применений, в том числе в играх, авиации, технике и медицине.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то