Высококачественный усилитель на микросхеме STK4048II. Высококачественный усилитель на микросхеме STK4048II Схема унч на stk с печатной платой

Сегодня хотелось бы вам рассказать об усилителе который, по моему мнению, является отличным решением по соотношению цена-мощность-качество. И так, в главной роли у нас сегодня микросхема серии STK. Микросхемы stk – гибридные микросхемы которые выполнены на бескорпусных транзисторах по толсто пленочной технологии и лазерной подгонкой номиналов всех сопротивлений. Я, как и довольно большое количество радиолюбителей считаю эти усилители, одним из лучших и обходящие по качеству звучания всем известные TDA и LM. Конечно можно вспомнить и ламповые усилители но это довольно размытая тема да и к тому же сегодня уже становится не просто найти стоящие лампы и трансформаторы, а если и удается то цены на подобные экспонаты не самые низкие. Ну что касается микросхем, так они только набирают оборот и, найти необходимые детали обвязки к ним не составляет никакого труда. Если копнуть в глубь промышленности и рассмотреть спектр микросхем которые устанавливают на свои звуковоспроизводящие устройства большинство фирм то можно увидеть занимательную тенденцию, к примеру если рассмотреть практически любую акустическую систему бюджетного уровня (1000-2000 руб.) то в лучшем случае вы там найдете tda7294 или tda2050. Производители прибегают к подобным решением в виду того что микросхемы этого ряда не придирчивы к питанию, им требуется крайне малое количество внешней обвязки (резисторов, конденсаторов, катушек), а порой и не требуют вообще. Если же попытаться рассмотреть уже более дорогие и качественные АС то в большинстве случаев можно увидеть либо транзисторные усилители, либо те самые STK.
В этой статье мы рассмотрим микросхему STK402-120S одним из достоинств линейки “STK402-020…STK402-120” является то, что каждая из этих микросхемы имеет абсолютно одинаковую обвязку, а последнее значение (..120) обозначает максимальную мощность которую эта микросхема способна предоставить (120W). А значит каждый сможет выбрать ту мощность, которая нужна именно ему, а если она перестанет его устраивать будет достаточно заменить только микросхему на более высокий наминал ну и в некоторых случаях и силовой трансформатор на более высокое напряжение.
И так думаю стоит переходить с практике и начнем мы с параметров всего модельного ряда:

И характеристики конкретного нашего усилителя:

После оглашения всех характеристик думаю можно перейти к сборке. И сборку как полагается мы начнем с питания. Здесь используется система двуполярного питания или как его еще называют питание со средней точкой. Вот схема нашего блока питания:

В блоках питания подобного типа есть и минус и плюс и земля (корпус). Напряжение указанное в параметрах а именно +-39 В это напряжение которое должно быть между плюсом\минусом и землей т.е. между плюсом и минусом должно быть 78 В.
Затем рассмотрим схему самого усилителя:

Выходные резисторы на 0,22 Ом и 4,7 Ом должны иметь мощность минимум 2 Вт остальные можно взять по 0,25 Вт. Так же максимальное напряжение электролитических конденсаторов на 100 и 10 Мкф должно быть выше напряжения питания.
Ну теперь думаю можно перейти к сборке. Мне частично повезло и в руки попал старый музыкальный центр из которого и была позаимствована не малая часть деталей.
Опять таки начнем с блока питания. Это и была основная часть которую я позаимствовал.

Трансформатор выдавал +- 50 но это вполне входит в допустимые параметры нашей микросхемы. Возникла лишь одна проблема.. В виду того что сглаживающие конденсаторы находились на другой плате их пришлось выпаивать и изготавливать собственную плату:





Вот итоговая фотография, чтобы не возникло вопросов сразу скажу что большая часть неполярных конденсаторов в данном случае в таких же корпусах как и резисторы. Ко всему прочему на этой фотографии не достает двух выходных резисторов на 4,7 Ом.
На этом большая часть работы подошла к концу, осталось лишь убрать все компоненты в корпус и закрепить микросхему на радиатор.
В моем случае я решил воспользоваться все тем же корпусом от музыкального центра.

Вначале 90-х годов были очень популярны музыкальные центры AIWA. Долгое время верой и правдой мне служил музыкальный центр AIWA ZM-2900. Со временем вышел строя проигрыватель лазерных дисков, затем двух-кассетный магнитофон и радиоприемник. Исправными остались усилитель мощности и трансформатор.

Электрическую схему музыкального центра AIWA ZM-2900 можно загрузить из вложения.

Из всей электрической схемы меня заинтересовал стереофонический усилители мощности на STK419-150, обеспечивавший приличную мощность (около 100 W на канал) и хорошее качество звучания.

Схема включения интегральных усилителей STK419-110, STK419-130, STK419-140 и STK419-150 приведена ниже.

Сопротивления R13 и R14 (с рассеиваемой мощностью не менее 2 W) определяют уровень ограничения тока через выходные транзисторы интегральной сборки. Индуктивности L1 и L2 изготовлены путем намотки одного слоя медного моточного провода диаметром 0,8 – 0,9 мм на резисторы R12 и R13 (МЛТ 2W). Резисторы R16 и R17 мощностью 0,5 – 1W. Мощность всех остальных резисторов до 0.25W.

Основные характеристики стереофонических усилителей STK419-110, STK419-130, STK419-140 и STK419-150 приведены в таблице.

Параметры интегральных усилителей: STK419 -110 STK419 -130 STK419 -140 STK419 -150
Корпус (Case) H3-20 H3-20 H3-20 H3-20
Напряжение питания выходного каскада (Vcc2) min V ±25 ±27 ±30 ±33
max V ±37 ±37 ±42 ±50
Напряжение питания УН (Vcc1) min V ±36 ±37 ±42 ±50
max V ±53 ±57 ±65 ±70
Ток покоя (Iо) mA 60 60 60 60
Максимальная выходная мощность (Poutmax) W 2x50 2x60 2x80 2x100
Номинальное сопротивление нагрузки (Routnom) 6 6 6 6
Диапазон воспроизводимых частот (Bw) kHz 0,020-50 0,020-50 0,020-50 0,020-50
Входное сопротивление (Rin) kΩ 55 55 55 55
Коэффициент гармоник на Poutmax % 0,2 0,2 0,2 0,2
Коэффициент усиления (Gv) dB 32 32 32 32
Изготовитель Sanyo Sanyo Sanyo Sanyo

Для изготовления блока питания усилителя использовался Ш-образный трансформатор музыкального центра, имеющий первичную обмотку на 220 вольт, а также вторичную с общим средним выводом (0V), с выводами для питания оконечных каскадов (по 20V) и усилителя напряжения (по 50V). Схема блока питания приведена ниже.

Субъективно, звучание усилителя более приятное, чем на LM3886.

Надеюсь, что данная информация в отношении интегральных схем STK419-110, STK419-130, STK419-140 и STK419-150 будет полезной для самостоятельного изготовления стереофонических усилителей.

C уважением,

Представляю вашему вниманию мой новый проект - переносной усилитель мощности на микросхеме STK4231.
И так-обо всём по порядку...

Идея от Санио - STK4231

Около год назад я купил две микросхемы фирмы SANYO - STK4231. Хотел собрать усилитель по статье И.Короткова "Усилитель мощностю 320 Вт на микросхеме STK4231", опубликованную в журнале РАДИО No 11, 2005.
Тогда возникли проблемы с платой- просто несмог сделать достаточно качественно так как рисовал ее маркером (плата видна в моей статье про фоторезист) а перерисовать в SPRINT LAYOUT небыло желания.
Так микрухи и отлежали в коробочке до недавнего времени.

В интернете нашел интересную статю финна Mikko Esala. Вот и собрал такой усилок- добавил правда индикатор уровня на Самсунговской микрухе.

Усилитель собран по схеме, близкой к той, которая в datasheet.
Надо иметь ввиду то что имеется две модификаций СТКашек – STK4231-II и STK4231-V. Различия в том что STK4231-II выводы 1, 2, 21, 22 не используются и у второй меньше коэффициент гармоник- 0,08%. Схема включения для STK4231-V незначительно отличается- просто подсоединяются дополнительные элементы как показано на рисунке.

--
Спасибо за внимание!
Игорь Котов, главный редактор журнала «Датагор»

Блок питания
🕗 19/08/08 ⚖️ 4,23 Kb ⇣ 364 Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.

Хорош! Халява кончилась. Хочешь файлы и полезные статьи - помоги мне!

В последние годы радиолюбители все чаще используют усилители мощности на микросхемах. Для многих применений собирать усилитель на отдельных элементах становится нецелесообразно, такие усилители в большинстве случаев требуют налаживания устройства защиты, установку тока покоя выходного каскада и т. п. Усилители в интегральном исполнении фактически выполнены по принципу «впаял и готово». Различные варианты таких усилителей уже многократно рекомендованы на страницах журнала, однако максимальная (т.е. при нелинейных искажениях 10%) выходная мощность усилителей на одной микросхеме обычно ограничивается 100…120 Вт, по крайней мере, при использовании микросхем из доступной ценовой категории. Даже при использовании двух микросхем TDA7294 в мостовом включении мощность в нагрузке не превышает 200 Вт. А что делать, если требуется собрать более мощный усилитель, например, для дискотеки? Здесь описан усилитель мощности на интегральной микросхеме, позволяющей получить выходную мощность до 300 Вт на один канал.

В усилителе использована гибридная микросхема STK4231-II производства фирмы SANYO. Эта микросхема — двухканальная, поэтому для мостового варианта включения требуется только одна микросхема. При сборке усилителя на такой микросхеме требуется немного больше деталей, чем для усилителя на TDA7294, однако она имеет ряд преимуществ и, самое главное, позволяет получить значительно более мощный усилитель. Микросхему значительно проще крепить на теплоотвод, так как ее подложка не соединена с теплопроводной поверхностью корпуса и ее можно непосредственно соединять с теплоотводом или корпусом усилителя (у микросхемы TDA7294 с подложкой соединен минус источника питания). Это зачастую может иметь решающее значение, так как изолировать теплоотводящий радиатор от корпуса порой оказывается не просто.

Основные технические параметры:

Номинальная выходная мощность, Вт…….250
Максимальная выходная мощность, Вт… 320
Сопротивление нагрузки, Ом ………5,3
Диапазон воспроизводимых частот, кГц… 0,02…20
Коэффициент гармоник, не более, % …….0,4
Входное напряжение, мВ ………………….500

Схема усилителя

Усилитель питается от нестабилизированного источника двухполярного напряжения 2х(45…55) В. Входной сигнал на один из усилителей микросхемы DA2 поступает непосредственно на вывод 3, а на второй (вывод 20) — через инвертирующий буферный усилитель на ОУ DA1. ОУ питается от стабилизаторов напряжения +15 и -15 В, выполненных на микросхемах DA3, DA4. От этих же стабилизаторов при необходимости можно питать и предварительный усилитель с регуляторами тембра или фильтрами кроссовера. Коэффициент усиления усилителя мощности можно изменять, подбирая резисторы обратной связи R6 и R11. Их сопротивление в обоих плечах усилителя должно быть одинаковым.

На транзисторах VT1 — VT4 выполнен узел защиты по току, предотвращающий выход микросхемы из строя в случае перегрузки. При увеличении тока через один из резисторов R18, R28 падение напряжения на нем увеличивается, что приводит к открыванию транзистора VT2 или VT1 соответственно. Это, в свою очередь, приводит к срабатыванию аналога тиристора на транзисторах VT3, VT4, и микросхема блокируется. Для отключения блокировки необходимо выключить и снова включить усилитель. Если в устройстве защиты нет необходимости, то можно не впаивать в плату транзисторы VT1 — VT4 и относящиеся к ним элементы — на работу усилителя это не повлияет. С усилителем можно использовать и другие варианты устройства защиты, с учетом того свойства, что при соединении с общим проводом резисторов R25, R31 усилитель блокируется.

Микросхема имеет узел, предотвращающий щелчки в АС при включении и выключении питания. Для этого на вывод 8 микросхемы DA2 поступает постоянное напряжение, подаваемое через диод VD2 и корректирующие цепи с обмотки трансформатора питания.

Усилитель испытан в работе с реальной нагрузкой сопротивлением 5,3 Ом; выходная мощность несколько меньше при сопротивлении нагрузки 8 Ом.

Расположение деталей на печатной плате

В конструкции можно использовать резисторы С5-16 мощностью 5 Вт (R16-R18, R28-R30), МЛТ-1 (R22, R31, R38, R39), остальные — МЛТ-0,25 или МЛТ-0,5. Оксидные конденсаторы — К50-35 или импортные на напряжение 63 В. Остальные конденсаторы — пленочные (группы К73) или керамические (кроме группы ТКЕ Н50 и Н90).

ОУ DA1 можно заменить на К140УД7, КР140УД17, TL071 и др. Транзисторы КТ502Е можно заменить на 2SA1207, КТ814Г, VT3 — на 2SC2911, КТ815Г, VT4 — на 2SA1209, КТ814Г. Дроссели L1, L2 наматывают проводом диаметром 1 мм на резисторах R17, R29 виток к витку в один слой по длине резистора.
Микросхема STK4231 имеет два варианта исполнения — с индексами II и V. Схема включения для STK4231-V незначительно отличается от рекомендуемой для микросхемы STK4231-II, у которой выводы 1, 2, 21 и 22 не используются. У STK4231-V к ним подсоединены дополнительные элементы, как показано на рис. 3; все остальные выводы соединяют аналогично. Усилитель с STK4231-V имеет меньший коэффициент гармоник — 0,08%.

Схема включения STK4231-V

Такой УМЗЧ можно питать как от трансформаторного источника сетевого питания, так и от более современного импульсного. Мощность источника питания следует выбирать на 30…40 % больше максимальной мощности самого усилителя. Следует также учесть поправку к этой статье: вывод 12 DD3.2 (см. схему на рис. 2 в статье) должен подсоединяться к выводу 3 DD3.1, а не так как показано в схеме. Кроме того, для ограничения первого броска тока при включении ИБП в цепь первичного выпрямления полезно ввести термистор.

При использовании импульсного источника питания в схеме усилителя следует вместо диода КД226А (VD2) применить КД212, а емкость конденсатора С14 уменьшить до 1000 пф.

При сборке описанного усилителя особое внимание необходимо уделить креплению микросхем к теплоотводу. Введение слюдяных прокладок для изоляции при такой мощности усилителя недопустимо. Микросхемы допускают нагрев до 70 °С при нормальной работе, но эту температуру желательно не превышать. Желательно использовать принудительное охлаждение вентилятором. Теплоотвод можно установить штыревой (игольчатый), в крайнем случае, ребристый, выполняющий роль задней или боковых стенок корпуса усилителя. Возможно, закрепить микросхему винтами с применением теплопроводной пасты к медной пластине толщиной 3…5 мм, а затем уже пластину с той же пастой к рассеивающему теплоотводу. Размеры пластины должны в 2…4 раза превышать размеры используемой микросхемы. При этом эффективность отдачи тепла будет максимальной.

При правильной сборке и применении заведомо исправных деталей описанный усилитель не требует налаживания. При питании предварительного усилителя от стабилизаторов DA3, DA4 необходимо только подобрать резисторы R38, R39, чтобы напряжение на входе стабилизаторов DA3, DA4 находилось в пределах 20…30 В.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то