Закон последовательного соединения проводников. Закон Ома. Соединение проводников

Содержание:

Во всех электрических схемах используются резисторы, представляющие собой элементы, с точно установленным значением сопротивления. Благодаря специфическим качествам этих устройств, становится возможной регулировка напряжения и силы тока на любых участках схемы. Данные свойства лежат в основе работы практически всех электронных приборов и оборудования. Так, напряжение при параллельном и последовательном соединении резисторов будет отличаться. Поэтому каждый вид соединения может применяться только в определенных условиях, чтобы та или иная электрическая схема могла в полном объеме выполнять свои функции.

Напряжение при последовательном соединении

При последовательном соединении два резистора и более соединяются в общую цепь таким образом, что каждый из них имеет контакт с другим устройством только в одной точке. Иначе говоря, конец первого резистора соединяется с началом второго, а конец второго - с началом третьего и т.д.

Особенностью данной схемы является прохождение через все подключенные резисторы одного и того же значения электрического тока. С возрастанием количества элементов на рассматриваемом участке цепи, течение электрического тока становится все более затрудненным. Это происходит из-за увеличения общего сопротивления резисторов при их последовательном соединении. Данное свойство отражается формулой: R общ = R 1 + R 2 .

Распределение напряжения, в соответствии с законом Ома, осуществляется на каждый резистор по формуле: V Rn = I Rn x R n . Таким образом, при увеличении сопротивления резистора, возрастает и падающее на него напряжение.

Напряжение при параллельном соединении

При параллельном соединении, включение резисторов в электрическую цепь выполняется таким образом, что все элементы сопротивлений подключаются друг к другу сразу обоими контактами. Одна точка, представляющая собой электрический узел, может соединять одновременно несколько резисторов.

Такое соединение предполагает течение отдельного тока в каждом резисторе. Сила этого тока находится в обратно пропорциональной . В результате, происходит увеличение общей проводимости данного участка цепи, при общем уменьшении сопротивления. В случае параллельного соединения резисторов с различным сопротивлением, значение общего сопротивления на этом участке всегда будет ниже самого маленького сопротивления отдельно взятого резистора.

На представленной схеме, напряжение между точками А и В представляет собой не только общее напряжение для всего участка, но и напряжение, поступающее к каждому отдельно взятому резистору. Таким образом, в случае параллельного соединения, напряжение, подаваемое ко всем резисторам, будет одинаковым.

В результате, напряжение при параллельном и последовательном соединении будет отличаться в каждом случае. Благодаря этому свойству, имеется реальная возможность отрегулировать данную величину на любом участке цепи.

Здравствуйте.

Сегодня мы будем рассматривать последовательное и параллельное соединение сопротивлений. Тема очень интересная и касающаяся нашей повседневной жизни. Как правило, именно с этой темы начинается любого объекта. В прочем, обо всём по порядку.

Для начала разберемся почему «сопротивление». Синонимами этого определения могут быть: нагрузка или резистор. Поскольку мы с вами говорим об электрической сети, стало быть, по проводам протекает ток. Как бы хорошо не протекал ток по проводам, и из каких бы материалов не изготавливали провода, все равно на ток действует, своего рода сила трения. То есть, ток встречает некое сопротивление и в зависимости от материала, поперечного сечения и длины провода это сопротивление сильнее или слабее. Так, в русском языке был принят термин «сопротивление», обозначающий некий элемент цепи, создающий ощутимое препятствие для прохождения тока, а позже появился народный термин «нагрузка», то есть, нагружающий элемент, а из английского языка пришел термин «резистор». С понятиями разобрались, теперь можно приступать к практике. А начнём, пожалуй, с параллельного соединения сопротивлений просто потому, что мы им пользуемся практически повсеместно.

Параллельное соединение сопротивлений

При параллельном подключении все сопротивления подключаются началами к одной точке источника питания, а концами к другой. Далеко ходить не будем, и посмотрим вокруг себя. Фен, утюг, стиральная машинка, тостер, микроволновка и любой другой электрический прибор имеют вилку с двумя рабочими концами и одним защитным (заземлением). Напряжение в розетке это наш источник питания. Сколько бы электроприборов мы не включили в сеть – мы их все включаем параллельно к одному источнику питания. Давайте нарисуем схему, чтобы стало более понятно.

Сколько бы эту схему не добавилось потребителей – ровным счётом ничего не меняется. Один конец электроприбора подключается к нулевой шине, а второй к фазе. Теперь несколько преобразуем схему:

Теперь перед нами три сопротивления:

Утюг 2,2 кВт – R1 (22 Ом);

Плита 3,5 кВт – R2 (14 Ом);

Лампочка 100 Вт – R3 (484 Ом).

Таковы реальные значения сопротивления этих потребителей электрическому току. Включаем по очереди наши потребители в сеть, и что происходит со счетчиком? Правильно, он начинает быстрее считать деньги в нашем кошельке. Теперь вспоминаем закон Ома, который гласит, что сила тока обратно пропорциональна сопротивлению и понимаем, что чем меньше сопротивление, тем выше сила тока. А чтобы еще проще было понять, что происходит, представьте себе концертный зал с тремя разными по габаритам выходами и толпой людей. Чем больше по габаритам открывается дверь, тем больше человек одновременно могут через нее пройти, а чем больше откроется дверей, тем больше это увеличит пропускную способность. Ну а теперь перейдём к формулам.

К каждому сопротивлению приложено одно и то же напряжение – 220 вольт.

Из схемы и из практики видим, что токи складываются в один общий, следовательно, получаем следующее уравнение:

Если внимательно присмотритесь к уравнению, то заметите, что верхняя часть уравнения у нас неизменна и её можно принять за единицу, получив следующую формулу:

Ещё есть частная формула для расчёта двух параллельно соединенных сопротивлений:

Ну и давайте на практике сделаем расчёт.

И получим общее сопротивление 8,407 Ом.

В предыдущей статье я рассматривал и давайте его проверим.

Мощность цепи будет:

Считаем наши мощности: 2000+3500+100=5600, что почти равно 5757, такая большая погрешность обусловлена тем, что я округлил значения сопротивлений до целых чисел.

Какие можно сделать выводы. Как видите, общее сопротивление (его ещё называют эквивалентным) всегда будет меньше, чем самое малое сопротивление цепи. В нашем случае это плита с сопротивлением 14 Ом и эквивалентное 8,4 Ом. Оно и понятно. Помните пример с дверями в концертном зале? Сопротивление можно назвать пропускной способностью. Так вот общее количество выходящих людей (электронов) из зала будет в сумме больше, чем пропускная способность каждой отдельно взятой двери. То есть, количество тока увеличивается. Другими словами, для тока каждое из сопротивлений будет еще одной дверью, через которые он может протекать.

Последовательное соединение сопротивлений

При последовательном соединении конец одного сопротивления соединяется с другим. Типовой пример такого соединения – новогодняя гирлянда.

Насколько известно из школьного курса физики по замкнутому контуру протекает только один ток. Таким образом, что мы имеем:

Лампочка 200 ватт – R1 (242 Ом)

Лампочка 100 ватт – R2 (484 Ом)

Лампочка 50 ватт – R3 (968 Ом)

Снова вернёмся к аллегории и представим концертный зал, но только в этот раз из него будет вести длинный коридор с тремя дверями. Теперь у тока (людей) только один путь последовательно пройти от одной двери к другой. Для решения этой задачи нам придется отталкиваться от напряжения. Исходя из того, что сумма на источнике питания равна сумме падений напряжений на сопротивлениях получим следующую формулу:

Отсюда следует:

Делим обе части уравнения на общую величину приходим к выводу, что при последовательном соединении для получения эквивалентного сопротивления цепи надо суммировать все сопротивления этой цепи:

Проверяем. R=242+484+968=1694 Ом

Как видим, баланс мощности почти сошёлся. А теперь внимание на одну особенность, которая ещё раз раскроет понятие «сопротивление». Обратите внимание, что наибольшая мощность у нас будет на самой слабой лампочке:

Казалось бы, должно быть все наоборот, более мощная лампочка должна светить ярче. Возвращаемся к нашей аллегории. Как вы думаете, где будет давка сильнее возле широкой двери или возле узкой? Где будет горячее? Конечно же, возле узкой двери возникнет давка, а там где давка, там будет горячо, потому что люди будут стараться проложить себе путь побыстрее. В токе роль людей выполняют электроны. Вот такой вот парадокс возникает при включении в последовательную цепь резисторов разного номинала и именно поэтому в гирляндах стараются применять одинаковые лампочки. Теперь, зная принципы последовательного соединения сопротивлений, вы можете рассчитать любую гирлянду. Например, у вас имеются автомобильные лампы на 12 вольт. Зная, что общее напряжение равно сумме падений напряжений нам достаточно 220 вольт разделить на 12 вольт и получим 18,3 лампы. То есть, если взять 18 или 19 одинаковых 12 вольтовых ламп и соединить последовательно, то их можно включить в 220 вольт и они не перегорят.

Подведём итоги

При параллельном соединении сопротивлений эквивалентное сопротивление уменьшается (концертный зал опустошается в три раза быстрее, грубо говоря, люди разбегаются по трем коридорам), а при последовательном соединении сопротивление увеличивается (как бы люди не хотели быстрее покинуть зал, делать им это придется только по одному коридору и чем коридор уже, тем больше сопротивление он создает).

Содержание:

Все известные виды проводников обладают определенными свойствами, в том числе и электрическим сопротивлением. Это качество нашло свое применение в резисторах, представляющих собой элементы цепи с точно установленным сопротивлением. Они позволяют выполнять регулировку тока и напряжения с высокой точностью в схемах. Все подобные сопротивления имеют свои индивидуальные качества. Например, мощность при паралл ельном и последовательном соединении резисторов будет различной. Поэтому на практике очень часто используются различные методики расчетов, благодаря которым возможно получение точных результатов.

Свойства и технические характеристики резисторов

Как уже отмечалось, резисторы в электрических цепях и схемах выполняют регулировочную функцию. С этой целью используется закон Ома, выраженный формулой: I = U/R. Таким образом, с уменьшением сопротивления происходит заметное возрастание тока. И, наоборот, чем выше сопротивление, тем меньше ток. Благодаря этому свойству, резисторы нашли широкое применение в электротехнике. На этой основе создаются делители тока, использующиеся в конструкциях электротехнических устройств.

Помимо функции регулировки тока, резисторы применяются в схемах делителей напряжения. В этом случае закон Ома будет выглядеть несколько иначе: U = I x R. Это означает, что с ростом сопротивления происходит увеличение напряжения. На этом принципе строится вся работа устройств, предназначенных для деления напряжения. Для делителей тока используется паралл ельное соединение резисторов, а для - последовательное.

На схемах резисторы отображаются в виде прямоугольника, размером 10х4 мм. Для обозначения применяется символ R, который может быть дополнен значением мощности данного элемента. При мощности свыше 2 Вт, обозначение выполняется с помощью римских цифр. Соответствующая надпись наносится на схеме возле значка резистора. Мощность также входит в состав , нанесенной на корпус элемента. Единицами измерения сопротивления служат ом (1 Ом), килоом (1000 Ом) и мегаом (1000000 Ом). Ассортимент резисторов находится в пределах от долей ома до нескольких сотен мегаом. Современные технологии позволяют изготавливать данные элементы с довольно точными значениями сопротивления.

Важным параметром резистора считается отклонение сопротивления. Его измерение осуществляется в процентах от номинала. Стандартный ряд отклонений представляет собой значения в виде: + 20, + 10, + 5, + 2, + 1% и так далее до величины + 0,001%.

Большое значение имеет мощность резистора. По каждому из них во время работы проходит электрический ток, вызывающий нагрев. Если допустимое значение рассеиваемой мощности превысит норму, это приведет к выходу из строя резистора. Следует учитывать, что в процессе нагревания происходит изменение сопротивления элемента. Поэтому если устройства работают в широких диапазонах температур, применяется специальная величина, именуемая температурным коэффициентом сопротивления.

Для соединения резисторов в схемах используются три разных способа подключения - паралл ельное, последовательное и смешанное. Каждый способ обладает индивидуальными качествами, что позволяет применять данные элементы в самых разных целях.

Мощность при последовательном соединение

При соединение резисторов последовательно электрический ток по очереди проходит через каждое сопротивление. Значение тока в любой точке цепи будет одинаковым. Данный факт определяется с помощью закона Ома. Если сложить все сопротивления, приведенные на схеме, то получится следующий результат: R = 200+100+51+39 = 390 Ом.

Учитывая напряжение в цепи, равное 100 В, сила тока будет составлять I = U/R = 100/390 = 0,256 A.На основании полученных данных можно рассчитать мощность резисторов при последовательном соединении по следующей формуле: P = I 2 x R = 0,256 2 x 390 = 25,55 Вт.

  • P 1 = I 2 x R 1 = 0,256 2 x 200 = 13,11 Вт;
  • P 2 = I 2 x R 2 = 0,256 2 x 100 = 6,55 Вт;
  • P 3 = I 2 x R 3 = 0,256 2 x 51 = 3,34 Вт;
  • P 4 = I 2 x R 4 = 0,256 2 x 39 = 2,55 Вт.

Если сложить полученные мощность, то полная Р составит: Р = 13,11+6,55+3,34+2,55 = 25,55 Вт.

Мощность при паралл ельном соединение

При паралл ельном подключении все начала резисторов соединяются с одним узлом схемы, а концы - с другим. В этом случае происходит разветвление тока, и он начинает протекать по каждому элементу. В соответствии с законом Ома, сила тока будет обратно пропорциональна всем подключенным сопротивлениям, а значение напряжения на всех резисторах будет одним и тем же.

Прежде чем вычислять силу тока, необходимо выполнить расчет полной проводимости всех резисторов, применяя следующую формулу:

  • 1/R = 1/R 1 +1/R 2 +1/R 3 +1/R 4 = 1/200+1/100+1/51+1/39 = 0,005+0,01+0,0196+0,0256 = 0,06024 1/Ом.
  • Поскольку сопротивление является величиной, обратно пропорциональной проводимости, его значение составит: R = 1/0,06024 = 16,6 Ом.
  • Используя значение напряжения в 100 В, по закону Ома рассчитывается сила тока: I = U/R = 100 x 0,06024 = 6,024 A.
  • Зная силу тока, мощность резисторов, соединенных паралл ельно, определяется следующим образом: P = I 2 x R = 6,024 2 x 16,6 = 602,3 Вт.
  • Расчет силы тока для каждого резистора выполняется по формулам: I 1 = U/R 1 = 100/200 = 0,5A; I 2 = U/R 2 = 100/100 = 1A; I 3 = U/R 3 = 100/51 = 1,96A; I 4 = U/R 4 = 100/39 = 2,56A. На примере этих сопротивлений прослеживается закономерность, что с уменьшением сопротивления, сила тока увеличивается.

Существует еще одна формула, позволяющая рассчитать мощность при паралл ельном подключении резисторов: P 1 = U 2 /R 1 = 100 2 /200 = 50 Вт; P 2 = U 2 /R 2 = 100 2 /100 = 100 Вт; P 3 = U 2 /R 3 = 100 2 /51 = 195,9 Вт; P 4 = U 2 /R 4 = 100 2 /39 = 256,4 Вт. Сложив мощности отдельных резисторов, получится их общая мощность: Р = Р 1 +Р 2 +Р 3 +Р 4 = 50+100+195,9+256,4 = 602,3 Вт.

Таким образом, мощность при последовательном и паралл ельном соединении резисторов определяется разными способами, с помощью которых можно получить максимально точные результаты.

Одним из китов, на котором держатся многие понятия в электронике, является понятие последовательного и параллельного подключения проводников. Знать основные отличия указанных типов подключения просто необходимо. Без этого нельзя понять и прочитать ни одной схемы.

Основные принципы

Электрический ток движется по проводнику от источника к потребителю (нагрузке). Чаще всего в качестве проводника выбирается медный кабель. Связано это с требованием, которое предъявляется к проводнику: он должен легко высвобождать электроны.

Независимо от способа подключения, электрический ток двигается от плюса к минусу. Именно в этом направлении убывает потенциал. При этом стоит помнить, что провод, по котору идет ток, также обладает сопротивлением. Но его значение очень мало. Именно поэтому им пренебрегают. Сопротивление проводника принимают равным нулю. В том случае, если проводник обладает сопротивлением, его принято называть резистором.

Параллельное подключение

В данном случае элементы, входящие в цепь, объединены между собой двумя узлами. С другими узлами у них связей нет. Участки цепи с таким подключением принято называть ветвями. Схема параллельного подключения представлена на рисунке ниже.

Если говорить более понятным языком, то в данном случае все проводники одним концом соединены в одном узле, а вторым - во втором. Это приводит к тому, что электрический ток разделяется на все элементы. Благодаря этому увеличивается проводимость всей цепи.

При подключении проводников в цепь данным способом напряжение каждого из них будет одинаково. А вот сила тока всей цепи будет определяться как сумма токов, протекающих по всем элементам. С учетом закона Ома путем нехитрых математических расчетов получается интересная закономерность: величина, обратная общему сопротивлению всей цепи, определяется как сумма величин, обратных сопротивлениям каждого отдельного элемента. При этом учитываются только элементы, подключенные параллельно.

Последовательное подключение

В данном случае все элементы цепи соединены таким образом, что они не образуют ни одного узла. При данном способе подключения имеется один существенный недостаток. Он заключается в том, что при выходе из строя одного из проводников все последующие элементы работать не смогут. Ярким примером такой ситуации является обычная гирлянда. Если в ней перегорает одна из лампочек, то вся гирлянда перестает работать.

Последовательное подключение элементов отличается тем, что сила тока во всех проводниках равна. Что касается напряжения цепи, то оно равно сумме напряжения отдельных элементов.

В данной схеме проводники включаются в цепь поочередно. А это значит, что сопротивление всей цепи будет складываться из отдельных сопротивлений, характерных для каждого элемента. То есть общее сопротивление цепи равно сумме сопротивлений всех проводников. Эту же зависимость можно вывести и математическим способом, используя закон Ома.

Смешанные схемы

Бывают ситуации, когда на одной схеме можно увидеть одновременно последовательное и параллельное подключение элементов. В таком случае говорят о смешанном соединении. Расчет подобных схем проводится отдельно для каждой из группы проводников.

Так, чтобы определить общее сопротивление, необходимо сложить сопротивление элементов, подключенных параллельно, и сопротивление элементов с последовательным подключением. При этом последовательное подключение является доминантным. То есть его рассчитывают в первую очередь. И только после этого определяют сопротивление элементов с параллельным подключением.

Подключение светодиодов

Зная основы двух типов подключения элементов в цепи, можно понять принцип создания схем различных электроприборов. Рассмотрим пример. во многом зависит от напряжения источника тока.

При небольшом напряжении сети (до 5 В) светодиоды подключают последовательно. Снизить уровень электромагнитных помех в данном случае поможет конденсатор проходного типа и линейные резисторы. Проводимость светодиодов увеличивают за счет использования системных модуляторов.

При напряжении сети 12 В может использоваться и последовательное, и параллельное подключение сети. В случае последовательного подключения используют импульсные блоки питания. Если собирается цепь из трех светодиодов, то можно обойтись без усилителя. Но если цепь будет включать большее количество элементов, то усилитель необходим.

Во втором случае, то есть при параллельном подключении, необходимо использование двух открытых резисторов и усилителя (с пропускной способностью выше 3 А). Причем первый резистор устанавливается перед усилителем, а второй - после.

При высоком напряжении сети (220 В) прибегают к последовательному подключению. При этом дополнительно используют операционные усилители и понижающие блоки питания.

В электротехнике и электронике очень широко используются резисторы. Применяются они в основном для регулирования в схемах тока и напряжения. Основные параметры: электрическое сопротивление (R) измеряется в Омах, мощность (Вт) , стабильность и точность их параметров в процессе эксплуатации. Можно вспомнить ещё множество его параметров, — ведь это обычное промышленное изделие.

Последовательное соединение

Последовательное соединение — это такое соединение, при котором каждый последующий резистор подключается к предыдущему, образуя неразрывную цепь без разветвлений. Ток I=I1=I2 в такой цепи будет одинаковым в каждой её точке. Напротив, напряжение U1, U2 в различных её точках будет разным, причём работа по переносу заряда через всю цепь, складывается из работ по переносу заряда в каждом из резисторов, U=U1+U2. Напряжение U по закону Ома равно току, умноженному на сопротивление, и предыдущее выражение можно записать так:

где R — общее сопротивление цепи. То есть по простому идет падение напряжения в точках соединения резисторов и чем больше подключенных элементов, тем больше происходит падение напряжения

Отсюда следует, что
, общее значение такого соединения определяется суммированием сопротивлений последовательно. Наши рассуждения справедливы для любого количества последовательно соединяемых участков цепи.

Параллельное соединение

Объединим начала нескольких резисторов (точка А). В другой точке (В) мы соединим все их концы. В результате получим участок цепи, который называется параллельным соединением и состоит из некоторого количества параллельных друг другу ветвей (в нашем случае – резисторов). При этом электрический ток между точками А и B распределится по каждой из этих ветвей.

Напряжения на всех резисторах будут одинаковы: U=U1=U2=U3, их концы — это точки А и В.

Заряды, прошедшие за единицу времени через каждый резистор, в сумме образуют заряд, прошедший через весь блок. Поэтому суммарный ток через изображенную на рисунке цепь I=I1+I2+I3.

Теперь, использовав закон Ома, последнее равенство преобразуется к такому виду:

U/R=U/R1+U/R2+U/R3.

Отсюда следует, что для эквивалентного сопротивления R справедливо:

1/R=1/R1+1/R2+1/R3

или после преобразования формулы мы можем получить другую запись, такого вида:
.

Чем большее количество резисторов (или других звеньев электрической цепи, обладающих некоторым сопротивлением) соединить по параллельной схеме, тем больше путей для протекания тока образуется, и тем меньше общее сопротивление цепи.

Следует отметить, что обратная сопротивлению величина называется проводимостью. Можно сказать, что при параллельном соединении участков цепи складываются проводимости этих участков, а при последовательном соединении – их сопротивления.

Примеры использования

Понятно, что при последовательном соединении, разрыв цепи в одном месте приводит к тому, что ток перестает идти по всей цепи. Например, ёлочная гирлянда перестаёт светить, если перегорит всего одна лампочка, это плохо.

Но последовательное соединение лампочек в гирлянде даёт возможность использовать большое количество маленьких лампочек, каждая из которых рассчитана на напряжение сети (220 В), делённое на количество лампочек.


Последовательное соединение резисторов на примере 3-х лампочек и ЭДС

Зато при последовательном подключении предохранительного устройства его срабатывание (разрыв плавкой вставки) позволяет обесточить всю электрическую цепь, расположенную после него и обеспечить нужный уровень безопасности, и это хорошо. Выключатель в сеть питания электроприбора включается также последовательно.

Параллельное соединение также широко используется. Например, люстра – все лампочки соединены параллельно и находятся под одним и тем же напряжением. Если одна лампа перегорит, — не страшно, остальные не погаснут, они остаются под тем же самым напряжением.


Параллельное соединение резисторов на примере 3-х лампочек и генератора

При необходимости увеличения способности схемы рассеивать тепловую мощность, выделяющуюся при протекании тока, широко используются и последовательное, и параллельное объединение резисторов. И для последовательного, и параллельного способов соединения некоторого количества резисторов одного номинала общая мощность равна произведению количества резисторов на мощность одного резистора.

Смешанное соединение резисторов

Также часто используется смешанное соединение. Если,например необходимо получить сопротивление определенного номинала, но его нет в наличии можно воспользоваться одним из выше описанных способов или воспользоваться смешанным соединением.

Отсюда, можно вывести формулу которая и даст нам необходимое значение:

Rобщ.=(R1*R2/R1+R2)+R3

В нашу эпоху развития электроники и различных технических устройств в основе всех сложностей лежать простые законы, которые поверхностно рассматриваются на данном сайте и думаю, что вам они помогут успешно применять в своей жизни. Если например взять ёлочную гирлянду, то соединения лампочек идет друг за другом, т.е. грубо говоря это отдельно-взятое сопротивление.

Не так давно гирлянды стали соединятся смешанным способом. Вообще, в совокупности все эти примеры с резисторами взяты условно, т.е. любым элементом сопротивления может быть ток проходящий через элемент с падением напряжения и выделением тепла.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то