Зарядное устройство с определением емкости. Контакты. Прибор для измерения емкости аккумулятора

Если Вы собираетесь купить аккумуляторы, но у Вас ещё нет зарядного устройства, или Вы хотите купить зарядное устройство взамен старого, то неизбежно возникает вопрос – какое купить зарядное устройство, что выбрать из огромного разнообразия?

Зачем нужно качественное зарядное устройство?

Срок службы качественных NiMH аккумуляторов при правильном уходе за ними составляет в среднем 3-5 лет. Ёмкость современных аккумуляторов сопоставима с ёмкостью дорогих щелочных (Alkaline) одноразовых батареек, но в отличие от них, аккумуляторы могут быть использованы от 500 до 3000 раз. Выгода от покупки аккумуляторов очевидна!

Для того, чтобы аккумуляторы долго служили и эффективно работали, необходимо правильно выбрать зарядное устройство. Стандартная ошибка многих покупателей - это покупка дорогих высококачественных аккумуляторов и покупка дешёвого зарядного устройства или использование старого, когда-то давно купленного. В итоге даже самые дорогие аккумуляторы быстро выйдут из строя.

Есть по крайней мере 3 причины, по которым не следует экономить на покупке зарядного устройства:

1. Дешевые зарядные устройства могут заряжать аккумуляторы крайне медленно - до нескольких суток;

2. Так же дешевые зарядные устройства могут заряжать аккумуляторы очень быстро, но в тоже время они могут не иметь надлежащей защиты от перегрева и перезаряда аккумуляторов, что существенно сокращает срок их службы.

3. Дешевые зарядные устройства не позволяют контролировать процесс зарядки, могут не иметь автоматического отключения после окончания заряда аккумулятора. Приходится "на глаз" рассчитывать время заряда, это не удобно и не точно - аккумуляторы могут как недозарядиться, так и перезарядиться;

Все эти факторы негативно влияют на качество работы аккумуляторов, а также значительно сокращают срок их службы.

Проблемы могут быть предупреждены или решены с помощью качественного зарядного устройства. Производители предлагают разнообразные зарядные устройства, ориентированные на широкий круг потребителей: от продвинутых пользователей, кто хочет полностью контролировать процесс и параметры зарядки аккумуляторов, до обычных покупателей, которые ничего не хотят знать о процессе зарядки аккумуляторов.

Что нужно учесть при выборе зарядного устройства?

При выборе зарядного устройства, обратите внимание на следующие важные моменты:

1. Наличие независимых каналов для зарядки каждого аккумулятора отдельно

Многие дешёвые зарядные устройства заряжают аккумуляторы только парами. Это создаёт ряд неудобств в использовании. Во-первых, необходимо следить, чтобы не путались пары аккумуляторов, которые используются в устройствах. Во-вторых, во многих устройствах используется нечетное количество аккумуляторов, которое нельзя зарядить в таком зарядном устройстве. Приходится искать какой-нибудь дополнительный аккумулятор, чтобы дополнить пару для зарядки, что очень не удобно.

Кроме того, со временем аккумуляторы в паре начинают отличаться по ёмкости, что сказывается на продолжительности и качестве работы пары. Различие в ёмкости может достичь такой степени, что из-за одного недозаряженного аккумулятора пара практически перестаёт работать и пользоваться аккумуляторами становится невозможно.

для АА/ААА+КРОНА

для Li-ION+АА/ААА:

XTAR MC2 XTAR MC2S

TrastFire TR-001

4. Наличие функции «разряд»

Функция «разряд» - очень полезная функция, которая позволяет продлить жизнь аккумуляторов и поддерживать высокие показатели их работы. Дело в том, что аккумуляторы считаются разряженными, когда напряжение на них равно 0,9 Вольт, тогда как многие электронные устройства выключается, когда напряжение на аккумуляторе опускается только до 1,1 Вольта и выше. При заряде не полностью разряженного аккумулятора, со временем проявляется «эффект памяти», который заключается в потере ёмкости аккумулятора и снижении продолжительности его работы.

Для предотвращения проявления «эффекта памяти», рекомендуется полностью разряжать аккумулятор перед его зарядкой. Можно разрядить аккумулятор с помощью фонарика или детской игрушки с моторчиком, но в таком случае есть риск чрезмерного разряда аккумулятора. Если напряжение аккумулятора упадёт ниже 0,9В, то интеллектуальные зарядные устройства могут воспринимать его как неисправный и не заряжать его.

Поэтому, для разряда аккумуляторов рекомендуется использовать зарядные устройства с функцией «Разряд».

При использовании аккумуляторов в игрушках или фонариках, не допускайте глубокого разряда аккумуляторов. Если Вы видите, что аккумулятор уже сел (фонарик тускло светит, моторчик в игрушке слабо крутится или звук искажается) – замените аккумуляторы.

5. Наличие дополнительных функций и возможностей

В настоящее время наиболее популярными являются интеллектуальные зарядные устройства, которые позволяют самостоятельно устанавливать токи заряда и разряда аккумуляторов, разгонять ёмкость аккумуляторов, измерять и восстанавливать ёмкость аккумуляторов.

Покупка такого зарядного устройства имеет смысл в том случае, если Вы постоянно пользуетесь аккумуляторами, и Вам необходимо быть уверенными в ёмкости и работоспособности аккумуляторов или если Вам просто нравится экспериментировать и исследовать. Также, такое зарядное устройство – отличный подарок любому человеку, который использует аккумуляторы.

Интеллектуальные зарядные устройства:

Отдельно стоить отметить интеллектуальные зарядные устройства устройства, которые комплектуются различными дополнительными аксессуарами: аккумуляторами АА и ААА, дорожными сумками, переходниками. Качество комплектных аккумуляторов и аксессуаров обычно довольно высокое, а стоимость аккумуляторов в комплекте обычно ниже, чем стоимость аналогичных аккумуляторов отдельно. Поэтому покупка зарядных устройств с комплектами аксессуаров может быть очень выгодной.

Интеллектуальные зарядные устройства с комплектами аксессуаров:

Среди интеллектуальных зарядных устройство можно выделить продвинутые зарядные устройства. Данные зарядные устройства отличаются наличием дополнительных функций и возможностей: подсветка экрана, измерение внутреннего сопротивления аккумуляторов, широкий диапазон настроек токов заряда и разряда, ручная установка количества циклов заряда/разряда для тренировки/разгона.

Продвинутые зарядные устройства:

6. Возможность работы с аккумуляторами разных форматов и размеров

Если Вы пользуетесь аккумуляторами разных типов (Ni-MH, Li-ion) и разных размеров, чтобы не покупать отдельную зарядку для каждого типа аккумуляторов, Вы можете приобрести универсальное зарядное устройство, которое подойдёт для зарядки несколько типов аккумуляторов. Универсальные зарядные устройства ничем не хуже отдельных зарядных устройств под каждый тип аккумуляторов. По функционалу они также могут также быть как простыми, которые просто заряжают аккумуляторы, так и продвинутыми, которые могут заряжать, разряжать, тестировать и тренировать аккумуляторы, измерять их ёмкость. Универсальные зарядные устройства совмещают возможность работы с Ni-MH аккумуляторами размеров АА, ААА, С и Li-Ion аккумуляторами размеров 18650, 14500, 16340, 26650, 20700, 21700 и др.

Универсальные зарядные устройства:

7. Возможность работы с большим количеством аккумуляторов

Бывают ситуации, когда необходимо заряжать одновременно сразу много аккумуляторов – 6 -12 и более. Вполне очевидно, что использование самых распространённых зарядных устройств на 4 аккумулятора в данном случае неудобно, процесс зарядки занимает много времени и требует дополнительного внимания. Использование нескольких зарядных устройств также может быть неудобным решением проблемы. JBC-017

8. Супер-быстрые зарядные устройства.

В продаже появляются все больше Li-ION аккумуляторов с высокой нагрузочной способностью, для электронных сигарет, электроинструмента, мощных фонарей. В большинстве случаев, такие аккумуляторы допускается заряжать быстро без последствий для их срока службы. Для этих целей производятся специальные зарядные устройства, позволяющие применять максимальные токи заряда для Li-ION аккумуляторов: MiBoxer C2-4000

(абзац ниже предназначен только для Ni-MH аккумуляторов, современные Li-ION аккумуляторы возможно заряжать быстрыми устройствами с токами до 4 ампер.)
В настоящее время на рынке можно встретить много зарядных устройств, которые называются супер-быстрыми, ультра-быстрыми и.т.п. Это означает, что они способны быстро зарядить аккумуляторы. Что это значит на практике? Это значит, что зарядные устройства используют высокие токи для заряда аккумуляторов – 1000 mah на канал и выше. Без контроля за температурой аккумуляторов и системы охлаждения, высокие токи заряда вызывают перегрев аккумуляторов, что крайне негативно влияет на продолжительность их жизни. Качественное супер-быстрое зарядное устройство должно иметь хорошую систему охлаждения, термо-датчики для контроля температуры аккумуляторов, систему защиты от перегрева. В противном случае, продолжительность жизни аккумуляторов может сократиться в разы от заявленной производителем.

Специальные быстрые зарядные устройства с контролем температуры и уровнем заряда аккумуляторов:

Как резюме можно сказать, что для зарядки качественных аккумуляторов целесообразно приобрести качественное зарядное устройство, которое обеспечит долгий срок службы аккумуляторов и высокие показатели их работы. Выбирайте оптимальное зарядное устройство, которое по своему функционалу позволит работать с Вашими аккумуляторами на необходимом Вам уровне. Перед покупкой целесообразно также подумать, не пригодятся ли Вам дополнительные функции в будущем, даже если Вы сейчас не собираетесь ими пользоваться.

Благодарим интернет магазин

http://batterex.com.ua/ за предоставленные материалы

16-11-2008

Гуляев Сергей Николаевич
kvant19 [ a ] rambler.ru

Применение микроконтроллеров в электротехнике позволяет значительно упростить конструкцию, придать устройству такие функции, реализовать которые на отдельных логических элементах очень трудно а то и вообще невозможно.Примером может служить следующая конструкция.

Данное устройство подключается как приставка к зарядному устройству, разнообразных схем которых в интернете уже описано немало. Оно выводит на жидкокристаллический дисплей значение входного напряжения, величину тока зарядки аккумулятора, время зарядки и емкость зарядного тока(которая может быть или в Ампер-часах или в миллиампер-часах - зависит только от прошивки контроллера и примененного шунта). Выходное напряжение зарядного устройства не должно быть менее 7 вольт, иначе для данной приставки потребуется отдельный источник питания. Основу устройства составляет микроконтроллер PIC16F676 и жидкокристаллический 2-строчный индикатор SC 1602 ASLB-XH-HS-G. Максимальная зарядная емкость составляет 5500 ма/ч и 95,0 А/ч соответственно.

Принципиальная схема приведена на Рис 1.

Подключение к зарядному устройству - на Рис 2.

При включении микроконтроллер сначала запрашивает требуемую емкость зарядки. Устанавливается кнопкой SB1. Сброс - кнопкой SB2.

Если кнопку не нажимать более 5 секунд - контроллер автоматически переходит в режим измерений. На выводе 2 (RA5)устанавливается высокий уровень.

Алгоритм подсчета емкости в данной приставке следующий:

1 раз в секунду микроконтроллер измеряет напряжение на входе приставки и ток, и если величина тока больше единицы младшего разряда - увеличивает счетчик секунд на 1. Таким образом часы показывают только время зарядки.

Далее микроконтроллер высчитывает средний ток за минуту. Для этого показания зарядного тока делятся на 60. Целое число записываются в счетчик, а остаток от деления потом прибавляется к следующему измеренному значению тока,и уже потом эта сумма делится на 60. Сделав, таким образом, 60 измерений в счетчике будет число среднего значения тока за минуту.

Далее среднее значение тока в свою очередь делится на 60(по такому же алгоритму). Таким образом, счетчик емкости увеличивается 1 раз в минуту на величину одна шестидесятая от величины среднего тока за минуту.

После этого счетчик среднего значения тока обнуляется и подсчет начинается сначала. Каждый раз, после подсчета емкости зарядки, производится сравнение измеренной емкости и заданной, и при их равенстве на дисплей выдается сообщение - "Зарядка завершена", а во второй строке - значение этой емкости зарядки и напряжение. На выводе 2 микроконтроллера (RA5) появляется низкий уровень, что приводит к гашению светодиода. Данный сигнал можно использовать для включения реле, которое, например, отключает зарядное устройство от сети (см Рис 3).

Наладка устройства сводится только к установке правильных показаний зарядного тока (R1 R3)и входного напряжения (R2)с помощью эталонного амперметра и вольтметра. Для точной установки показаний приставки рекомендуется использовать многооборотные подстроечные резисторы или ставить дополнительные резисторы последовательно с подстроечными (подобрать экспериментально).

Теперь о шунтах.

Для зарядного устройства на ток до 1000 мА можно использовать блок питания на 15 в, в качестве шунта резистор на 5-10 Ом мощностью 5Вт, и последовательно с заряжаемым аккумулятором переменное сопротивление на 20-100 Ом, которым и будет выставляться величина зарядного тока.

Для зарядного тока до 10 А (max 25,5 A) потребуется изготовить шунт из высокоомной проволоки подходящего сечения на сопротивление 0,1 Ом. Проведенные испытания показали, что даже при сигнале с токового шунта равным 0,1 вольт настроечными резисторами R1 и R3 можно легко установить показания тока в 10 А. Однако, чем больше сигнал с датчика тока, тем легче настроить правильные показания.

В качестве шунта для приставки на 10 А я пробовал использовать кусок аллюминиевого провода сечением 1,5 мм длиной 30 см -прекрасно работает.

Печатная плата для данного устройства из-за простоты схемы не разрабатывалась, оно собрано на макетной плате таких же размеров как и жидкокристаллический индикатор и закреплен сзади. Микроконтроллер устанавливается на панельку и позволяет быстро поменять прошивку для перехода на другой ток зарядного устройства.

  • решение задачи всегда начинается с самого простого варианта - взять готовое. а купить это и есть - готовое. а потом все сложнее и сложнее, вплоть до разработки и изготовления с нуля. это самый сложный вариант
  • Хуже другое - он самый опасный. Тестировать-то придется на собственной голове...
  • Возможно это и так. Только написанное на акб иногда подозрительно близко совпадает с показаниями, а вот иногда совсем нет. На основании этого можно смело утверждать, что от прибора польза есть. На чём ваше утверждение основано - не знаю. И вы узнаете, что показания, снятые таким(очень не быстрым) способом отличаются от тех, которые вы получите тем прибором сразу же. И наверняка в большую сторону - т.е например на акб написано 2600, но если его зарядить\разрядить несколько раз(а это равносильно уже функции refresh) то получим 2800 и более. И что в результате - разница - мизер, времени убито много, мы узнали "идеальную" ёмкость. Если же речь об авто акб, то в автомобиле он так не будет заряжаться. Соответственно этот прибор показывает, скорее косвенно накопленный заряд, а не ёмкость. Но для практики и этого достаточно. Некоторые приборы подобного назначения измеряют и внутреннее сопротивление батареи. При наличии же множества однотипных батарей - отсортировать вполне позволит. Да это ужасно. А ещё большая часть страны пользуется не лицензионной ОС и не хочет платить налоги, чтобы очередной захарченко их украл. Я как то всю жизнь обходился без госреестра. И большинству граждан, пользующихся измерительными приборами в электронике, ЦСМ без надобности. Ваш госреестр и поверки нужны примерно как техосмотр автолюбителю. Но это я так к слову. А то запахло тут официозом. С чем я согласен - так с мнением kovigor. Безопастность прежде всего.
  • Тема плавно перетекает в обсуждение безопасности)))). Уважаемый kovigor с чего-то взял что те, кто хочет измерять этим прибором накопленную ёмкость аккумулятора - обязательно использует говноаккумуляторы и непонятную зарядку. И начинается: бэзопасность, а вы знаете что жизнь... Знаю, знаю. Предлагаю прекратить этот флуд, и писать в тему. Знающих я прошу внести изменения в прошивку для поднятия до 45 вольт контролируемые напряжения заряда разряда.
  • ни один из знающих не знает, что ты сваял? на чем ты сваял? и какой прошивкой пользуешься в данный момент
  • ну каждому свое раз вы пользуетесь псевдо приборами то и показания при измерениях у вас будут такие расплывчатые, а вообще даже проверенные приборы я стараюсь перепроверять на эталонных, хоть вы и гуру но скорее всего приборами которыми вы пользуетесь это дешевый сегмент оборудования которые не подлежат поверки из-за больших погрешностей измерения, а вообще для крупных проектов на крупных предприятиях связанных с электронным оборудованием все приборы подлежат поверки не для того что-бы кого-то кормить а для проведения точных измерений.
  • абсолютно в дырочку. как поверитель - поверителю могу сказать. что все измерительное оборудование, абсолютно все, делится на два больших класса: 1. измерительное оборудование, любого класса точности 2. показометры первые, в зависимости от класса точности, могут быть либо стандартами, либо эталонами,либо измерителями с четко оговоренным классом точности. вторые - показывают, что измеряемая величина присутствует. тоже с различной точностью, причем под час эта точность может превосходить точность приборов из первой группы. с этого места возникает вопрос - в чем тогда разница. разница в том, что приборы из первой группы перечислены в госреестре измерительных средств. и все официальные данные, имеющие юридическую ценность, могут предоставлятся только на основе измерения этими приборами. а приборы из второй группы такими возможностями, юридического обоснования, не обладают. но и цена приборов из этих групп существенно разная. вот возмем к примеру Ц20 и в7-36. воткнем их в розетку и измерим напряжение сети. ц 20 покажет 217в., а в736 - 220в (все это в один и тот же момент времени). и что мне эта разница даст при ремонте например любого электрического прибора. эти приборы оба в реестре присутсвовали одновременно. у первого 20 ком\в входное сопротивление, а у второго 11 мом\в. поэтому разнятся показания при измерениях при одинаковых заявленных погрешностях. вот стоит передо мной, на домашнем столе, не на казенном, с 1-114, последний раз он поверялся лет 20 назад, но ни точнее, ни грубее от этого он не показывает. но на нем я не смогу сделать заключение эксперта (не важно для кого) потому как в заключении я должен буду указать дату поверки, поверителя и заводской номер прибора. отсюда вывод - не важно какой прибор, дешевый сегмент, самодельный на коленке или из супер лаборатории, в которой стоят пылевые фильтры. главное это понимание - что измеряем, для чего измеряем, что прибор показывает, и что есть на самом деле... ну не все, хотя это очень хорошо, когда все. даже на предприятия не связанных с электронным оборудование поверка производится тоже (правда на многих только когда петух в темечко поклюет) на некоторых существуют свои поверочные лаборатории, на некоторых через ЦСМ прогоняются приборы.
  • Реверс-инжиниринг прошивки будет стоить как десяток самых дорогих гиробордов с лучшими в мире аккумуляторами. А специалисты, которые способны на это, на форумах не появляются...
  • По ходу это вы пользуетесь говноприборами и живёте в своём воображаемом мире, который уже в дешёвых приборах давно ушёл вперёд. А для большинства приборов, потребляющих 220 без разницы - 220 или 223 в розетке. Похоже вы больше теоретик Там есть исходник в асме. Ничего реверсировать не надо. Нужно всего лишь кое-что переделать. Для этого надо быть практическим юзером микрочипа.
  • По просьбе inosat выкладываю модернизированную прошивку с повышеным напряжением контроля, до 50В. Не забудьте пересчитать входной делитель вольтметра, по моей схеме R4. Прошивка для микроконтроллера 16F684. Меню выбора режимов присутствует.
  • Ну и обещаные прошивки для 676, с одним режимом заряда и удвоеным контрольным напряжением.
  • Один из моих любимых МК! Есть считатель емкости USB . Замер тока 10 раз в секунду, ну и расчёт ёмкости соответственно. Ну а если для автомобильного то на atmega8 , все режимы - заряд - разряд, тренировка, подсчёт ёмкости при постоянном заряде (разряде) , ассиметричный заряд, в любом режиме. Ток устройство не регулирует, а управляет лишь мосфет ключами по заданному с клавиатуры напряжению.
  • А все поверки приборов - это надо лишь для военки, ну что бы пиндосов сбивать в воздухе и на море! А для всего остального - это дармоеды, которые хотят доказать свою "нужность" ... А по сути нафиг не нужны как и 90 процентов начальства. Как то так!
  • ... сейчас приборы регулировки хранят в памяти, нет уплывающих по номиналу резисторов подстройки и регулировать там нечего. А лошара из ЦСМ, хотевший срубить с меня бабла, даже не смог включить мой осцил SONY\TEKTRONIX(которого в 1998 году стопудово не было в госреестре - ни фига хуже он от этого не работал Гыыы). Молодец Иван_79. Я микрочип забросил давно - после того как MPLAB скомпилировала не существующую команду для кристалла. Да и на тот момент пик существенно проигрывал атмелу(хотя которого потом купил - Гыыы).
  • Спасибо! Вот только в протеусе с прошивкой для 16F684 не отключается реле при достижении выставленного напряжения для заряда. Для разряда - отключается, я для заряда нет)). Прошивка для PIC16F676 - все гуд. Кому интересно - выкладываю разводку платы для PIC16F676 с функцией заряда (в моем случае - для 42 вольт, поэтому чуть переделал схему). В железе еще не делал, за правильность не ручаюсь
  • Про ЭТУ приставку можно забыть раз и на всегда.... Собирал ее очень давно, толковой прошивки ни одной, и ее не может быть из-за выбранного пика... Для меня она уже не существует...тем более что есть НАМНОГО больше лучшая альтернатива если решено собрать своими руками, вот она: https://www..html?di=66280 смотреть полностью статью, там все есть... Думаю что многие со мной согласятся..
  • Кстати последний проект - вольтметр переменного тока сети. На PIC16F684 и одном регистре 595 4-х сегментный индикатор. без трансформатора. И точность 0,5 - 1 вольт!
  • Реле не очень подходят для зарядных устройств при больших токах. Потому что имеет место быть неприятный казус с залипанием контактов (причём даже если токи меньше заявленных в паспорте реле) . Потому для надёжной работы пришлось придумать схему пОлевых ключей. Схемка прилагается. Она для токов не более 3-х ампер, для бОльших поставить более мощные ключи.
  • На днях проверю, исправлю отключение при заряде. Вроде в протеусе все работало.
  • Иван? Может дело не в протеусе? Может и правда реле залипает? Ты посмотри на схемку выше! А у меня проблемы ушли, с внедрением оной! И всё стало работать как часы! Правда контроллер на атмеге8 , но это уже не важно.

Каждый автовладелец задается вопросом, какой необходим прибор для измерения емкости аккумулятора. Измерение данной величины зачастую проводится при прохождении планового ТО, однако будет полезным научиться самому ее определять.

Прибор для измерения емкости аккумулятора

Емкость аккумулятора - это параметр, который определяет объем энергии, отдаваемый батареей при определенном напряжении за один час. Измеряется он в А/ч (Ампер в час), и зависит от которую определяют специальным устройством - ареометром. При покупке новой батареи все технические параметры производитель указывает на корпусе. Но эту величину можно определить и самому. Для этого существуют специальные приборы и методы.

Самый простой способ - это взять специальный тестер, например "Кулон". Это современный прибор для измерения емкости автомобильного аккумулятора, а также его напряжения. В этом случае вы затратите минимальное количество времени и получите достоверный результат. Для проверки необходимо подключить прибор к клеммам батареи и в течение нескольких секунд он определит не только емкость, а также напряжение аккумулятора и состояние пластин. Однако существуют и другие емкости АКБ.

Первый метод (классический)

К примеру, мультиметр можно использовать, как прибор для измерения емкости аккумулятора автомобиля, но с его помощью точных показаний вы не получите. Обязательным условием для данного метода (его называют методом контрольной разрядки) является полный заряд батареи. Для начала необходимо подключить к аккумулятору мощный потребитель (вполне подойдет обычная лампочка мощностью 60Вт).


После необходимо собрать цепь, которая состоит из мультиметра, АКБ, потребителя, и подать нагрузку. Если лампочка в течение 2 минут не меняет своей яркости (в противном случае аккумулятор восстановлению не подлежит), снимаем показания прибора в определенные интервалы времени. Как только показатель упадет ниже стандартного напряжения батареи (под нагрузкой она составляет 12В), начнется ее разряд. Теперь, зная промежуток времени, который потребовался на полное опустошение запаса энергии и ток нагрузки потребителя, необходимо перемножить эти значения. Произведение этих величин и является реальной емкостью АКБ. Если полученные значения отличаются от паспортных данных в меньшую сторону, необходима замена батареи. Этот метод дает возможность определить емкость любой АКБ. Недостатком данного метода являются большие затраты времени.

Второй метод

Также можно воспользоваться методом, при котором аккумулятор разряжают через резистор, применяя специальную схему. Используя секундомер определяем время, затраченное на разряд. Так как энергия будет теряться при напряжении в пределах 1 Вольта, мы с легкостью определим воспользовавшись формулой I=UR, где I - сила тока, U - напряжение, R - сопротивление. При этом необходимо избежать полной разрядки батареи, используя, например, специальное реле.

Как сделать прибор самостоятельно

При отсутствии возможности приобретения готового устройства, всегда можно собрать прибор для измерения емкости аккумулятора своими руками.

Для определения степени заряда и емкости АКБ можно воспользоваться В продаже имеется много моделей уже готовых вилок, однако можно собрать ее собственноручно. Далее рассматривается один из вариантов.

В данной модели используется расширенная шкала, благодаря чему достигается высокая точность измерений. Имеется встроенное нагрузочное сопротивление. Шкала разделена на два диапазона (0-10 В и 10-15 В), что дает дополнительное снижение погрешности измерений. Устройство также имеет 3-х вольтовую шкалу и другой вывод измерительного приспособления, давая возможность проверки отдельных банок АКБ. Шкала на 15В достигается благодаря снижению на диоде и стабилитроне напряжения. Величина тока устройства возрастает, если значение напряжения превышает уровень открытия стабилитрона. При подаче напряжения ошибочной полярности защитную функцию выполняет диод.

На схеме: R1- передает стабилитрону требуемый ток; R2 и R3 - резисторы, подобранные для микроамперметра М3240; R4 - определяет ширину узкого диапазона шкалы; R5 - нагрузочное сопротивление, включается тумблером SB1.

Сила тока нагрузки определяется по закону Ома. В расчет принимается нагрузочное сопротивление.

Прибор для измерения емкости аккумулятора АА

Емкость аккумуляторов типа АА измеряется в мА/ч (миллиампер в час). Для измерения таких батарей можно применять специальные зарядные устройства, которые определяют ток, напряжение и емкость батареи. Примером такого устройства является прибор для измерения емкости аккумулятора AccuPower IQ3, который имеет блок питания с диапазоном напряжения от 100 до 240 Вольт. Для измерения потребуется вставить аккумуляторы в устройство, и на дисплее появятся все необходимые параметры.

Определение емкости с помощью зарядного устройства

Также емкость можно определить и с помощью обычного зарядного устройства. Определив величину силы тока заряда (она указывается в характеристиках прибора), необходимо полностью зарядить аккумулятор и засечь затраченное на это время. После, перемножив эти два значения, получаем приблизительную емкость.

Более точные показания можно получить, воспользовавшись еще одним методом, для которого вам потребуется полностью заряженный АКБ, секундомер, мультиметр и потребитель (можно использовать, например, фонарик). Подключаем потребитель к аккумулятору, и при помощи мультиметра определяем ток потребления (чем он меньше, тем более достоверны результаты). Засекаем время, в течение которого светил фонарик, и полученный результат умножаем на ток потребления.

Эта конструкция подключается как приставка к зарядному устройству, разнообразных схем которых в интернете уже описано немало. Она выводит на жидкокристаллический дисплей значение входного напряжения, величину тока зарядки аккумулятора, время зарядки и ёмкость зарядного тока(которая может быть или в Ампер-часах или в миллиампер-часах - зависит только от прошивки контроллера и применённого шунта). (См. Рис.1 и Рис.2 )

Рис.1

Рис.2

Выходное напряжение зарядного устройства не должно быть менее 7 вольт, иначе для данной приставки потребуется отдельный источник питания.

Основу устройства составляет микроконтроллер PIC16F676 и жидкокристаллический 2-строчный индикатор SC 1602 ASLB-XH-HS-G.

Максимальная зарядная ёмкость составляет 5500 ма/ч и 95,0 А/ч соответственно.

Принципиальная схема приведена на Рис 3.

Рис.3. Принципиальная схема приставки для измерения ёмкости зарядки

Подключение к зарядному устройству - на Рис 4 .


Рис.4 Схема подключения приставки к зарядному устройству

При включении микроконтроллер сначала запрашивает требуемую ёмкость зарядки.
Устанавливается кнопкой SB1. Сброс - кнопкой SB2.
На выводе 2 (RA5)устанавливается высокий уровень, который включает реле P1, которое в свою очередь включает зарядное устройство (Рис.5 ).
Если кнопку не нажимать более 5 секунд - контроллер автоматически переходит в режим измерений.

Алгоритм подсчёта ёмкости в данной приставке следующий:
1 раз в секунду микроконтроллер измеряет напряжение на входе приставки и ток, и если величина тока больше единицы младшего разряда - увеличивает счётчик секунд на 1. Таким образом часы показывают только время зарядки.

Далее микроконтроллер высчитывает средний ток за минуту. Для этого показания зарядного тока делятся на 60. Целое число записываются в счётчик, а остаток от деления потом прибавляется к следующему измеренному значению тока,и уже потом эта сумма делится на 60. Сделав, таким образом, 60 измерений за 1 минуту в счётчике будет число среднего значения тока за минуту.
При переходе показаний секунд через ноль среднее значение тока в свою очередь делится на 60(по такому же алгоритму). Таким образом счётчик ёмкости увеличивается 1 раз в минуту на величину одна шестидесятая от величины среднего тока за минуту. После этого счётчик среднего значения тока обнуляется и подсчёт начинается сначала. Каждый раз, после подсчёта ёмкости зарядки, производится сравнение измеренной ёмкости и заданной, и при их равенстве на дисплей выдаётся сообщение - "Зарядка завершена", а во второй строке - значение этой ёмкости зарядки и напряжение. На выводе 2 микроконтроллера (RA5) появляется низкий уровень, что приводит к отключению реле. Зарядное устройство отключится от сети.


Рис.5

Наладка устройства сводится только к установке правильных показаний зарядного тока (R1 R5) и входного напряжения (R4) с помощью эталонного амперметра и вольтметра.

Теперь о шунтах.
Для зарядного устройства на ток до 1000 мА можно использовать блок питания на 15 в, в качестве шунта резистор на 0.5-10 Ом мощностью 5Вт (меньшее значение сопротивления будет вносить меньшую погрешность в измерение, но затруднит точную настройку тока при калибровки прибора), и последовательно с заряжаемым аккумулятором переменное сопротивление на 20-100 Ом, которым и будет выставляться величина зарядного тока.
Для зарядного тока до 10А потребуется изготовить шунт из высокоомной проволоки подходящего сечения на сопротивление 0,1 Ом. Проведённые испытания показали, что даже при сигнале с токового шунта равным 0,1 вольт настроечными резисторами R1 и R3 можно легко установить показания тока в 10 А.

Печатная плата для данного устройства разрабатывалась под индикатор WH1602D. Но можно использовать любой подходящий индикатор, сотвественно перепаяв провода. Плата собрана таких же размеров как и жидкокристаллический индикатор и закреплена сзади. Микроконтроллер устанавливается на панельку и позволяет быстро поменять прошивку для перехода на другой ток зарядного устройства.

Перед первым включением подстроечные резисторы установить в среднее положение.

В качестве шунта для варианта прошивки на малые токи можно применить 2 параллельно соединенных резистора млт-2 1 Ом.

В приставке можно применить индикатор WH1602D , но придется поменять местами выводы 1 и 2. А вообще- лучше свериться с документацией на индикатор.

Индикаторы фирмы МЭЛТ не будут работать, из-за несовместимости работы по 4-х битному интерфейсу.

При желании, можно подключить подсветку индикатора через токоограничительный резистор 100 Ом

Эту приставку можно использовать для определения емкости заряженного аккумулятора.

Рис.6. Определение емкости заряженного аккумулятора

В качестве нагрузки можно использовать любую нагрузку (Лампочку, резистор...), только при включении нужно выставить любую заведомо большую емкость аккумулятора и при этом следить за напряжением аккумулятора, чтобы не допускать глубокой разрядки.

(От автора) Приставка испытывалась с современным импульсным зарядным устройством для автомобильных аккумуляторов,
Данные устройства обеспечивают стабильное напряжение и ток с минимальными пульсациями.
При подсоединении же приставки к старому зарядному устройству (понижающий трансформатор и диодный выпрямитель) мне не удалось настроить показания зарядного тока из-за больших пульсаций.
Поэтому было решено изменить алгоритм измерения зарядного тока контроллером.
В новой редакции контроллер делает 255 измерений тока за 25 милисекунд (при 50Гц - период составляет 20 милисекунд). И из сделанных измерений выбирает самое большое значение.
Также происходит измерение входного напряжения, но выбирается наименьшее значение.
(При нулевом зарядном токе напряжение должно быть равно ЭДС аккумулятора.)
Однако при такой схеме перед стабилизатором 7805 необходимо поставить диод и сглаживающий конденсатор (>200 мкФ)на напряжение не менее выходного напряжения зарядного
устройства. Плохо сглаженное напряжение питания микроконтроллера приводило к сбоям в работе.
Для точной установки показаний приставки рекомендуется использовать многооборотные подстроечные резисторы или ставить дополнительные резисторы последовательно с подстроечными (подобрать экспериментально).
В качестве шунта для приставки на 10 А я пробовал использовать кусок аллюминиевого провода сечением 1,5 мм длиной около 20 см -прекрасно работает.


Итак, о чем идет речь?

До недавних пор единственное устройство, которое могло похвастаться поддержкой заряда как никелевых так и литиевых аккумуляторов, а так же измерением емкости оных являлся Opus 3100 V2.1 (он будет упомянут в данном обзоре еще не раз, если вас он заинтересовал можете найти мой обзор на него, ну и не только мой). Опытные читатели конечно могут возразить, есть ведь аймакс и ему подобные, ну конечно же я их не беру в счет, разговор только о обычных устройствах.

Так вот, так уж получилось, формально или нет но у Опуса образовался конкурент. А как он справляется со своими обязанностями попробуем узнать в данном обзоре.

Тех.характеристики

● Microcomputer IC controls charging process: CC / CV / Trickle charging, to make sure the battery is full charged and won"t be over charged. Each slot controls independently, mixed charging mode
● LCD instantly shows the charging process, battery voltage, charging current and capacity
● Discharge and batteries capacity test function
● Applicable batteries: Compatible with various kinds of cylindrical chargeable batteries (diameter: below 26 mm, height: 34 - 70 mm). Charge 3.7V Li-ion or 1.2V NiMH / NiCd batteries as well

Charging Mode:
● Adopt negative voltage control technology to improve charge efficiency
● Protect opposite connection and short circuit. (LCD shows NULL)
● If batteries" voltage is below 0.5V, LCD does not display battery symbol and voltage and shows NULL
● Activate automatically within protected Li-ion batteries which instantaneous are at short circuit
● If batteries" voltage are below 0.5V, LCD does not display battery symbol and voltage and shows NULL
● Three optional charging current: Can be adjusted separately, namely 0.25A, 0.5A, 1A (according to different capacity)
● Three optional discharging current: Can be adjusted separately, namely 0.125A, 0.25A, 0.5A (according to different capacity)
● Stainless steel rail is more durable and smooth
● Worldwide voltage, suitable for the whole world
● 12V car adapter is available
● Sound prompt function (one of the slot completes a charging or discharging step, the tone rings)

Output:
DC 4.35V ± 0.02V, 0.25A / 0.50A / 1.0A ± 10mA x 4
DC 4.2V ± 0.02V, 0.25A / 0.50A / 1.0A ± 10mA x 4
DC 3.6V ± 0.02V, 0.25A / 0.50A / 1.0A ± 10mA x 4
DC 1.43V ± 0.02V, 0.25A / 0.50A / 1.0A ± 10mA x 4
Specifications

General
Type: Charger
Model: FL-4H-LCD-D
Charging Cell Type: Ni-MH, NiCd, Lithium Ion
Compatible: 18650, SC, AA, 14650, 17670, D, AAA, 18700, 16340 (RCR123), C, 25500, 17500, 26650, 10340, 14500, 22650, 17650, 10440
Rechargeable Battery Qty: 4
Input Voltage: AC 100~240V 50/60HZ

Functions
LCD Screen: YES
Auto Circuit Detection: YES
Built-in Protected Circuit: YES
Short-Circuit Protection: YES

Dimension and Weight
Product weight: 0.296 kg
Package weight: 0.52 kg
Product size (L x W x H): 15.3 x 12.5 x 4 cm / 6.01 x 4.91 x 1.57 inches
Package size (L x W x H): 18 x 16 x 7 cm / 7.07 x 6.29 x 2.75 inches
Что же интересного?

Ну по характеристикам почти мечта. Лично я бы хотел возможность выбора еще большего тока заряда (можно хоте бы для двух аккумуляторов), кроме этого все необходимое есть. И низкий ток заряда для мелких аккумуляторов, и поддержка 3.6/4.2/4.35 аккумуляторов, и четыре независимые канала. Есть какие-то упоминания о звуковых сигналах, посмотрим.

Сравнение с Опусом


Устройство пришло в картонной коробке, на которой описаны особенности и инструкция. Обратите внимания - отдельно инструкции нет, так что коробку желательно сохранить, хотя бы бы в начале.


Устройство идет с блоком питания 12v 2.5A. В тех. характеристиках говорят о блоке питания работающем от прикуривателя автомобиля - с тестовым образцом ко мне такой не пришел.



А вот и он. К качеству сборки претензий нет, щелей/хруста никакого нет. Полозья двигаются плавно, смазывать не нужно. Кнопки нажимаются четко, одно нажатие - одно срабатывание.



А вот и Опус. По сравнению с Опусом устройство намного массивней и выглядит потопорней.


А вот и экран.
1. Экран работает все время что устройство подключено к электичеству. Подсветка не супер яркая, думаю в темной комнате подсветка мешать не будет.
2. У экранчика очень интересные углы обзора. на 180 градусов экран почти полностью блеклый, на наго нужно смотреть спереди, тогда информация наиболее контрастна.

С первого взгляда может показаться что за решеткой прячется вентилятор. Но это не так. Как вскоре увидите он мог бы там быть, но его там нет.

А вот и информационный экран.

Как раз время рассказать об использовании устройства.

1. До установки аккумуляторов невозможно изменить параметры работы устройства.
2. После установки никелевого аккумулятора, короткое нажатие на кнопку позволит выбрать ток заряда/разряда. Через 8 секунд процесс заряда начинается. Короткое нажатие на кнопку не приводит ни к каким изменениям, а продолжительное нажатие меняет режим с режима заряда на режим измерения емкости (об этом попозже).
3. После установки литиевого аккумулятора короткие нажатие изменяет ток заряда а продолжительное нажатие меняет напряжение. После начала процесса заряда аккумулятора невозможно изменить ток или напряжение, а только режим работы с заряда на измерение емкости и наоборот.
4. У устройства нет памяти режимов, настройка по умолчанию для никеля это 0.25 ампер, режим заряд а для лития 0.25 ампер, 4.2 вольт режим заряд.
5. О режиме измерения емкости. Не достаточно просто установить аккумулятор, перевести устройство в режим измерения емкости и смотреть как аккумулятор разряжается и на экране учитывается емкость. Режим измерения емкости подразумевает заряд аккумулятора самим зарядным устройством, затем разряд (током, являющимся половиной от выбранного тока заряда) а затем заряд аккумулятора, лишь тогда процесс измерения емкости устройство считает завершенным. Соответственно это накладывает определенные ограничения, например безопасно измерять емкость батарейки не удастся.
6. Самое интересное - спикер. В устройство установлен громкий спикер, оповещающий о финале каждой стадии работы устройства с аккумулятором. Сигнал это тру громких писка, пауза и потом опять три писка. Звук наподобие микроволновки, только громче тех с которыми мне приходилось иметь дело. Почитайте пожалуйста еще раз пункт 5 и представьте себе сценарий использования устройства ночью. Очень не просто.
7. Устройство греется. Не перегревается и воняет, просто ощутимо греется.
8. Энелупы, которые я тестировал с данным устройством почти не нагревались при заряде током 1 ампер - просто отлично. Менее отлично то, что в каждый было «недолито» 150-200 maH.
С литием все отлично, честные 4.2 вольт.





«Кишки». Все очень аккуратно, даже не ожидал. Кстати обратите внимание - напротив решетки для вентилятора есть место для вентилятора, умельцам на заметку.

Выводы

Устройство умеет много, но не все у него идеально. Минусы, которые я бы хотел указать это спикер (можно устранить открыв устройство массой методов), ограниченные углы обзора у встроенного экранчика и не оптимальную работу с никелевыми аккумуляторами.

устройство было предоставлено для обзора бесплатно магазином

На устройство действует скидочный купон FL4HSQ (Цена с купоном будет 54,99 долларов)

Спасибо за внимание. Вопросы? Просьбы? Предложения? Буду рад выслушать и помочь по мере возможностей.

Планирую купить +15 Добавить в избранное Обзор понравился +14 +36
  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то