Фракталы графика. Фрактальная графика как цифровое беспредметное искусство

Фрактальная графика, как и векторная, основана на математических вычислениях. Базовыми элементами фрактальной графики являются сами математические формулы, описывающие линии и линейные поверхности, то есть никаких объектов в памяти ЭВМ не хранится и изображение строится исключительно по формулам (уравнениям).

Установлено, что при любом уровне разрешения, сложная кривая (например, береговая линия), поверхность могут быть аппроксимированы (смоделированы) и прорисованы посредством объединения участков небольших прямолинейных (плоских) сегментов. При переходе на более высокий уровень разрешения аппроксимирующий сегмент вероятностным способом разбивается на новую последовательность новых линейных сегментов и так далее. На основании этого свойства – закона статистического постоянства порождения деталей природных образований при переходе от низких к более высоким уровням разрешения и построен метод использования фрактальных поверхностей

В

Рис. 1.4Пример фрактального объекта

переводе с английского “фрактальный” означает состоящий из частиц, частей. Такими поверхностями называют класс нерегулярных геометрических форм, задаваемых вероятностным способом на основе исходного описания низкого уровня. Закон дробления линии (поверхности) подбирается опытным путем по критерию визуального согласования синтезируемого (моделируемого) изображения с реальным объектом, изображение которого стремятся получить.

Таким способом строят как простейшие регулярные структуры, так и сложные иллюстрации, имитирующие ландшафты и трехмерные объекты. Наиболее часто фрактальные поверхности используют для моделирования горных ландшафтов. Горный массив (рис. 1.4) предварительно, очень приближенно, описывают полигональной поверхностью, составленной из плоских четырехугольников. Далее каждый четырехугольник разбивается с помощью случайной функции на четыре фигуры меньших размеров, при этом все фигуры вероятностным образом сдвигаются относительно исходной плоскости, сохраняя для каждой фигуры по одной общей вершине с исходным четырехугольником. Деление продолжается до достижения желаемого уровня изрезанности поверхности. Удаляются скрытые поверхности и закрашиваются сгенерированные четырехугольники. Изображения, созданные на основе фрактальных поверхностей, только статистически идентичны реальным объектам.

Фрактальный подход нашел широкое применение во многих областях компьютерной графики, науки и искусства.

Фрактальная графика не является, строго говоря, частью векторной графики, поскольку широко использует и растровые объекты. Фракталы широко используются в растровых (AdobePhotoshop) и векторных (CorelDraw) редакторах и трехмерной (CorelBryce) графике.

Форматы файлов компьютерной графики.

Работа со средствами компьютерной графики предполагает использование при создании графической информации (рисунков, чертежей, иллюстраций) разнообразных графических пакетов растровой и векторной графики (PhotoShop,CorelDraw,bCad,AutoCad, Компас и др.). Все эти пакеты работают в соответствующих форматах, позволяющих не только сохранить созданную информацию, экспортировать ее в другие пакеты, но и импортировать графическую информацию других пакетов. В компьютерной графике применяется большое количество форматов, но лишь небольшая их часть стала стандартом де-факто и применяется в подавляющем множестве программ. Разнообразие в подходах (алгоритмах) и средствах в решении традиционных задач компьютерной графики приводит к несовместимости выходных данных. Как правило, несовместимые форматы выходных файлов имеют векторные, растровые, трехмерные изображения, хотя существуют форматы файлов, позволяющие хранить данные разных классов. Многие приложения ориентированы на задачи с собственными специфическими форматами, но стремление интегрироваться в общую информационную структуру, вынуждает их использовать специальные приемы, фильтры или экспортировать изображение в стандартный обменный формат.

TIFF (Tagget Image File Format ) предназначен для хранения растровых изображений высокого качества (расширение файла . TIF ) в графических пакетах, работающих MS - DOS , PC IBM , Unix , Macintosh платформах. Широта использования этого формата объясняется его возможностями: поддержка множества цветовых моделей, наличие восьмибитного альфа-канала 3 , сохранение обтравочных контуров, различные алгоритмы сжатия без потери информации. Формат обеспечен поддержкой со стороны большинства графических, верстальных и дизайнерских, растровых и векторных программ. Цветовые модели GIF CMYK и Pantone , поддерживаемые TIFF , обеспечивают верную цветопередачу при выводе изображений на полиграфическую печать; допускает запись в файл цветовой профиль ICC . Последние версии TIFF поддерживают несколько алгоритмов сжатия изображения: LZW – без потери информации; ZIP –без потери информации, JPED -- с частичной потерей информацией. Универсальным принято считать метод сжатия LZW , обеспечивающий меньший размер выходного файла. Формат широко используется для хранения и обмена графической информацией между различными графическими платформами.

GIF (CompuServe Graphics Interchange Format ) -Графический растровый обменный формат. Разработан фирмой CompuServe . Поддерживается MS - DOS , PC IBM , Unix , Macintosh и Amiga операционными системами. Формат разработан для поддержки графики в Интернете, независимой от аппаратного обеспечения. Поддерживает функции прозрачности цветов и некоторые виды анимации. Поддерживает кодировку 256 цветов. Один из цветов может получить свойство прозрачности через двухбитовый альфа-канал. Допускает включение в файл нескольких растровых изображений, воспроизводимых с заданной периодичностью, что обеспечивает показ на экране простейшей анимации.

Получил большую популярность в Интернете, благодаря большой степени сжатия (метод LZW ). Ограниченные возможности по работе с цветными изображениями обусловливают его применение исключительно для электронных публикаций.

BMP (Windows Device Independent Bitmap ) - растровый формат обмена изображениями между приложениями, работающихми в операционной системе Windows (расширение файла. BMP ) . Формат поддерживает большое количество цветных моделей вплоть до 24 – битного пространства RGB . Полиграфический формат CMYK не поддерживается, что ограничивает сферу применения BMP для электронных публикаций. Размер графического изображения неограничен. В качестве алгоритма сжатия используется метод RLE (компрессия без потери информации). Файлы в формате BMP имеют значительный объем.

PSD (PhotoShop Document) - обственный растровый формат пакета Adobe PhotoShop , один из наиболее мощных по возможностям хранения графической информации. Поддерживает платформы операционных систем Macintosh и Window s. Запоминает параметры слоев, каналов, степени прозрачности, множество и разнообразие масок. Максимальный размер записываемого изображения 30000 х 30000 пикселей. Поддерживает 48-битное кодирование цвета, цветоделение, различные цветовые модели. Применяемый метод сжатия (RLE ) не обеспечивает достаточное сжатие, объем сохраняемой информации достаточно высок.

PhotoCD - растровый формат, разработанный фирмой Kodak , для хранения цифровых изображений высокого качества. Поддерживается платформами всех операционных систем. Формат хранения данных в файле именуется Image Pac , внутренняя структура которого обеспечивает хранение изображения с фиксированными величинами разрешений, и поэтому размеры любых файлов лишь незначительно отличаются друг от друга и находятся в диапазоне 4-5 Мбайт. Каждому разрешению присвоен собственный уровень, отсчитываемый от так называемого базового ( Base ), составляющего 512 х 768 точек.

В файле предусмотрено пять уровней – от Base/16 (128 х 192 точек) до Baseх 16(2048 х 3072 точек). Работает с 24-битовой кодировкой цветов. Для работы с цветовой информацией используется цветовая модельYCC . Формат обеспечивает хранение высоко качественных полутоновых изображений и записи высококачественных фото - изображений наCD - ROM .

JPEG (Joint Photographic Expects Group ) - формат растровых изображений (расширение файла.JPG ), разработанный фирмой C-Cube Microsystems, ориентирован на все графические платформы. Работает с 24 – битной кодировкой цвета. Независимо от исходной цветовой модели изображения все пиксели переводятся в цветовое пространство CIE Lab . Допустимый максимальный размер изображения 64000 х 64000 точек.

По существу является методом сжатия изображения с частичной потерей информации. Применение компрессии JPEG позволяет уменьшить объем занимаемый файлом до 500 раз по сравнению обычнымbitmap . Позволяет регулировать соотношение между степенью сжатия файла и качеством изображения. Применяемые методы сжатия основаны на удалении «избыточной» информации. Используется в основном для электронных публикаций.

CDR (CorelDraw ) - векторный формат. Рабочий формат графического пакета CorelDraw фирмы Corel Corporation.

EPS (Encapsulated PostScript ) - Фирма Adobe разработала формат описания как векторных, так и растровых изображений на упрощенной версии языка PostScript , который де-факто является стандартом в области допечатных процессов и полиграфии (файл с расширением.EPS ). Это самый надежный и универсальный способ хранения и передачи графических данных. Файл не поддерживает многостраничные документы, но в нем могут одновременно храниться растровые и векторные графические изображения, все необходимые данные о свойствах самого изображения: любая цветовая модель и профили (параметры калибровки оборудования), канал прозрачности, обтравочный контур, треппинг (перекрытие цветов на границе), внедренные шрифты.

В зависимости от потребности при отображении на экране векторного изображения используется формат WMF , а для растрового –TIFF . Открыть файл. EPS для просмотра и редактирования можно при помощи ограниченного перечня программ (например,Adobe Illustrator , CorelDraw ). Кроме того, существенным недостаткомEPS является то, что экранная копия лишь в общих чертах отображает реальное изображение. Действительное изображение можно увидеть на выходе выводного устройства с помощью специальных программ просмотра или после преобразования файла в форматPDF в приложенияхAcrobat Reader , Acrobat Exchange .

WMF (Windows MetaFile ) - файл обменного формата векторных данных относится к категории метафайлов 4 . Является «внутренним» форматом операционной системы Windows на платформеIBM PC для всех ее графических приложений (расширение имени файла.WMF ) через буфер обмена. Однако «универсальность» формата годится далеко не для всех программ. Типичными ошибками при переносе изображения являются искажение цветов, неправильная установка толщины контура и свойств заливки. В формат нельзя включить растровое изображение. Рекомендуется для переноса самых простых объектов.

CGM (Computer Graphics Metafile )- Графический метафайл. Формат файла разработан Международной организацией по стандартизации и Американским национальным институтом стандартов. Поддерживается всеми графическими платформами. Работает с неограниченным числом цветов и не имеет ограничение на размер графического изображения. Используются RLE и CCITT Group 3 и Group 4 методы сжатия информации. Широко используется для обмена векторной и растровой графической информацией между графическими приложениями, работающими на различных платформах.

DXF (Data eXchange Format ) – Специальный символьный формат обмена информацией, разработанный компанией Autodesk Inc. (США) для своих программных продуктов, в первую очередь AutoCAD. Может работать в операционной системе MS - DOS . Поддерживает 8-битную кодировку цвета, сохраняет трехмерные изображения. Формат не предусматривает сжатие информации.

Этот формат обмена стал фактическим стандартом для чеpтежно-гpaфических систем и поддерживается практически всеми разработчиками программных продуктов САПР.





Фрактальная графика — новая технология, позволяющая получать уникальные красивые картины, но не только это. Читайте и смотрите видео про применение, примеры и изображения фрактальной графики.

Как был открыт фрактал

Математические формы, известные как фракталы, принадлежат гению выдающегося ученого Бенуа Мандельброта. Большую часть жизни он провёл в Соединенных Штатах, где преподавал математику в Йельском университете. В 1977 и 1982 годах Мандельброт опубликовал научные труды, посвященные изучению «фрактальной геометрии» или «геометрии природы».

В которых разбивал на первый взгляд случайные математические формы на составные элементы, оказавшиеся при ближайшем рассмотрении повторяющимися, - что и доказывает наличие некого образца для копирования. Открытие Мандельброта возымело весомые позитивные последствия в развитии физики, астрономии и биологии.

Как устроен фрактал

Фрактал (от латинского «fractus» — разбитый, дробленый, сломанный) представляет собой сложную геометрическую фигуру, которая составлена из нескольких бесконечной последовательности частей, каждая из которых подобна всей фигуре целиком, и повторяется при уменьшении масштаба.

Структура фрактала на всех шкалах является нетривиальной. Здесь нужно уточнить, что имеется в виду. Так вот, регулярные фигуры, такие как окружность, эллипс или график гладкой функции устроены таким образом, что при рассмотрении небольшого фрагмента регулярной фигуры в достаточно крупном масштабе он будет схожим с фрагментом прямой. Для фракталов же увеличение масштаба не приводит к упрощению структуры фигуры, и на всех шкалах мы видим однообразно сложную картину.

Изображение объектов фрактальной графики

Изображение объектов фрактальной графики в природе

Фракталы в природе

В природе фрактальными свойствами обладают многие объекты, например: кроны деревьев, цветная капуста, облака, кровеносная и альвеолярная системы человека и животных, кристаллы, снежинки, элементы которых выстраиваются в одну сложную структуру, побережья (фрактальная концепция позволила ученым измерить береговую линию Британских островов и другие, ранее неизмеримые, объекты).

Рассмотрим строение цветной капусты. Если разрезать один из цветков, очевидно, что в руках остаётся всё та же цветная капуста, только меньшего размера. Можно продолжать резать снова и снова, даже под микроскопом - однако все, что мы получим - это крошечные копии цветной капусты. В этом простейшем случае даже небольшая часть фрактала содержит информацию обо всей конечной структуре.

Ярким примером фрактала в природе является «Романеску», она же «романская брокколи» или «цветная коралловая капуста». Первые упоминания об этом экзотическом овоще относятся к Италии 16 века. Почки этой капусты растут по логарифмической спирали. Ей не перестают восхищаться 3D-художники, дизайнеры и кулинары.

Последние, причём, особенно ценят овощ за самый утончённый вкус (сладковато-ореховый, а не сернистый оттенок), какой только может быть у капусты, и за то, что он менее рассыпчатый, чем обычная цветная капуста. Кроме того, романская брокколи богата витамином С, антиоксидантами и каротиноидами.

Фракталы в цифровой технике

Фрактальная геометрия внесла неоценимый вклад в разработку новых технологий в области цифровой музыки, а так же сделала возможной сжатие цифровых изображений. Существующие фрактальные алгоритмы сжатия изображения основаны на принципе хранения сжимающего изображения вместо самой цифровой картинки.

Для сжимающего изображения основная картинка остаётся неподвижной точкой. Фирма «Microsoft» использовала один из вариантов данного алгоритма при издании своей энциклопедии, но по тем или иным причинам широкого распространения эта идея не получила.

Фрактальная графика достоинства и недостатки

Фракталы в сети

Принцип фрактального сжатия информации для компактного сохранения сведений об узлах сети «Netsukuku» использует система назначения IP-адресов. Каждый её узел хранит 4 килобайта информации о состоянии соседних узлов.

Любой новый узел подключается к общей сети Интернет, не требуя центрального регулирования раздачи IP-адресов. Можно сделать вывод, что принцип фрактального сжатия информации обеспечивает децентрализованную работу всей сети, а потому работа в ней протекает максимально устойчиво.

Фракталы в графике

Фракталы широко применяются в компьютерной графике – при построении изображений деревьев, кустов, поверхности морей, горных ландшафтов, и других природных объектов. Благодаря фрактальной графике был изобретён эффективный способ реализации сложных неевклидовых объектов, чьи образы похожи на природные: это алгоритмы синтеза коэффициентов фрактала, позволяющие воспроизвести копию любой картинки максимально близко к оригиналу.

Интересно, что кроме фрактальной «живописи» существуют так же фрактальная музыка и фрактальная анимация. В изобразительном искусстве существует направление, занимающееся получением изображения случайного фрактала – «фрактальная монотипия» или «стохатипия».

В математической основе фрактальной графики лежит фрактальная геометрия, где в основу методов построения «изображений-наследников» помещён принцип наследования от исходных «объектов-родителей». Сами понятия фрактальной геометрии и фрактальной графики появилось всего около 30 лет назад, но уже прочно вошли в обиход компьютерных дизайнеров и математиков.

Базовыми понятиями фрактальной компьютерной графики являются:

  • Фрактальный треугольник - фрактальная фигура - фрактальный объект (иерархия в порядке убывания)
  • Фрактальная прямая
  • Фрактальная композиция
  • «Объект-родитель» и «Объект наследник»

Создание фрактальной графики картинки

Также как в векторной и трёхмерной графике, создание фрактальных изображений математически вычисляемо. Главное отличие от первых двух видов графики в том, что фрактальное изображение строится по уравнению или системе уравнений, - ничего кроме формулы в памяти компьютера для выполнения всех вычислений хранить не нужно, - и такая компактность математического аппарата позволила использование этой идеи в компьютерной графике.

Просто изменяя коэффициенты уравнения, можно с лёгкостью получить совершенно иное фрактальное изображение - при помощи нескольких математических коэффициентов задаются поверхности и линии очень сложной формы, что позволяет реализовать такие приёмы композиции, как горизонтали и вертикали, симметрию и асимметрию, диагональные направления и многое другое.

Как построить фрактал?

Создатель фракталов выполняет роль художника, фотографа, скульптора, и ученого-изобретателя одновременно. Какие предстоят этапы работы сотворения рисунка «с нуля»?

  • задать форму рисунка математической формулой
  • исследовать сходимость процесса и варьировать его параметры
  • выбрать вид изображения
  • выбрать палитру цветов

Среди фрактальных графических редакторов и прочих графических программ можно выделить:

  • «Art Dabbler»
  • «Painter» (без компьютера ни один художник никогда не достигнет заложенных программистами возможностей лишь посредством с помощью карандаша и пера кисти)
  • «Adobe Photoshop» (но здесь изображение «с нуля» не создается, а, как правило, только обрабатывается)

Рассмотрим устройство произвольной фрактальной геометрической фигуры. В её центре находится простейший элемент - равносторонний треугольник, получивший одноимённое название: «фрактальный». На среднем отрезке сторон построим равносторонние треугольники со стороной, равной одной трети от стороны исходного фрактального треугольника.

По тому же принципу строятся ещё более мелкие треугольники-наследники второго поколения – и так до бесконечности. Объект, который в результате получился, называется «фрактальной фигурой», из последовательностей которой получаем «фрактальную композицию».

Рейтинг: / 18

ПлохоОтлично

Растровая, векторная и фрактальная графика

Компьютерная графика - это специальная область информатики, изучающая методы и способы создания и обработки изображений на экране компьютера с помощью специальных программ. В зависимости от способа формирования изображений компьютерную графику принято подразделять на растровую и векторную. Кроме того выделяют другие типы графики, например, трехмерную (3 D ), изучающую приемы и методы построения объемных объектов в пространстве. Как правило, в ней сочетаются векторный и растровый способ формирования изображения.

Растровая и векторная графика создается в специальных программах - графических редакторах и процессорах. Например, программы Paint и Gimp являются растровыми, а Inkscape - векторым.

Растровая графика

Растровое изображение представляет картину, состоящую из массива точек на экране, имеющих такие атрибуты как координаты и цвет.

Пиксель – наименьший элемент изображения на экране компьютера. Размер экранного пикселя приблизительно 0,0018 дюйма.

Растровый рисунок похож на мозаику, в которой каждый элемент (пиксель) закрашен определенным цветом. Этот цвет закрепляется за определенным местом экрана. Перемещение фрагмента изображения "снимает" краску с электронного холста и разрушает рисунок.

Информация о текущем состоянии экрана хранится в памяти видеокарты. Информация может храниться и в памяти компьютера - в графическом файле данных.

Самыми близкими аналогами растровой графики является живопись, фотография.

Кодирование графической информации

Качество изображения определяется разрешающей способностью экрана и глубиной цвета.

Число цветов (К), воспроизводимых на экране дисплея, зависти от числа бит (N ), отводимых в видеопамяти под каждый пиксель:

K =2 N

Для получения богатой палитры цветов базовым цветам могут быть заданы различные интенсивности. Например, при глубине цвета в 24 бита на каждый из цветов выделяется по 8 бит (RGB ), т.е. для каждого из цветов возможны K = 28 = 256 уровней интенсивности. Один бит видеопамяти занимает информация об одном пикселе на черно-белом экране (без полутонов).

Величину N называют битовой глубиной.

Страница - раздел видеопамяти, вмещающий информацию об одном образе экрана (одной "картинке" на экране). В видеопамяти одновременно могут размещаться несколько страниц.

Если на экране с разрешающей способностью 800 х 600 высвечиваются только двухцветные изображения, то битовая глубина двухцветного изображения равна 1, а объем видеопамяти на одну страницу изображения равен 800 * 600 * 1 = 480000 бит = 60000 байт.

Для хранения двух страниц изображения при условии, что разрешающая способность дисплея равна 640 х 350 пикселей, а количество используемых цветов - 16 будет таким: 640 * 350 * 4 * 2 = 1792000 бит = 218,75 Кбайт

Количество используемых цветов - 16, это 2 4 , значит, битовая глубина цвета равна 4.

Векторная графика

В векторной графике изображение состоит из простых элементов, называемых примитивами: линий, окружностей, прямоугольников, закрашенных областей. Границы областей задаются кривыми.

Файл, отображающий векторное изображение, содержит начальные координаты и параметры примитивов – векторные команды.

Самым близким аналогом векторной графики является графическое представление математических функций. Например, для описания отрезка прямой достаточно указать координаты его концов, а окружность можно описать, задав координаты центра и радиус.

Информация о цвете объекта сохраняется как часть его описания, т.е. тоже в векторной команде.

Векторные команды сообщают устройству вывода о том, что необходимо нарисовать объект, используя заложенное число элементов-примитивов. Чем больше элементов используется, тем лучше этот объект выглядит.

Приложения для создания векторной графики широко используются в области дизайна, технического рисования, оформительских работ. Элементы векторной графики имеются также в текстовых процессорах. В этих программах одновременно с инструментами рисования и командами предусмотрено специальное программное обеспечение, формирующее векторные команды, соответствующие объектам, из которых состоит рисунок.

Файлы векторной графики могут содержать растровые объекты.

Достоинства векторной графики

  • Векторные изображения занимают относительно небольшой объем памяти.
  • Векторные объекты могут легко масштабироваться без потери качества
  • Недостатки векторной графики
  • Векторная графика не позволяет получать изображения фотографического качества.
  • Векторные изображения описываются тысячами команд. В процессе печати эти команды передаются устройству вывода (принтеру). Чаще всего изображение на бумаге выглядит не так как на экране монитора.

Фрактальная графика

Последней из рассматриваемых видов компьютерной графики - это фрактальная графика. Фрактальная графика является на сегодняшний день одним из самых быстро развивающихся перспективных видов компьютерной графики.

Математической основой фрактальной графики является фрактальная геометрия. Здесь в основу метода построения изображений положен принцип наследования от, так называемых, «родителей» геометрических свойств объектов-наследников.

Понятия фрактал , фрактальная геометрия и фрактальная графика, появившиеся в конце 70-х, сегодня прочно вошли в обиход математиков и компьютерных художников. Слово фрактал образовано от латинского fractus и в переводе означает «состоящий из фрагментов». Оно было предложено математиком Бенуа Мандель-Бротом в 1975 году для обозначения нерегулярных, но самоподобных структур, которыми он занимался.

Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому. Одним из основных свойств фракталов является самоподобие. Объект называют самоподобным, когда увеличенные части объекта походят на сам объект и друг на друга. Перефразируя это определение, можно сказать, что в простейшем случае небольшая часть фрактала содержит информацию обо всем фрактале.

В центре фрактальной фигуры находится её простейший элемент - равносторонний треугольник, который получил название «фрактальный». Затем, на среднем отрезке сторон строятся равносторонние треугольники со стороной, равной (1/3a) от стороны исходного фрактального треугольника. В свою очередь, на средних отрезках сторон полученных треугольников, являющихся объектами-наследниками первого поколения, выстраиваются треугольники-наследники второго поколения со стороной (1/9а) от стороны исходного треугольника.

Таким образом, мелкие элементы фрактального объекта повторяют свойства всего объекта. Полученный объект носит название «фрактальной фигуры». Процесс наследования можно продолжать до бесконечности. Таким образом, можно описать и такой графический элемент, как прямую.

Изменяя и комбинирую окраску фрактальных фигур можно моделировать образы живой и неживой природы (например, ветви дерева или снежинки), а также, составлять из полученных фигур «фрактальную композицию». Фрактальная графика, также как векторная и трёхмерная, является вычисляемой. Её главное отличие в том, что изображение строится по уравнению или системе уравнений. Поэтому в памяти компьютера для выполнения всех вычислений, ничего кроме формулы хранить не требуется.

Только изменив коэффициенты уравнения, можно получить совершенно другое изображение. Эта идея нашла использование в компьютерной графике благодаря компактности математического аппарата, необходимого для ее реализации. Так, с помощью нескольких математических коэффициентов можно задать линии и поверхности очень сложной формы.

Итак, базовым понятием для фрактальной компьютерной графики являются «Фрактальный треугольник». Затем идет «Фрактальная фигура», «Фрактальный объект»; «Фрактальная прямая»; «Фрактальная композиция»; «Объект-родитель» и «Объект наследник». Следует обратить Ваше внимание на то, что фрактальная компьютерная графика, как вид компьютерной графики двадцать первого века получила широкое распространение не так давно.

Её возможности трудно переоценить. Фрактальная компьютерная графика позволяет создавать абстрактные композиции, где можно реализовать такие композиционные приёмы как, горизонтали и вертикали, диагональные направления, симметрию и асимметрию и др. Сегодня немногие компьютерщики в нашей стране и за рубежом знают фрактальную графику. С чем можно сравнить фрактальное изображение? Ну, например, со сложной структурой кристалла, со снежинкой, элементы которой выстраивается в одну сложную структуру. Это свойство фрактального объекта может быть удачно использовано при составлении декоративной композиции или для создания орнамента. Сегодня разработаны алгоритмы синтеза коэффициентов фрактала, позволяющего воспроизвести копию любой картинки сколь угодно близкой к исходному оригиналу.

С точки зрения машинной графики фрактальная геометрия незаменима при генерации искусственных облаков, гор, поверхности моря. Фактически благодаря фрактальной графике найден способ эффективной реализации сложных неевклидовых объектов, образы которых весьма похожи на природные. Геометрические фракталы на экране компьютера - это узоры, построенные самим компьютером по заданной программе. Помимо фрактальной живописи существуют фрактальная анимация и фрактальная музыка.

Создатель фракталов - это художник, скульптор, фотограф, изобретатель и ученый в одном лице. Вы сами задаете форму рисунка математической формулой, исследуете сходимость процесса, варьируя его параметры, выбираете вид изображения и палитру цветов, то есть творите рисунок «с нуля». В этом одно из отличий фрактальных графических редакторов (и в частности - Painter) от прочих графических программ.

Например, в Adobe Photoshop изображение, как правило, «с нуля» не создается, а только обрабатывается. Другой самобытной особенностью фрактального графического редактора Painter (как и прочих фрактальных программ, например Art Dabbler) является то, что реальный художник, работающий без компьютера, никогда не достигнет с помощью кисти, карандаша и пера тех возможностей, которые заложены в Painter программистами.

Фрактальная графика , как и векторная, основана на математических вычислениях . Однако её базовым элементом является сама математическая формула , то есть никаких объектов в памяти компьютера не хранится и изображение строится исключительно по уравнениям либосистемам уравнений . Таким способом строят как простейшие регулярные структуры, так и сложные иллюстрации, имитирующие природные ландшафты и трехмерные объекты.

Определение . Фрактал - это объект, отдельные элементарные части которого повторяют (наследуют) свойства своих «родительских » структур.

Понятия фрактал и фрактальная геометрия (от лат. fractus - состоящий из фрагментов ) впервые были предложены в 1975 г. математиком Б.Мандельбротом для обозначения нерегулярных , но самоподобных структур . Рождение фрактальной геометрии связывают с выходом в 1977 г. его книги «Фрактальная геометрия природы», в которой были объединены в единую систему научные разработки учёных, работавших в этой области (Пуанкаре, Жюлиа, Кантор и др.). С точки зрения компьютерной графики фрактальная геометрия незаменима при задании линий и поверхностей достаточно сложной формы, а также при генерации объектов, образы которых весьма похожи на природные.

Одним из основных свойств фракталов является их самоподобие . В самом простом случае небольшая часть фрактала содержит информацию обо всём фрактале в целом. Существует большое разнообразие фракталов. Потенциально наиболее полезным их видом являются фракталы на основе системы итеративных функций (Iterated Function System – IFS ). Метод IFS , изобретённый Майклом Барнсли и его коллегами из Технологического института шт. Джорджия (США), применительно к построению фрактальных изображений базируется на самоподобии их отдельных элементов и заключается в моделировании всего рисунка несколькими меньшими его фрагментами . Специальные уравнения позволяют переносить, поворачивать и изменять масштаб отдельных участков изображения, служащих компоновочными блоками для остальной части картины в целом.

Самыми известными природными фрактальными объектами являются деревья , от каждой ветки которых ответвляются меньшие, похожие на нее, от тех - еще меньшие и так далее. Появление новых элементов меньшего масштаба происходит по достаточно простому алгоритму. Очевидно, что описать такой объект можно всего лишь несколькими математическими уравнениями. Фрактальными свойствами обладают также и многие другие природные объекты: снежинка при увеличении тоже оказывается фракталом, по фрактальным алгоритмам растут кристаллы, растения и т.д.

Посмотрим, как строится простейший фрактал - фрактальный треугольник, его еще называют «снежинка Коха » (рис. 8.2.). Используя простейший алгоритм, треугольники можно достраивать аналогичным образом до бесконечности, что приведёт к получению объекта любого уровня сложности. При этом в отличие от векторной графики, ничего кроме самих уравнений в памяти ком-пьютера хранить не нужно. Вся информация, необходимая для воспроизведения этого фрактала, будет занимать всего лишь несколько десятков байт. Возникает вопрос - а можно ли сжимать данные, подобрав для этого подходящий фрактальный алгоритм? Принципиально - можно, и в этом направлении в настоящее время ведутся активные исследования. Некоторые уже разработанные фрактальные алгоритмы позволяют сжимать определенные типы файлов в 30 раз и более.


8.6.Трехмерная (3D) графика.

Трехмерная графика нашла широкое применение в таких областях, как научные расчеты, инженерное проектирование, компьютерное моделирование физических объектов и т.п. В качестве примера рассмотрим наиболее сложный вариант трехмерного моделирования - создание подвижного изображения реального физического тела . В упрощенном виде для пространственного моделирования объекта требуется:

§ Спроектировать и создать виртуальный каркас скелет ») объекта, наиболее полно соответствующий его реальной форме;

§ Спроектировать и создать виртуальные материалы (текстуры ), по физическим свойствам визуализации похожие на реальные;

§ Наложить виртуальные материалы на различные части поверхности объекта (спроецировать текстуры на объект );

§ Настроить физические параметры пространства , в котором будет находиться объект, т.е. задать освещение, гравитацию, свойства атмосферы и т.д.;

§ Задать траекторию движения объекта;

§ Наложить поверхностные эффекты на итоговый анимационный сюжет.

Для создания реалистичной каркасной модели объекта используют геометрические примитивы (прямоуголь­ник, куб, шар, конус и прочие) и гладкие , так назы­ваемые сплайновые поверхности . В последнем случае вид поверхности определя­ется расположенной в пространстве сеткой опор­ных точек , каждой из которых присваивается коэф­фициент , задающий степень её влиянии на часть поверхности , расположенной вблизи опорной точки . От взаимного распо­ложения точек и величины коэффициентов зависит форма и гладкость поверх­ности в целом. Деформация объекта в общем случае обеспечивается перемещением отдельных контрольных точек каркаса , связанных с близлежащими опорными точками и влияющих на них в соответствии с удаленностью друг от друга. Специальный инструментарий позволяет обрабатывать примитивы, составляющие объект, как единое целое с учетом их взаимодействия на основе заданной физической модели.

После формирования «скелета » объекта необходимо покрыть его поверхность требуемыми материалами (текстурами). При этом осуществляется так называемая визуализация поверхности , т.е. расчет коэффициента её прозрачности, угла преломления лучей света на границе материала и окружающего пространства и т.д. Закраска поверхностей объекта осуществляется, как правило, метода­ми Гуро или Фонга,) представляющими собой специальные алгоритмы расчета и формирования цветовых оттенков отдельных частей этих поверхностей.

Из всех параметров пространства, в котором будет существовать создаваемый объект, с точки зрения визуализации самым важным является определение источников света . В трехмерной графике принято использовать виртуальные эквиваленты реальных физичес­ких световых источников, таких как, например, Солнце (удаленный неточечный источник ), электри­ческая лампочка (точечный источник ), естественная освещенность вне видимости Солнца и Луны (растворен­ный свет ), прожектор (направленный источник ).

После завершения конструирования и визуализации объекта приступают к его «оживлению », то есть заданию параметров движения. Компьютерная анимация базируется на ключевых кадрах изображения . В первом кадре объект выставляется в исходное положение. Через определенный промежуток (например, в пятом кадре) задается новая ориентация объекта и так далее до конечного положения. Промежуточные кадры вычисляются программно по специальному алгоритму. При этом происхо­дит не просто линейная аппроксимация, а плавное изменение положения опорных точек объекта в соответствии с заданными условиями, определяемыми законами взаимодействия объектов между собой, разрешенными плоскостями движения, предельными углами поворотов, величинами ускорений и скоростей и т.д. Такой подход называют методом инверсной кинематики движения . Он хорошо работает при моделировании различных механических устройств. В случае с имитацией живых объектов используют так называемые скелетные модели , когда создается некий каркас, подвижный в точках, характерных для моделируемого объекта. Движения этих точек просчитываются предыдущим методом, затем на каркас накладывается оболочка из смоделированных поверхностей и осуществляется их визуализация путем наложения текстур с учетом условий освещенности.

Наиболее совершенный метод анимации заключается в фиксации реальных движений физического объекта. Для этого на объекте закрепляют в контрольных точках источники света и снимают заданное движение на видео- или кинопленку. Затем координаты этих точек по кадрам переводят в компьютер и присваивают соответствующим опорным точкам каркасной модели . В результате движе­ния смоделированного объекта оказываются практически неотличимыми от движений живого прототипа.

Процесс расчета реалистичных изображений в компьютерной графике называют рендерингом (визуализацией ). Применение сложных математических моделей позволяет имитировать такие физи­ческие эффекты, как взрывы, дождь, огонь, дым, туман и т.д. Однако их применение в полном объеме требует достаточно больших вычислитель­ных ресурсов и поэтому в персональных компьютерах обычно реализуется лишь в упро­щенных вариантах. По завершении рендеринга компьютерную трехмерную анимацию используют либо как самостоятельный продукт, либо в качестве отдельных частей или кадров других продуктов.

Особую область трехмерного моделирования в режиме реального времени состав­ляют тренажеры технических средств - автомобилей, судов, летательных и кос­мических аппаратов. В них очень точно должны быть смоделированы технические параметры реальных объектов и свойства окружающей физической среды. В более простых вариантах, например при обучении вождению наземных транспортных средств, тре­нажеры могут быть реализованы и на персональных компьютерах.

Среди программных средств создания и обработки трехмерной графики для персональных компьютеров можно выделить три пакета:

§ 3D Studio Max (фирмаKinetix). Пакет считается полупрофессиональным, однако его ресурсов вполне хватает для разработки качественных трехмерных изображений объектов неживой природы. Его отличительными особенностями являются поддержка большинства существующих аппаратных ускорителей 3D -графики, мощные световые эффекты и большое число программных дополнений от сторонних фирм. Сравнительная нетребовательность к аппаратным ресурсам позволяет использовать 3D Studio Max даже на ПК среднего уровня. Вместе с тем по средствам моделирования и анимации он все же уступает более разви­тым современным программным средствам.

§ Softimage 3D (фирмаMicrosoft). Программа изначально создавалась для специализированных графических станций и лишь сравнительно недавно была конвертирована под операционную систему Windows NT. Её отличают богатые возможности моделирования, наличие большого числа регулируемых физических и кинематографических параметров, качественный и достаточно быстрый модуль для рендеринга и множество программных дополнений, значительно расширяющих функции пакета. Однако на платформе IBM PC Softimage 3D выглядит несколько тяжеловато и требует достаточно мощных аппаратных ресурсов.

§ Maya (фирмыAlias, Wavefront, TDI). Один из наиболее передовых пакетов в классе средств создания и обработки трехмерной графики для персональных компьютеров с точки зрения интерфейса и функциональных возможностей. Существует в вариантах для различных операционных систем, в том числе и Windows NT. Весь инструментарий Maya сведен в четыре группы: анимация (Animation ), моделирование (Modeling ), физическое моделирование (Dynamic ) и визуализация (Rendering ). Пакет имеет модульное построение и включает в себя программные блоки, обеспечивающие имитацию физических твердых тел, захват движения, обработку звука, обработку вирту­альных моделей методами, характерными для реальной работы скульпторов и художников, а также сопряжение реальных натурных съемок с компьютерной анимацией и т.д.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то