Построение ачх и фчх. Амплитудно-частотная и фазо-частотная характеристики (АЧХ и ФЧХ)

Частотными характеристиками называются формулы и графики, характеризующие реакцию звена на гармоническое входное воздействие в установившемся режиме, т.е. вынужденные синусоидальные колебания звена.

Если на вход линейного звена подать гармоническое воздействие

u(t)=U 0 sin(wt),

где U 0 - амплитуда,

w - угловая частота, имеющая размерность [рад/с] или ,

то, как следует из необходимых и достаточных условий линейности, на выходе звена в установившемся режиме будет также гармоническая функция той же частоты, но, в общем случае, другой амплитуды U 0 и сдвинутая по фазе относительно входной величины на угол φ

x(t)=X 0 sin(wt+φ).

Связь между выходной гармоникой и входной устанавливается с помощью частотной передаточной функции звена W(jw).

1. Частотная передаточная функция является важнейшей динамической характеристикой звена и представляет собой отношение изображений по Фурье выходного и входного сигналов при нулевых начальных условиях и равных нулю воздействиях на остальных входах:

Из сравнения преобразований Фурье и Лапласа следует, что частотную передаточную функцию звена легко получить из его передаточной функции путем замены p на jw, т.е.

(3.7)

Частотная передаточная функция W(jw), как видно, представляет собой комплексное число, которое можно записать как в полярной, так и декартовой системах координат:

W(jw) = A(w) = U(w) + jV(w), (3.8)

где А(w) - модуль или амплитуда частотной передаточной функции, представляющий собой отношение амплитуды выходной величины к амплитуде входной, т.е. коэффициент усиления звена k на частоте w

А(w) = | W(jw) | = mod W(jw) = ; (3.9)

φ(w) - аргумент или фаза частотной передаточной функции, показывает фазовый сдвиг выходной гармоники по отношению к входной на частоте w

φ(w) = arg W(jw); (3.10)

U(w) - вещественная составляющая частотной передаточной функции

U(w) = Re W(jw); (3.11)

V(w) - мнимая составляющая частотной передаточной функции

V(w) = Im W(jw). (3.12)

Соотношения

и

связывают между собой составляющие частотной передаточной функции.

Таким образом, частотная передаточная функция, определяющая реакцию звена на гармонические колебания всех возможных частот, позволяет, пользуясь принципом суперпозиции, найти реакцию линейного звена на произвольное воздействие.

Выражение (3.8) представляет амплитудно-фазовую частотную характеристику звена. Выражения (3.9) и (3.10) называются соответственно амплитудной частотной характеристикой звена и фазовой частотной характеристикой звена, а выражения (3.11) и (3.12) - вещественной частотной характеристикой и мнимой частотной характеристикой звена.

Для наглядного представления частотных свойств звена частотные характеристики отображают графически.

2. Амплитудно-фазовая частотная характеристика (АФЧХ). Строится на комплексной плоскости и представляет собой геометрическое место концов векторов (годографов), соответствующих частотной передаточной функции W(jw) при изменении частоты от нуля до бесконечности (рис.3.3). Для каждой частоты w на комплексной плоскости наносится точка, полученные точки соединяются затем плавной кривой. АФЧХ можно строить как в декартовых координатах (U, V), так и в полярных (A, φ).

Рис. 3.3. Амплитудно-фазовая частотная характеристика

АФЧХ строится как для положительных, так и для отрицательных частот. При замене в W(jw) w на -w получается сопряженная комплексная величина. Поэтому АФЧХ для отрицательных частот является зеркальным отображением относительно вещественной оси АФЧХ для положительных частот. На рис.3.3 АФЧХ для отрицательных частот показана пунктирной линией.

Длина вектора, проведенного из начала координат в точку АФЧХ, соответствующую выбранной частоте w, равна А(w), а угол между вектором и положительным направлением вещественной оси равен φ(w).

3. Амплитудная частотная характеристика (АЧХ). Показывает, как пропускает звено сигнал различной частоты, иначе, представляет собой коэффициент изменения амплитуды гармонических колебаний при прохождении через звено (рис. 3.4).

Рис. 3.4. Амплитудная частотная характеристика

где w р - резонансная частота, т.е. частота, на которой амплитудная частотная характеристика достигает максимума, иначе, на этой частоте звено имеет максимальный коэффициент усиления;

w с - частота среза, частота, на которой амплитудная частотная характеристика, уменьшаясь, принимает значение, равное единице, и при дальнейшем повышении частоты остается меньше единицы;

w п - частота пропускания, частота, на которой амплитудная частотная характеристика, уменьшаясь, принимает значение, равное 0,707, и при дальнейшем повышении частоты не увеличивается;

Dw п =2w п - полоса пропускания, диапазон частот гармонических колебаний, пропускаемых звеном без заметного ослабления.

4. Фазовая частотная характеристика (ФЧХ). Показывает фазовые сдвиги, вносимые звеном на различных частотах (рис.3.5).

Рис. 3.5. Фазовая частотная характеристика

5. Вещественная частотная характеристика (ВЧХ). Представляет собой зависимость вещественной составляющей частотной передаточной функции от частоты (рис. 3.6).

Рис. 3.6. Вещественная частотная характеристика

Мнимая частотная характеристика (МЧХ). Представляет собой зависимость мнимой составляющей частотной передаточной функции от частоты (рис.3.7).

Мнимая частотная характеристика

6. Логарифмические частотные характеристики (ЛЧХ). На практике чаще всего амплитудную и фазовую частотные характеристики изображают в логарифмическом масштабе (рис. 3.8).

Рис. 3.8. Логарифмические частотные характеристики

При построении логарифмической амплитудной частотной характеристики (ЛАХ) по оси ординат откладывают величину

L(w) = 20 lg A(w) = 20 lg|W(jw)|. (3.13)

Эта величина выражается в децибелах [дб]. Бел представляет собой логарифмическую единицу, соответствующую десятикратному увеличению мощности. Один бел соответствует увеличению мощности в 10 раз, 2 бела - в 100 раз и т.д. Децибел равен одной десятой части бела. Так как А(w) представляет собой отношение не мощностей, а амплитуд, то увеличение этого отношения в десять раз соответствует двум белам или двадцати децибелам. Поэтому в правой части (3.13) стоит множитель 20. По оси абсцисс откладывается частота w в логарифмическом масштабе lg(w). Равномерной единицей на оси абсцисс является декада [дек] - любой отрезок, на котором значение частоты w увеличивается в десять раз. Точка пересечения ЛАХ с осью абсцисс соответствует частоте среза w с. Верхняя полуплоскость ЛАХ соответствует значениям А>1 (усиление амплитуды), а нижняя полуплоскость - значениям А<1 (ослабление амплитуды).

При построении логарифмической фазовой частотной характеристики (ЛФХ) отсчет углов φ(w) = argW(jw) идет по оси ординат в обычном масштабе в угловых градусах.

Главным достоинством логарифмических частотных характеристик является возможность построения их во многих случаях практически без вычислительной работы.

Все рассмотренные виды динамических характеристик звеньев (передаточная функция, дифференциальное уравнение, весовая функция, переходная функция, амплитудно-фазовая частотная характеристика) связаны между собой. Поэтому все они эквивалентны друг другу в определении динамических свойств звена системы управления.

Амплитудно-частотная (АЧХ) и фазо-частотная (ФЧХ) характеристики одного каскада ОУ

Любой многокаскадный усилитель на высоких частотах можно представить в виде ряда генераторов сигнала KU вх, нагруженных на соответствующие эквивалентные интегрирующие RC-цепи. Количество таких цепей равно числу отдельных каскадов усиления.

Амплитудно-частотная и фазо-частотная характеристики одного такого каскада описываются следующими выражениями:

.

Если выполняется обычное для ОУ неравенство R н >>R вых, то

.

Графическая зависимость от частоты модуля коэффициента передачи напряжения ОУ и сдвига фазы выходного сигнала относительно входного приведена на рис. 78.

Рис. 78. АЧХ и ФЧХ одного каскада ОУ

АЧХ и ФЧХ усилителя обычно стоят в логарифмическом масштабе. На частоте f гр, где резистивное и емкостное сопротивления равны аппроксимированная АЧХ претерпевает излом. На частоте излома усиление усилителя падает на 3 дБ. Начиная с f гр при увеличении частоты в 10 раз (на декаду) во сколько же раз (т. е. на 20 дБ) уменьшается коэффициент усиления по напряжения каскада. Таким образом скорость спада АЧХ за частотой излома составляет –20 дБ/дек или –6 дБ/октаву (октаве соответствует изменение частоты в два раза).

Фазо-частотная характеристика аппроксимируется тремя отрезками прямых, причем наклон прямой составляет – 45° /дек, а сопряжение асимптот происходит на частотах 0,1 f гр и 10 f гр при максимальной погрешности аппроксимации 5,7° . На частоте f гр,отставание фазы выходного сигнала по отношению ко входному составляет 45° . На частоте f т усиление усилителя уменьшается до 0 дБ или единицы, а фазовый сдвиг достигает –90° .

Часто ФЧХ используют для оценки фазовых искажений формы сложного сигнала, вызываемых неодинаковой задержкой во времени его отдельных гармонических составляющих при их прохождении по цепи

Определение ФЧХ

  • В теории управления ФЧХ звена определяется из равенства её тангенса отношению мнимой части АФЧХ к реальной:

См. также

Wikimedia Foundation . 2010 .

  • ФХФ
  • ФТС

Смотреть что такое "ФЧХ" в других словарях:

    ФЧХ - фазочастотная характеристика Словарь: С. Фадеев. Словарь сокращений современного русского языка. С. Пб.: Политехника, 1997. 527 с … Словарь сокращений и аббревиатур

    ФЧХ - геофиз. фазово частотная характеристика phase frequency characteristic/response … Универсальный дополнительный практический толковый словарь И. Мостицкого

    ФЧХ - фазо частотная характеристика … Словарь сокращений русского языка

    фазочастотная характеристика (ФЧХ) конструкции - Зависимость от частоты фазового сдвига колебаний контрольной точки конструкции изделия относительно колебаний его основания в установившемся режиме колебаний. [ГОСТ 30546.1 98] Тематики сейсмостойкость … Справочник технического переводчика

    Фазочастотная характеристика (ФЧХ) конструкции - 3.18 Фазочастотная характеристика (ФЧХ) конструкции зависимость от частоты фазового сдвига колебаний контрольной точки конструкции изделия относительно колебаний его основания в установившемся режиме колебаний. Источник …

    фазочастотная характеристика конструкции (ФЧХ) - 3.21 фазочастотная характеристика конструкции (ФЧХ): Зависимость от частоты фазового сдвига колебаний контрольной точки конструкции изделия относительно колебаний его основания в установившемся режиме колебаний. Источник … Словарь-справочник терминов нормативно-технической документации

    Фазочастотная характеристика - (ФЧХ) характеристика линейной электрической цепи, выражающая зависимость сдвига по фазе между гармоническими колебаниями на выходе и входе этой цепи от частоты гармонических колебаний на входе. ФЧХ используется главным образом для оценки… … Большая советская энциклопедия

    Диаграмма Боде

    ЛАХ - ЛАФЧХ фильтра Баттерворта первого порядка Логарифмическая амплитудно фазовая частотная характеристика (ЛАФЧХ) представление частотного отклика линейной стационарной системы в логарифмическом масштабе. ЛАФЧХ строится в виде двух графиков:… … Википедия

    ЛАЧХ - ЛАФЧХ фильтра Баттерворта первого порядка Логарифмическая амплитудно фазовая частотная характеристика (ЛАФЧХ) представление частотного отклика линейной стационарной системы в логарифмическом масштабе. ЛАФЧХ строится в виде двух графиков:… … Википедия

Книги

  • Электронная лаборатория на IBM PC. Инструментальные средства и моделирование элементов практических схем , В. И. Карлащук. Книга является приложением к одноименному двухтомнику 6-го издания. В ней рассмотрены возможности использования аудио карты IBM PC (на примере SBlive! 5. 1 компании Creative Technology Ltd.)…

3.3 Примеры расчета

Для звеньев, заданных передаточными функциями

, ,

построить частотные характеристики при различных значениях постоянных времени и коэффициента усиления.

Пример 1. Рассмотрим реальное дифференцирующее звено.

1. Передаточная функция реального дифференцирующего звена: , откуда

,

откуда .

Получили: .

3. Подставляя значения k = 2, T = 3 , строим амплитудно-фазовуючастотнуюхарактеристикупри w , изменяющемся от 0

до ¥ (рис. 2).

Рисунок 2. Амплитудно-фазовые частотные характеристики

5. Задаваясь значениями w из интервала от 0 до 6, с шагом 0,1, строим амплитудно-частотную характеристику (рис. 3).

Рисунок 3. Амплитудно-частотные характеристики

реального дифференцирующего звена

6. Фазовая частотная характеристика имеет вид:

7. Задаваясь значениями w из интервала от 0 до 6, с шагом 0,1, строим фазово-частотную характеристику рис. 4.

8. Изменяя значение k = 4 , при прежнем T = 3 , строим w , изменяющемся от 0 до ¥ (см. рис. 2).

9. Амплитудная частотная характеристика при w от 0 до 6, с шагом 0,1 рис. 3.

10. Так как фазовая частотная характеристика имеет вид: , т.е. не зависит от коэффициента усиления, то график фазово-частотной характеристики при изменении коэффициента усиления меняться не будет (см. рис. 4).

Рисунок 4. Фазовые частотные характеристики

реального дифференцирующего звена

11. Изменяя значение T = 1 , при первоначальном , k = 2 строим амплитудно-фазовую частотную характеристику при w , изменяющемся от 0 до ¥ (см. рис. 2).

12. Амплитудная частотная характеристика при w от 0 до 6, с шагом 0,1 (см. рис. 3).

13. Фазово-частотная характеристика при w от 0 до 6, с шагом 0,1 (см. рис. 4).

Пример 2. Рассмотрим апериодическое звено второго порядка.

1. Передаточная функция апериодического звена второго порядка: . Заменив р на , получим: амплитудно-фазовая частотная характеристика.

2. Освобождаемся от иррациональности в знаменателе. Для этого числитель и знаменатель домножаем на , получим:

откуда .

Получили:

, .

3. Подставляя значения k = 2, T 1 = 3, T 2 = 5 , строим амплитудно-фазовую частотную характеристику при w , изменяющемся от 0 до ¥ (рис. 5).

Рисунок 5. Амплитудно-фазовые частотные характеристики

апериодического звена второго порядка

4. Амплитудная частотная характеристика:


Задаваясь значениями w из интервала от 0 до 7 с шагом 0,1, строим амплитудно-частотную характеристику, (см. рис. 7).

5. Фазовая частотная характеристика имеет вид:

Задаваясь значениями w из интервала от 0 до 7 с шагом 0,1, строим фазово-частотную характеристику (рис. 6).

Рисунок 6. Фазово-частотные характеристики

апериодического звена второго порядка

Изменяя значение k = 4, при прежнем T 1 = 3, T 2 = 5, строим амплитудно-фазо-частотную характеристику при w , изменяющемся от 0 до ¥ (см. рис. 5).

6. Амплитудно-частотная характеристика при w от 0 до 7 с шагом 0,1 (рис. 7).

Рисунок 7. Амплитудно-частотные характеристики

апериодического звена второго порядка

7. Так как фазовая частотная характеристика имеет вид:

т.е. не зависит от коэффициента усиления, то фазово-частотная характеристика не изменится (см. рис. 6).

8. Изменяя значения T 1 = 1, T 2 = 2 ,припервоначальном , k = 2 строим амплитудно-фазо-частотную характеристику при w , изменяющемся от 0 до ¥ (см. рис. 5).

9. Амплитудная частотная характеристика при и задания

1. Назовите динамические характеристики объекта?

2. В каких формах может быть представлена частотная передаточная функция?

3. Как представляется частотная передаточная функции на комплексной плоскости?

4. Дать определение амплитудно-частотной характеристике.

5. Дать определение фазовой частотной характеристике.

6. Каков алгоритм построения частотных характеристик?

H() – частотно-зависимая комплексная функция. Ее модуль называют амплитудно-частотной характеристикой (АЧХ), а арктангенс отношения мнимой и вещественной частей – фазо-частотной характеристикой (ФЧХ). На векторной диаграмме представлена геометрическая интерпретация передаточной функции. С ее помощью легко понять, как получаются выражения для АЧХ и ФЧХ.

Поскольку выражения для АЧХ и ФЧХ содержат частотно-зависимые компоненты, естественно, что обе эти характеристики частотно-зависимые (отсюда их названия). По сути, именно эту особенность мы и используем для фильтрации.

Рассмотрим выражения для АЧХ в двух крайних точках. При частоте = 0 на входе имеем постоянный ток, значение АЧХ стремится к нулю вследствие большой величины знаменателя. В другой крайней точке частотастремится к бесконечности, а значение АЧХ приближается к единице. Это дает нам представление о поведении АЧХ как функции частоты.

Еще одной важной точкой на графике АЧХ является «частота среза». Она задается как точка, в которой значение АЧХ падает до (1/
) от своей величины в полосе пропускания, и обычно называется «точкой 3 дБ». Ее можно рассчитать, используя выражение для АЧХ, после возведения в квадрат обеих частей равенства. Частота срезаf c = 1/2RC указывает на точку перегиба в ФЧХ фильтра. У ФВЧ, за частотой среза практически отсутствует затухание входного сигнала.

ФЧХ можно рассчитать по соответствующему выражению. ФЧХ начинается с 90-градусным опережением на низких частотах и падает до 45 о на частоте среза. За частотой среза и далее, в направлении более высоких частот, сдвиг фазы продолжает падать. Во всех реальных приложениях нас интересует поведение ФЧХ в полосе пропускания. В данном конкретном случае ФЧХ в полосе пропускания изменяется от 45 о (опережение фазы) до 0 о. Возможно, что это отвечает требованиям для ряда приложений, например таких, как низкокачественная запись речи.

      1. Фильтр нижних частот

Простой ФНЧ представляет собой RC-цепочку, состоящую из конденсатора и резистора. Характеристики ФНЧ очень похожи на характеристики ФВЧ, который мы только что рассмотрели. Единственная разница заключается в том, что они повернуты по частоте в обратном направлении (реверсируются), как и ожидалось. АЧХ опускается ниже единицы за частотой среза. Фаза выходного сигнала отстает от фазы входного сигнала на 45 о на частоте среза, и это отставание возрастает до 90 о на более высоких частотах.

Мы познакомились с двумя очень простыми фильтрами. Теперь мы знаем, что сигнал ослабляется на определенных частотах, а фаза выходного сигнала изменяется с частотой. Но как убедиться в том, что характеристики фильтра отвечают нашим целям? Что является критерием при сравнении характеристик фильтров?

Теперь определимся с терминологией и сформулируем некоторые требования к характеристикам фильтров.

      1. Ачх в дБ и частота в декадах

Диапазон возможных чисел будет больше, а количество нулей в записи числа меньше, если представлять числа в логарифмическом масштабе. Традиционно АЧХ фильтров представляется в децибелах (дБ). Децибел определяется следующим образом: АЧХ (дБ) = 20 lg (АЧХ).

Декада – это единица измерения, используемая для частоты, которая, аналогично децибелам, позволяет охватить больший диапазон частот нетривиальным способом. Например, спад 20 дБ/декада означает, что затухание фильтра увеличивается на 20 дБ за каждую декаду частоты ) .

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то