Применение циклических кодов и приема со стиранием для цифровых каналов связи. Способ моделирования канала связи

Для того чтобы дать математическое описание канала, необходимо и достаточно указать множество сигналов, которые могут быть поданы на его вход, и для любого допустимого входного сигнала задать случайный процесс (сигнал) на выходе канала. Задание процесса понимается в том смысле, как это было определено

в § 2.1, и сводится к заданию в той или иной форме распределения вероятностей.

Точное математическое описание любого реального канала обычно оказывается весьма сложным. Вместо этого пользуются упрощенными математическими моделями, которые позволяют выявить все важнейшие закономерности реального канала, если при построении модели учтены наиболее существенные особенности канала и отброшены второстепенные детали, мало влияющие на ход связи.

Рассмотрим наиболее простые и широко используемые математические модели каналов, начав с непрерывных каналов, поскольку они во многом предопределяют и характер дискретных каналов.

Идеальный канал без помех представляет собой линейную цепь с постоянной передаточной функцией, обычно сосредоточенной в ограниченной полосе частот. Допустимы любые входные сигналы, спектр которых лежит в определенной полосе частот и имеющие ограниченную среднюю мощность (либо пиковую мощность Рпик). Эти ограничения характерны для всех непрерывных каналов, и в дальнейшем они оговариваться не будут. Заметим, что если мощность сигнала не ограничивать, но считать конечной, то множество допустимых сигналов образует векторное пространство, конечномерное (при определенных ограничениях на длительность и ширину спектра) либо бесконечномерное (при более слабых ограничениях). В идеальном канале выходной сигнал при заданном входном оказывается детерминированным. Эта модель иногда используется для описания кабельных каналов. Однако, строго говоря, она непригодна для реальных каналов, в которых неизбежно присутствуют, хотя бы и очень слабые, аддитивные помехи.

Канал с аддитивным гауссовским шумом, в котором сигнал на выходе

где входной сигнал; постоянные; гауссовский аддитивный шум с нулевым математическим ожиданием и заданной корреляционной функцией. Чаще всего рассматривается белый шум либо квазибелый (с равномерной спектральной плотностью в полосе спектра сигнала

Обычно запаздывание не учитывают, что соответствует изменению начала отсчета времени на выходе канала.

Некоторое усложнение этой модели получается, если коэффициент передачи и запаздывание считать известными функциями времени:

Такая модель удовлетворительно описывает многие проводные каналы, радиоканалы при связи в пределах прямой видимости, а

также радиоканалы с медленными общими замираниями, при которых можно надежно предсказать значения

Канал с неопределенной фазой сигнала отличается от предыдущего тем, что в нем запаздывание является случайной величиной. Для узкополосных сигналов, с учетом (2.69) и (3.2), выражение (3.29) при постоянном и случайных можно представить в виде

где преобразование Гильберта от случайная начальная фаза. Распределение вероятностей предполагается заданным, чаще всего его задают равномерным на интервале от 0 до Эта модель удовлетворительно описывает те же каналы, что и предыдущая, если фаза сигнала в них флуктуирует. Такая флуктуация вызывается небольшими изменениями протяженности канала, свойств среды, в которой проходит сигнал, а также фазовой нестабильностью опорных генераторов.

Однолучевой гауссовский канал с общими замираниями (флуктуациями амплитуд и фаз сигнала) также описывается формулой (3.30), но множитель К, как и фаза считаются случайными процессами. Иными словами, случайными будут квадратурные компоненты

При изменении квадратурных компонент во времени принимаемое колебание

Как отмечалось на с. 94, одномерное распределение коэффициента передачи может быть рэлеевским (3.25) или обобщенным рэлеевским (3.26). Такие каналы называют соответственно каналами с рэлеевскими или с обобщенными рэлеевскими замираниями. В более общем случае имеет четырехпараметрическое распределение . Такую модель называют обобщенной гауссовской. Модель однолучевого канала с замираниями достаточно хорошо описывает многие каналы радиосвязи в различных диапазонах волн, а также некоторые другие каналы.

Линейный канал со случайной передаточной функцией и гауссовским шумом представляет собой дальнейшее обобщение. В талом канале выходное колебание выражается через входной сигнал и случайную импульсную реакцию канала

Эта модель достаточно универсальна как для проводной, так и для радиосвязи и описывает каналы с рассеянием во времени по частоте. Часто рассеянию во времени канала можно приписать дискретный характер (модель многолучевого канала) и вместо (3.33) пользоваться представлением

где число лучей в канале; квадратурные компоненты передаточной функции канала для луча, которые в пределах спектра узкополосного сигнала практически не зависят от со.

Канал с рассеянием времени и по частоте задан полностью, если помимо корреляционной функций шума задана статистика случайной импульсной реакции канала (или передаточной функции или статистика квадратурных компонент по всем лучам. В зависимости от значений входящих сюда параметров в таком канале могут наблюдаться селективные замирания и эхо-сигналы.

Каналы со сложной аддитивной помехой (флуктуационной, сосредоточенной, импульсной) описываются любой из предыдущих моделей с добавлением дополнительных компонент аддитивной помехи. Их полное описание требует задания вероятностных характеристик всех компонент аддитивного шума, а также параметров канала. Эти модели наиболее полно отображают реальные каналы связи, однако редко используются в анализе ввиду их сложности.

Переходя к моделям дискретного канала, полезно напомнить, что в нем всегда содержится непрерывный канал, а также модем. Последний можно рассматривать как устройство, преобразующее непрерывный канал в дискретный. Поэтому, в принципе, можно вывести математическую модель дискретного канала из моделей непрерывного канала и модема. Такой подход часто является плодотворным, однако он приводит к довольно сложным моделям.

Рассмотрим простые модели дискретного канала, при построении которых свойства непрерывного канала и модема не учитывались. Следует, однако, помнить, что при проектировании системы связи имеется возможность варьировать в довольно широких пределах модель дискретного канала при заданной модели непрерывного канала путем изменения модема.

Модель дискретного канала содержит задание множества возможных сигналов на его входе и распределение условных вероятностей выходного сигнала при заданном входном. Здесь входным и выходным сигналами являются последовательности кодовых символов. Поэтому для определения возможных входных сигналов достаточно указать число различных символов (основание кода), а также длительность передачи каждого символа. Будем считать, что значение одинаково для всех символов, что выполняется в большинстве современных каналов. Величина определяет количество символов, передаваемых в единицу времени. Как указывалось в § 1.5, она называется технической скоростью и измеряется в бодах. Каждый символ, поступивший на вход канала, вызывает появление одного символа на выходе, так что техническая скорость на входе и выходе канала одинакова.

В общем случае для любого должна быть указана вероятность того, что при подаче на вход канала любой заданной последовательности кодовых символов на выходе появится некоторая реализация случайной последовательности Кодовые символы обозначим числами от 0 до что позволит производить над ними арифметические операции. При этом все -последова-тельности (векторы), количество которых равно образуют -мерное конечное векторное пространство, если «сложение» понимать как поразрядное суммирование по модулю и аналогично определить умножение на скаляр (целое число). Для частного случая такое пространство было рассмотрено в § 2.6.

Введем еще одно полезное определение. Будем называть вектором ошибки поразрядную разность (разумеется, по модулю между принятым и переданным векторами. Это значит, что прохождение дискретного сигнала через канал можно рассматривать как сложение входного вектора с вектором ошибки. Вектор ошибки играет в дискретном канале примерно ту же роль, что и помеха в непрерывном канале. Таким образом, для любой модели дискретного канала можно записать, пользуясь сложением в векторном пространстве (поразрядным, по модулю

где случайные последовательности из символов на входе и выходе канала; случайный вектор ошибки, который в общем случае зависит от Различные модели отличаются распределением вероятностей вектора Смысл вектора ошибки особенно прост в случае двоичных каналов , когда его компоненты принимают значения 0 и 1. Всякая единица в векторе ошибок означает, что в соответствующем месте передаваемой последовательности символ принят ошибочно, а всякий нуль означает безошибочный прием символа. Количество ненулевых символов в векторе ошибок называется его весом. Образио говоря модем, осуществляющий переход от непрерывного канала к дискретному, преобразует помехи и искажения непрерывного канала в поток ошибок.

Перечислим наиболее важные и достаточно простые модели дискретных каналов.

Симметричный канал без памяти определяется как дискретный канал, в котором каждый переданный кодовый символ может быть принят ошибочно с фиксированной вероятностью и правильно с вероятностью причем в случае ошибки вместо переданного символа может быть с равной вероятностью принят любой другой символ. Таким образом, вероятность того, что принят символ если был передан равна

Термин «без памяти» означает, что вероятность ошибочного приема символа не зависит от предыстории, т. е. от того, какие символы передавались до него и как они были приняты. В дальнейшем, для сокращения, вместо «вероятность ошибочного приема символа» будем говорить «вероятность ошибки».

Очевидно, что вероятность любого -мерного вектора ошибки в таком канале

где I - количество ненулевых символов в векторе ошибки (вес вектора ошибки). Вероятность того, что произошло I каких угодно ошибок, расположенных как угодно на протяжении последовательности длины определяется формулой Бернулли

где биномиальный коэффициент, равный числу различных сочетаний I ошибок в блоке длиной

Эту модель называют также биномиальным каналом. Она удовлетворительно описывает канал, возникающий при определенном выборе модема, если в непрерывном канале отсутствуют замирания, а аддитивный шум белый (или, по крайней мере, квазибелый). Вероятности переходов в двоичном симметричном канале схематически показаны в виде графа на рис. 3.3.

Рис. 3.3. Переходные вероятности в двоичном симметричном канале

Рис. 3.4. Переходные вероятности в двоичном симметричном канале со стиранием

Рис. 3.5. Переходные вероятности в двоичном несимметричном канале

Симметричный канал без памяти со стиранием отличается от предыдущего тем, что алфавит на выходе канала содержит дополнительный символ, обозначаемый знаком Этот символ появляется тогда, когда 1-я решающая схема (демодулятор) не может надежно опознать переданный символ. Вероятность такого отказа от решения или стирания символа в данной модели постоянна и не зависит от передаваемого

символа. За счет введения стирания удается значительно снизить вероятность ошибки, иногда ее даже считают равной нулю. На рис. 3.4 схематически показаны вероятности переходов в такой модели.

Несимметричный канал без памяти характеризуется, как и предыдущие модели, тем, что ошибки возникают в нем независимо друг от друга, однако вероятности ошибок зависят от того, какой символ передается. Так, в двоичном несимметричном канале вероятность приема символа «1» при передаче символа «0» не равна вероятности приема «0» при передаче «1» (рис. 3.5). В этой модели вероятность вектора ошибки зависит от того, какая последовательность символов передается.

Марковский канал представляет собой простейшую модель дискретного канала с памятью. В ней вероятность ошибки образует простую цепь Маркова, т. е. зависит от того, правильно или ошибочно принят предыдущий символ, но не зависит от того, какой символ передается.

Такой канал, например, возникает, если в непрерывном канале с гауссовским шумом (с определенной или неопределенной фазой) используется относительная фазовая модуляция (см. ниже, § 4.5).

Канал с аддитивным дискретным шумом является обобщением моделей симметричных каналов. В такой модели вероятность вектора ошибки не зависит от передаваемой последовательности. Вероятность каждого вектора ошибки считается заданной и, вообще говоря, не определяется его весом. Во многих каналах из двух векторов с одинаковым весом более вероятным оказывается такой, в котором единицы расположены близко друг к другу, т. е. имеется тенденция к группированию ошибок.

Частным случаем такого канала является канал с переменным параметром (КПП). В этой модели вероятность ошибки для каждого символа является функцией некоторого параметра представляющего случайную последовательность, дискретную или непрерывную, с известными распределениями вероятностей, в частности с известной корреляционной функцией. Параметр может быть скалярным или векторным. Можно сказать, что определяет состояние канала. Такая модель имеет много разновидностей. Одной из них является модель Гильберта, в которой принимает лишь два значения - а вероятность ошибки при равна нулю, а при равна 0,5. Заданы вероятности переходов из состояния и наоборот. В таком канале все ошибки происходят при и поэтому очень тесно группируются. Существуют и более сложные модели КПП, например модель Попова - Турина. Они изучаются в специальных курсах. Память в КПП определяется интервалом корреляции параметра

Канал с неаддитивным шумом и с памятью. Канал с межсимвольной интерференцией. Вероятность ошибки в нем зависит от передаваемых символов, как и в модели несимметричного канала без памяти, но не от того (или не только от того) символа, для которого определяется вероятность ошибки, а от символов, которые передавались до него.

Кафедра «Электрическая связь»

Отчёт по лабораторной работе №1

Моделирование и исследование процессов кодирования и декодирования циклических кодов

Работы выполнил
студенты группы АТк-404
МАВРИН А.М.


1. Исходные данные

Вариант 15

В системе передачи данных имеется 15 объектов на каждой из 63 станций. Канал передачи информации – односторонний с независимыми ошибками.

2. Цель работы

1. Определить параметры циклического несистематического (n,k) кода.

2. Проверить заданный производящий многочлен на соответствие выбранному коду (три условия).

3. Закодировать информационную комбинацию в несистематическую кодовую комбинацию .

4. Построить схему кодирования и составить таблицу состояний для иллюстрации работы этой схемы.

5. Определить теоретически синдром ошибки.

6. Построить схему генератора синдромов.

7. По таблице состояний для этой схемы определить синдром ошибки.

8. Исказить кодовую комбинацию на один или два элемента (в зависимости от количества ошибок по заданию) и показать, на каком такте произойдёт исправление ошибки (по таблице состояний).

3. Выполнение работы

3.1. Определение параметров циклического кода

3.2. Проверка производящего полинома на соответствие выбранному коду

а) (n – k ) = 4 (высшая степень полинома, верно )

4. Кодирование

4.1. Построение схемы кодера

4.2. Уравнения функционирования

4.3. Таблица, иллюстрирующая схему работы кодера

Таблица 1

Для аналитического решения задач по определению эффективности систем связи требуется применение математических моделей ДК. Такие модели должны описывать некоторые закономерности потоков ошибок. Модель канала должна рассматриваться как математическая основа позволяющая создать применяемые на практике методы расчета параметров системы связи.

Поэтому естественно предъявить к математическим моделям ряд требований:

    Соответствие закономерностей распределения ошибок, получаемых при использовании модели, действительным закономерностям, наблюдаемым в реальных каналах.

    Возможность создания на основе данной модели методов расчета параметров систем связи, точность которых удовлетворяла бы требованиям инженерной практики.

    Минимальное количество параметров, используемых при описании потоков ошибок в модели. Простота экспериментальных измерений этих параметров на реальных каналах связи.

В настоящее время разработано большое количество моделей, описывающих ДКС. Рассмотрим наиболее характерные из этих моделей.

2.5.1 Модель канала с независимыми ошибками

Данная модель разработана для симметричного ДКС без памяти, т.е. для потока независимых ошибок. В этом случае для описания ДКС достаточно знать единственный параметр − р 0 − вероятность появления ошибки на е.э.

Пусть как и ранее вероятность ошибочного приема е.э. равна р 0 , тогда вероятность правильного приема этого е.э. равна 1− р 0 .

Правильный прием всей КК из “n” е.э. возможен, если все “n” элементов приняты без ошибок. Согласно теореме о совместимых и независимых событиях эта вероятность равна произведению вероятностей каждого события, т.е. − (1−р 0) n .

Тогда вероятность приема КК длиной “n”:

P(1,n) = 1−(1−p 0) n (2.32)

Применим формулу бинома Ньютона:

где
− число сочетаний;

обозначим:

;; тогда (а +b) n = 1 (в наших обозначениях) и или .

левая часть есть Р(1;n), поэтому получим:

(2.33)

−это вероятность ошибочного приема КК длинной “n”,хотя бы с одной ошибкой.

Слагаемые (2.33) означают вероятность появления ошибок кратности точно “ℓ” в КК длинной “n”, т.е.:

. . . . . . . . . . . . . . . . . .

Вероятность появления ошибок кратности ℓ и выше определяется выражением:

(2.35)

Получим приближенную формулу для модели:

P(1,n) = 1−(1−p 0) n (2.36)

Для разложения (1−p 0) n используем бином Ньютона:

Учтем, что а = 1 и b = р 0 . Поскольку р 0 << 1, поэтому слагаемыми 2 порядка и выше можно пренебречь. Получим:

(1−p 0) n = 1 − n p 0 (2.38)

Окончательно получаем:

Р (
(2.39)

Широко используется и кроме того является основой для построения других более сложных моделей, лучше отражающих статистические характеристики реальных ДК.

2.5.2. Модель неоднородного канала

В основу этой модели положена гипотеза о том, что ДК может находиться в различных состояниях, в пределах которых ошибки распределены независимо с вероятностью В этом случае знание весовых коэффициентов, соответствующих удельным весам различных состояний канала, дает возможность определять различные характеристики, используя формулу для независимых ошибок.

Например, вероятность появления искаженной КК определяется:

(2.40)

а вероятность появления n- элементной комбинации с L и более ошибками определяется как:

Одной из распространенных моделей подобного типа является модельГильберта.

По этой модели ДК может находиться в одном из двух состояний:

- «хорошем» - когда ошибки отсутствуют.

- «плохом» - когда возникают независимые ошибки с вероятностью

Такая ситуация наиболее близка к случаю, когда в канале имеют место перерывы связи. Длительность таких перерывов может достигать 300мсек., что при скорости В=1200(бод) приводит к возникновению пакетов ошибок длиной 360 е.э.

Поскольку во время перерыва на вход приемника поступает только одна помеха, то приемник воспроизводит на своем выходе абсолютно случайную последовательность е.э. с равными и взаимонезависимыми вероятностями их правильного и ошибочного приема.

Параметры ив модели Гильберта приобретают смысл вероятностей нахождения канала в том или ином состоянии и определяются на основе измерений.

При учете большого числа состояний канала существенно возрастает количество различных моделей и их сложность. Это значительно ограничивает их практическое использование.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то