Собираем карманный лазер

В этом посте я опишу, как собирал фиолетовую лазерную указку из хлама, нашедшегося под рукой. Для этого мне потребовался: фиолетовый лазерный диод, коллиматор для сведения пучка света, детали драйвера, корпус для лазера, источник питания, хороший паяльник, прямые руки, и желание творить.

Заинтересовавшихся и желающих поковыряться в электронике - прошу под кат.

Попался мне под руку убитый Blu-ray резак. Выбросить было жалко, а что из него можно сделать - я не знал. Спустя полгода наткнулся на видеоролик, в котором была показана такая самодельная «игрушка». Тут и блюрей пригодился!

В системе чтения-записи привода используется лазерный диод. Выглядит он в большинстве случаев так:

Или вот так.

Для питания «красного» диода необходимы 3-3.05 вольт, и от 10-15 до 1500-2500 миллиампер в зависимости от его мощности.
А вот диод «фиолетовый» требует аж 4.5-4.9 вольт, поэтому питать через резистор от литиевого аккумулятора не получится. Придется сделать драйвер.

Так как у меня был положительный опыт с микросхемой ZXSC400, то я без раздумий ее и выбрал. Эта микросхема представляет собой драйвер для мощных светодиодов. Даташит . С обвязкой в виде транзистора, диода и индуктивности я мудрить не стал - все из даташита.

Печатную плату для драйвера лазера я изготовил известным многим радиолюбителям ЛУТ-ом (Лазерно-утюжная технология). Для этого необходим лазерный принтер. Схема нарисована в программе SprintLayout5 и напечатана на пленке для дальнейшего перевода рисунка на текстолит. Пленку можно использовать практически любую, лишь бы не застряла в принтере и на ней качественно напечаталось. Вполне подходит пленка от пластиковых папок-конвертов.

Если же нет пленки, не нужно расстраиваться! Одалживаем у подруги или жены женский глянцевый журнал, вырезаем оттуда самую неинтересную страницу и подгоняем ее под размер А4. Затем печатаем.

На фото ниже можно увидеть пленку с нанесенным тонером в форме разводки схемы, и подготовленный к переносу тонера кусочек текстолита. Следующим шагом будет подготовка текстолита. Лучше всего брать кусочек, раза в два больше нашей схемы, чтобы было удобнее прижать к поверхности во время следующего шага. Медную поверхность необходимо зашкурить и обезжирить.
Теперь нужно перенести «рисунок». Находим в шкафу утюг, включаем его. Пока он разогревается, кладем кусочек бумаги со схемой на текстолит.

Как только утюг нагреется, нужно аккуратно прогладить пленку через бумагу.

В этом видео весьма наглядно показан процесс.

Когда она «прилипнет» к текстолиту, можно выключать утюг и переходить к следующему шагу.

После переноса тонера с помощью обычного утюга это дело выглядит так:

Если некоторые дорожки не перенеслись, либо перенеслись не очень хорошо, их можно поправить CD-маркером и острой иголкой. Желательно использовать увеличительное стекло, дорожки довольно мелкие, всего 0.4 мм. Плата готова к травлению.

Травить будем хлорным железом. 150 рублей за баночку, хватает надолго.

Разводим раствор, кидаем туда нашу заготовку, «помешиваем» плату и ждем результата.

Не забываем контролировать процесс. Аккуратно вытаскиваем плату пинцетом (его тоже лучше купить, этим мы избавим себя от лишнего мата и «соплей» припоя на будущей плате при пайке).

Ну вот, плата вытравилась!

Аккуратно зачищаем мелкой шкуркой, наносим флюс, залуживаем. Вот, что получается после облуживания.

На контактные площадки припоя можно нанести чуть больше чем везде, чтобы паять детали удобнее было, и без наноса припоя дополнительно.

Собирать драйвер будем по этой схеме. Обратите внимание: R1 - 18 миллиОм , а не мегаОм !

При пайке лучше всего использовать паяльник с тонким жалом, для удобства можно воспользоваться увеличительным стеклом, ведь детали достаточно мелкие. При этой пайке используется флюс ЛТИ-120.

Итак, плата практически спаяна.





Проволочка впаивается на место резистора на 0.028 Ом, так как такой резистор мы вряд ли найдем. Можно впаять параллельно 3-4 SMD-перемычки (выглядят как резисторы, но с надписью 0), на них около 0.1 ом реального сопротивления.

Но таких не оказалось, поэтому я использовал обычную медную проволоку аналогичного сопротивления. Точно не измерял - лишь подсчеты какого-то онлайн-калькулятора.

Тестируем.

Напряжение выставлено всего 4.5 вольт, поэтому светит не очень ярко.

Разумеется, выглядит плата грязновато до смывки флюса. Смывать можно простым спиртом.

Теперь стоит написать и об коллиматоре. Дело в том, что лазерный диод сам по себе светит не тонким лучом. Если включить его без оптики, то светить он будет как обычный светодиод с расходимостью в 50-70 градусов. Для того, что бы создать луч, нужна оптика и сам коллиматор.

Коллиматор заказан из китая . Он содержит в себе еще и слабый красный диод, но он мне не был нужен. Старый диод можно выбить обычным болтом М6.

Раскручиваем коллиматор, выкручиваем линзу и заднюю часть, отпаиваем драйвер от диода. Оставшееся крепление зажимаем в тиски. Выбить диод можно, ударив по нему.
Диод выбит.



Теперь нужно запрессовать новый фиолетовый диод.
Но на ноги диоду нажимать нельзя, а по-другому запрессовывать неудобно.
Что же делать?
Задняя часть коллиматора прекрасно подходит для этого.
Вставляем новый диод ножками в отверстие в задней части цилиндра, и зажимаем в тиски.
Плавно закручиваем тиски, пока диод полностью не запрессуется в коллиматор.



Итак, драйвер и коллиматор собраны.
Теперь закрепляем коллиматор в «голову» нашего лазера, и припаяем диод к выходам драйвера с помощью проводков, либо прямо к плате драйвера.

В качестве корпуса я решил использовать простой фонарик из хозяйственного магазина за сто рублей.
Выглядит он так:

Все железки для лазера и коллиматор.

На прищепку для удобства крепления нацеплен магнитик.
Осталось лишь вставить устройство лазера в корпус и закрутить.



Sprint layout 5, файлы разводки печатной платы в

Я решил его переосмыслить и дополнить. Основная идея - установить лазер не вместо, а вместе с экструдером и заставить все это работать без перестановок железа, создания отдельного координатного стола и без модификаций оригинальной прошивки принтера.

В этой части опишу все железо, необходимое для подобной модификации, нюансы выбора, установки и настройки, но прежде всего:

И помните, что очки защищают только от отраженного света, так что не направляйте лазерный луч себе в глаз. Для синего лазера нужны красные очки. Например, такие .

Лазерный диод

Начну с самого дорогого компонента. Опустим бесчисленное множество параметров, приведенных в даташите и обратим внимание лишь на некоторые:

Мощность. Самый главный параметр. Чем больше мощность - тем быстрее можно резать/выжигать. тем больше глубина реза за проход и прочее. Для себя я решил, что меньше 1,6Вт рассматривать не стоит, ибо всегда должен быть запас, и чем больше - тем лучше.

Длина волны. Для самодельных резаков чаще всего используются лазеры с длиной волны в 445-450нм. Для них полно линз, и их свечение находится в видимом спектре. От выбора цвета зависит то, как хорошо лазер будет резать материалы определенных цветов. Например, синий лазер не очень хорошо справляется с синим оргстеклом и прочими синими поверхностями, т.к. его излучение не поглощается материалом.

Номинальный рабочий ток. Обычно пропорционален мощности. Для 1,6вт-диодов характерен ток 1,2А. У 3,5Вт номинальный ток 2,3А. Этот параметр важен при выборе драйвера. За более точной информацией стоит нужно посмотреть datasheet конкретного лазерного диода.

Тип корпуса. Наиболее распространенные - TO-5 (9мм), TO-18 (5,6мм - его иногда называют To-56). Влияет на подбор лазерного модуля.

Приведу несколько типичных лазерных диодов:

Крепление. Оно же - радиатор. С обдувом даже для 3,5Вт-лазера такого радиатора достаточно, он греется где-то до 50 градусов.

Установка

Вариантов установки крепления для лазера великое множество. Тут стоит даль волю инженерной мысли и чего-нибудь придумать. Обязательно предусмотрите вентилятор над лазером, он нужен как для его охлаждения, так и для того, чтобы сдувать дым из рабочей области. О подключении и управлении доп.вентиляторами читайте .
Можно примотать стяжками, но лучше сделать жесткое болтовое крепление с переходной пластиной, наподобие того, как это сделал я:

Универсального варианта тут нет, но есть несколько критичных моментов, которые нужно соблюсти:
1. Нужно закрепить модуль как можно ниже, на уровне сопла, точнее, чуть выше его, оставив место для регулировки линзы (около 1см). Это связано с фокусным расстоянием - отдалить модуль по Z мы можем всегда, а вот приблизить будет проблемой, если регулировки не хватит. Я об этом не знал, и регулировки хватило едва-едва.
2. Лучше всего закрепить модуль соосно с экструдером - тогда пострадает размер рабочего хода только одной из осей. И чем ближе к экструдеру - тем меньше "штраф".

С подключением все просто, питание на драйвер согласно полярности, подключение диода согласно полярности. Соблюдайте полярность , в общем. Управляющий TTL провод - к контакту D4, D5, или D6 в случае, если у вас RAMPS. Покажу на примере, как это выглядит у меня (TTL-управление на D6):

Настройка тока лазерного диода

После того, как все установлено и подключено, можно заняться настройкой тока. Для этого выкрутите линзу у лазера и/или подложите под него кусок кафельной плитки, чтобы он чего-нибудь не прожег. Также нужно включить в разрыв "минусового" провода лазерного диода амперметр (см. схему выше). Можно временно подключить мультиметр, а можно поставить отдельную измерительную головку, как это сделал я. И не забудьте одеть защитные очки. Алгоритм такой:
1. Включаем принтер.
2. В Pronterface пишем M42 P* S255 , где * - номер контакта, к которому подключен управляющий TTL провод драйвера
3. Берем отвертку и начинаем медленно вращать маленький подстроечный резистор на плате драйвера, попутно поглядывая на показания амперметра. Если это этот драйвер, то ток до включения лучше выкрутить в 0 (против часовой стрелки до щелчков), т.к. в нем по умолчанию выставлено 2А, что может спалить 1,6Вт-диод.
4. Выставляем по амперметру номинальный ток своего диода и пишем M42 P* S0 для его отключения. (* - см. выше)
5. Отключаем мультиметр от цепи (опционально).

Настройка фокуса лазера

Тут все достаточно индивидуально. Фокус можно настраивать как перед каждой операцией резки, так и единожды, потом просто передвигая каретку по Z в зависимости от толщины обрабатываемого материала. Также есть разные подходы к настройке фокуса по детали: можно выставлять фокус по верху заготовки, а можно по середине. Я выставляю по верху, т.к. редко что-либо режу и меня не беспокоит расфокусировка при опускании луча в материал.
Настраивается так:
1. Загоняем все оси в home (G28).
2. Поднимаем каретку. Величина поднятия зависит от толщины обрабатываемого листа. Я не предполагал на своем принтере обрабатывать ничего толще 6мм (по фанере выжигать), поэтому поднял каретку чуть выше - на 8мм. Команда для поднятия - G1 Z8, ну или просто потыкайте стрелочки в Pronterface.
3. Кладем заготовку, закрепляем канцелярскими зажимами, наводим лазер на нее.
4. Включаем лазер. Много мощности на этом этапе не требуется, должна быть четко видна точка. M42 P* S1
5. Крутим линзу до тех пор, пока луч не сфокусируется в маленькую точку. Если не хватает регулировки - поднимите каретку еще где-нибудь на 5-10мм, и снова покрутите линзу.

Итого сборка, подключение и настройка завершены. В следующей статье будет руководство по подготовительным командам и обзор софта для работы с лазером.

Чтобы ЛД прослужил долго, ему необходимы стабильные параметры питающего напряжения и/или тока. Именно эти задачи возлагаются на специальную схему — драйвер лазерного диода. Все лазерные диоды рекомендуется питать стабилизированным током, хотя некоторые из них (В частности, красные 650нм из дисководов) ведут себя достаточно стабильно и при питании стабильным напряжением. Вы спросите, зачем применять какие-то стабилизаторы напряжения, если можно просто стабилизировать ток? Дело в том, что стабилизаторы тока немного сложнее стабализаторов напряжения. Например, из-за наличия «датчика тока»(о нем речь пойдет чуть ниже). Также при отстутствии нагрузки и защит по превышению напряжения(что опять-таки ведет к усложнению), на выходе такого драйвера напряжение может достигать больших значений (У идеального стабилизатора тока при отстутствии нагрузки напряжение поднялось бы до бесконечности. Но т.к. воздух имеет некоторое сопротивление, рано или поздно возник бы высоковольтный разряд и продолжил бы гореть, а на практике ничего идеального не существует, и раньше возникновения пробоя воздуха случается выход схемы из строя, или в случае невозможности поднятия напряжения выше входного, как в случае линейных схем, оно останавливается на определенном уровне. Но даже в этом случае диод нельзя подключать к работающему драйверу). Из основной выполняемой функции вытекает необходимость применения т.н. «датчика тока». Как правило, им является включенный в разрыв между лазерным диодом и общим проводом низкоомный резистор. Поддерживая напряжение на нем, схема поддерживает ток. Такое решение обладает некоторыми недостатками — обычно минус питания диода оказывается «оторван» от минуса питания схемы. Второй недостаток — потери мощности на токоизмерительном резисторе. В следствии вышеизложенного обычно находят компромисс между стабилизацией тока и напряжения.

Классификация по принципу работы

Теперь рассмотрим два основных типа драйверов при классификации по принципу работы — импульсные и линейные. На вход линейным подается всегда большее напряжение, чем нужно диоду. Разница напряжений тут будет гаситься на силовом элементе — транзиcторе — будет выделяться в виде тепла (Выделяемая тепловая мощность — разница входного и выходного напряжений умноженная на ток в цепи). Естественно, ток на диоде будет уменьшаться при падении входного напряжения ниже значения, равного сумме напряжений на ЛД, минимальномм падением на транзисторе и токоизмерительном резисторе, если это стабилизатор тока. Это касается и линейных интегральных микросхем-стабилизаторов. Для полевых транзисторов минимальное падение составляет десятые и сотые доли вольта, для биполярных — может достигать единиц вольт, обычно около 0.7в. КПД линейных драйверов мал и обычно его не измеряют. Импульсный драйвер лазерного диода — частный случай импульсного преобразователя напряжения. Они преобразуют одно напряжение в другое(есть как повышающие,так понижающие и понижающе-повышающие преобразователи), т.е. входная мощность примерно равна выходной: потери энергии в тепло в них малы — тепло выделяется из-за неидеальности компонентов, т.е. падения напряжения на полупроводниковых переходах силовых ключей и диодов.

Импульсные драйверы

Как же работает импульсный драйвер? Посмотрим на упрощенную схему повышающего преобразователя:

Про операционный усилитель и принцип его работы можно прочесть . Напряжение на резисторе R будет равно напряжению Vin, следовательно, ток, протекающий через ЛД, транзистор и токоизмерительный резистор будет равен отношению Vin к R при достаточном напряжении питания Vcc. Если подавать стабильное напряжение на Vin, то, следовательно ток в нагрузке тоже будет стабилен даже при изменении Vcc. Для этой цели обычно применяют либо слаботочный стабилизатор напряжения, либо стабилитрон, либо специальный источник опорного напряжения. Пример полноценной схемы: http://radiohlam.ru/raznoe/driver_svetodiodov_ou.htm

Пара слов о КПД

Как уже было сказано, КПД линейных драйверов мал и обычно его не измеряют. Рассмотрим измерение КПД импульсного драйвера. Все выглядит очень просто — измерить потребляемые и выходные токи и напряжения, посчитать КПД. Однако, как показывает практика, многие ошибаются уже на этом этапе. Самая частая ошибка новичков — измеряют ток и напряжение поочередно, не придавая значения тому факту, что при измерении тока мультиметром получаются ощутимые потери на проводах и на шунте, обладающих относительно большим сопротивлением. Это вносит значительную погрешность и в ток, и в напряжение (это происходит потому, что на входе драйвера напряжение будет меньше, чем до прибора, или на драйвере при неподключенном в разрыв цепи прибора, а т.к. драйвер импульсный, ток тоже будет отличаться).

Итак, чтобы правильно измерить параметры драйвера, нужно подключить его к источнику питания через низкоомный резистор, порядка 0.1Ом, такой же резистор включить последовательно с диодом. Далее следует все это включить и замерить напряжение на входе драйвера(после резистора), напряжение на резисторе, напряжение на диоде, напряжение на резисторе последовательно с диодом.Теперь найдем потребляемую драйвером мощность:
Pin=Uin * Ures/R,
где Uin- напряжение на входе драйвера, Ures — падение напряжения на резисторе, R — сопротивление резистора. Все напряжения в вольтах, сопротивление — в Омах. Теперь найдем выходную мощность:
Pout= (Uld + Ures)*Ures/R,
где Uld- напряжение на лазерном диоде, Ures — падение напряжения на резисторе, включенном последовательно с ЛД, R — сопротивление этого резистора. Теперь найдем КПД:
КПД= (Pout/Pin)*100%

Измерение тока через диод

Вернемся к измерению тока через диод. Если он питается от стабилизатора тока, достаточно включить в разрыв цепи между диодом и драйвером амперметр. Если же драйвер стабилизирует напряжение — то тут о токе можно судить лишь косвенно, именнов этом заключаетсяеще одначастая ошибка.
Нужно включить в разрыв цепи резистор как можно меньшего сопротивления, померить падение напряжения на нем и разделить на его сопротивление, но ток будет слегка занижен. Чем меньше взять сопротивление резистора — тем точнее результат. Точно можно измерить ток запомнив напряжение на ножках диода, запитав диод от стабилизатора или ограничителя тока и смотреть на ток в цепи, при котором будет то самое падение напряжения на диоде.

По сравнению со светом обычных светодиодов лазерный свет имеет высокую концентрацию, он имеет более узкий угол обзора. Для подключения лазерного диода к электронной цепи понадобится специальная схема, называемая драйвером лазерного диода. В данном материале будет показано, как самостоятельно собрать простой драйвер лазерного диода на основе LM317.



Драйвер лазерного диода – это схема, которая используется для ограничения тока и затем подачи его на лазерный диод, чтобы он работал должным образом. Если мы напрямую подключим его к источнику питания, из-за потребности в большем токе он может не заработать или даже привести к некоторым повреждениям цепи.


Если ток будет небольшим, лазерный светодиод не будет работать из-за отсутствия достаточной мощности для включения. Таким образом, необходима схема драйвера для обеспечения правильного значения тока, при котором лазерный диод перейдет в рабочее состояние. Простому светодиоду нужен только резистор для ограничения тока, но в случае с лазерным диодом нам нужна правильная схема для ограничения и регулирования тока. Для регулирования мощности в цепи драйвера лазерного диода можно использовать LM317.


Трехвыводная микросхема LM317 представляет собой стабилизатор напряжения. На своем выходе он может выдавать от 1.25 до 37 вольт. Внешний вид LM317 с подписанными выводами представлен на изображении ниже.



LM317 является регулируемым стабилизатором, иными словами можно изменять значение напряжения на выходе в зависимости от потребностей, используя два внешних резистора, подключенных к линии регулировки (Adjust). Эти два резистора работают как цепь делителя напряжения, используемая для увеличения или уменьшения выходного напряжения. LM317 обеспечивает ограничение тока и защиту от тепловой перегрузки.


Схема драйвера лазерного диода на основе стабилизатора напряжения LM317 показана на рисунке ниже.



Ее довольно быстро можно собрать на макетной плате.



Работает схема следующим образом. Когда батарея начинает подавать напряжение, оно сначала протекает через керамический конденсатор (0.1 мкФ). Этот конденсатор используется для фильтрации высокочастотного шума от нашего источника постоянного тока и обеспечивает входной сигнал для LM317. Потенциометр (10 КОм) и резистор (330 Ом), подключенные к линии регулировки, используются в качестве схемы ограничения напряжения. Выходное напряжение полностью зависит от значения этого резистора и потенциометра. Выходное напряжение стабилизатора попадает на фильтр второго конденсатора (1 мкФ). Этот конденсатор ведет себя как балансировщик мощности для фильтрации флуктуирующих сигналов. В итоге можно регулировать интенсивность лазерного излучения, вращая ручку потенциометра.

— это усовершенствованная схема защиты лазерного диода от бросков напряжения. Дорогие полупроводниковые лазеры не обладают устойчивостью к быстрым скачкам напряжения или тока. Для снижения риска их повреждения используются стандартные схемы ограничения на полевых транзисторах с р-n переходом. Именно они в отсутствие напряжения закорачивают лазер, защищая его от таких бросков (Рисунок 1).

Когда на отрицательной шине питания появляется напряжение, полевой транзистор закрывается. Схема эффективна для защиты маломощных лазерных диодов, но плохо подходит для диодов с током потребления более 150 мА. Этот предел обусловлен значением максимального тока полевого транзистора. Если в аварийном режиме возникает необходимость ограничения тока лазерного диода, выбранный полевой транзистор может не справиться с этой задачей. Правда, существуют и сильноточные полевые транзисторы с р-n переходом, однако они существенно дороже, и их сложно найти в продаже.

Схема на Рисунке 2 позволяет избежать этих недостатков. Она похожа на стандартную схему с полевым транзистором. Но дополнена биполярным транзистором, который шунтирует большую часть отрицательных токов, когда полевой транзистор открыт. Резистор R2 фиксирует потенциал затвора транзистора Qb a R3 обеспечивает быстрое выключение транзистора Q2. Диод 1 N914 принимает на себя любые положительные броски тока. RC-цепочка устанавливает
достаточно низкую скорость отклика, сглаживая переходы от открытого состояния к закрытому.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то