Магниторезистивная память MRAM — быстродействующие ОЗУ и ПЗУ в одной микросхеме. MRAM — новое слово в создании микросхем памяти

В настоящее время в качестве запоминающих устройств используются, в основном, три вида памяти – SRAM, DRAM и флеш-память, чаще всего – NAND. Уже довольно долгое время ведутся разработки альтернативных технологий создания микросхем памяти, способных заменить часть существующих запоминающих устройств или, возможно, предложить универсальное решение, которое подойдет для любого применения. Одной из таких технологий является MRAM и ее более новая разновидность ST-MRAM или STT-MRAM (spin-transfer torque magnetoresistive RAM – память с использованием технологии переноса спинового момента). MRAM — что это за зверь? Давайте разбираться.

Перспективные технологии

Следует сказать, что сейчас в разработке находятся несколько разных вариантов того, что, возможно, найдет применение в качестве запоминающего устройства в обозримом будущем. Один из вариантов я недавно описывал – это совместная разработка , использующая, по одной версии, эффект фазового перехода вещества, а по другой – некую иную технологию, о подробностях которой предпочитают не распространяться.

Среди других:

  • Память на нанотрубках.
  • Сегнетоэлектрическая оперативная память (Ferroelectric RAM, FeRAM или FRAM).
  • (RRAM, ReRAM, Resistive random-access memory) и ряд других.

Думаю, постепенно мы познакомимся со всеми этими технологиями.

На разработку и внедрение этих технологий понадобилось больше времени, чем предполагалось. Поэтому большая часть этих вариантов до сих пор находится на научно-исследовательской и опытно-конструкторской стадии или существуют только в виде тестовых образцов.

Несмотря на различия всех этих технологий, они все схожи в том, что вся эта память энергонезависима, в отличие от применяемой сейчас DRAM. Также она позволяет осуществлять побитовую адресацию (чего не может используемая сейчас NAND-память), да и быстродействие, а также долговечность гораздо выше, нежели у распространенной сейчас флеш-памяти.

Как говорил выше, теперешний рынок памяти разделен между тремя типами:

  • SRAM – используется в процессорах для кэширования, в качестве регистровой памяти, для обеспечения быстрого доступа к данным. Память этого типа очень быстродействующая, не требует регенерации ячеек, но имеет свои недостатки, как то: невысокую плотность размещения ячеек на кристалле, высокую стоимость.
  • DRAM – используется в качестве оперативной памяти, а также в качестве буфера в SSD-накопителях.
  • NAND – единственный тип, сохраняющий записанные данные при отключении питания. Используется в твердотельных накопителях, в качестве запоминающего устройства в мобильной технике и т. п.

В тренде сейчас , используемая в SSD. Ее

активное освоение и внедрение привело к тому, что производство кремниевых пластин в 2017-м году возросло на 10%. При этом перечисленные технологии (FeRAM, STT-MRAM, память на нанотрубках) находятся на разных стадиях разработки и готовности к промышленному использованию. Причем вполне возможно, что ни один из этих типов не сможет стать монополистом, а многие из них найдут свою нишу в тех или иных устройствах.

До промышленного выпуска пока что добрались только 3D XPoint, а также MRAM, выпускаемая компанией Everspin, которая предлагает чипы емкостью 256 Мбит. Впрочем, ведущая четверка чипмейкеров (GlobalFoundries, Samsung, TSMC и UMC) готова начать производство такой памяти в ближайшем будущем. Свои исследования ведут также Intel, Micron и Toshiba-SK Hynix.

Такой чипмейкер, как GlobalFoundries, планирует выпускать свои чипы STT-MRAM по 22-нанометровому техпроцессу с использованием технологии FD-SOI. В перспективе ожидается переход на 12-нанометровый техпроцесс. Планируется и использование техпроцессов 14 нм и 7 нм на основе технологии finFET.

Принцип работы памяти MRAM и STT-MRAM

Отличие MRAM от других типов памяти состоит в том, что в ячейке хранится не электрический заряд, уровень которого и определяет значение бита данных, а изменяется электрическое сопротивление самой ячейки. Особенность данной технологии заключается в способе изменения этого сопротивления. В отличие от, например, памяти с использованием изменения фазового состояния вещества, для этого используются магнитные элементы памяти, использующие эффект магнитного туннельного перехода (MTJ – magnetic tunnel junction).

Если говорить упрощенно, ячейка MTJ состоит из пары ферромагнитных слоев, между которыми расположен тонкий диэлектрический слой, называемый также туннельным слоем, а также управляющего транзистора. Один из ферромагнитных слоев – это постоянный магнит с намагниченностью в определенном направлении, второй слой может изменять направление намагниченности (поляризации) в зависимости от воздействующего на него магнитного поля.

В результате направление ориентации намагниченности в слоях может либо совпадать, либо быть противоположным друг другу. При совпадении ориентации намагниченности, вследствие эффекта туннельного магнитосопротивления, электрическое сопротивление уменьшается, и это принимается за логический «0», а при противоположном направлении намагниченности в слоях сопротивление возрастает, и это интерпретируется как «1».

Теперь остается только приложить напряжение к транзистору и зафиксировать уровень тока через ячейку, он позволит определить, какое значение в ней записано.

Запись значения в ячейку памяти осуществляется при помощи формируемого магнитного поля. Тут кроется один из недостатков технологии MRAM – для магнитного поля требуется довольно много энергии, что нежелательно, особенно в случае применения таких микросхем в мобильных устройствах, где к энергоэффективности предъявляются особые требования.

Другой недостаток – индуцируемое магнитное поле при уменьшении размера ячеек начинает воздействовать на соседние ячейки, повышая риск искажения информации в них.

От многих недостатков позволяет избавиться технология STT-MRAM – модификация описанной выше MRAM, при которой изменение поляризации намагниченного слоя выполняется не за счет формирования магнитного поля, а при помощи переноса момента импульса электрона (spin) с заданным направлением поляризации. Вращающий момент этих электронов, попадающих в изменяемый ферромагнитный слой, передается намагниченности и ориентирует ее в заданном направлении. Отсюда и название этого варианта технологии — STT-MRAM (spin-torque-transfer MRAM).

Сейчас особый интерес вызывает вариант технологии, называемой перпендикулярной STT-MRAM. Суть состоит в том, что в первых образцах памяти спиновый момент электронов находился в плоскости, параллельной расположению слоев. В новом варианте этот момент направлен перпендикулярно расположению слоев. Это позволило сразу же получить несколько преимуществ: уменьшить токи, необходимые для переключения, уменьшить размер ячеек, уменьшить транзистор, увеличить плотность расположения элементов на кристалле, улучшить энергопотребление.

У STT-MRAM есть и другие достоинства:

  • Сочетание характеристик, сходных с DRAM и SRAM, с энергонезависимостью.
  • Фактически неограниченный срок службы ячеек.
  • Высокая скорость работы при низком потреблении энергии.

Производство STT-MRAM

К сожалению, изготовить память STT-MRAM не так просто, как хотелось бы. Требуется новое оборудование, новые материалы. Осложняется все это тем, что процесс изготовления слоев отличается от того, что применяется при изготовлении привычных типов памяти.

Процесс выпуска микросхем STT-MRAM разделяется на две фазы. Вначале, используя обычные кремниевые пластины, изготавливаются нижние слои ячеек, формируются транзисторы, линии выбора слов и т. п. Эту часть производства называют FEOL (front-end-of-the-line).

Для завершения формирования микросхем частично обработанная пластина перемещается на вторую фазу, называемую BEOL (backend-of-the-line). Здесь наносятся слои с содержанием металлов, осуществляется соединение элементов медными проводниками, формируются линии выборки бит и завершается изготовление.

Так, традиционная DRAM целиком изготавливается на FEOL, причем процесс изготовления подразумевает некоторые операции, проводимые при высоких температурах. И тут возникает проблема. Магнитные слои (пленки) STT-MRAM очень тонкие и должны наноситься при гораздо более низких температурах. Мало того, изготовление требует очень высокой точности.

Процесс производства микросхем памяти STT-MRAM требует применения трех масок для трех этапов изготовления. Первый этап самый простой — формируется тонкий нижний электрод, т. е. линии выбора слов, управляющий транзистор.

Второй этап гораздо сложнее. Необходимо сформировать ячейку памяти MTJ, представляющую собой стек из тонких слоев, коих может быть 20-30 штук. Причем размещать их надо точно друг над другом с высочайшей точностью. Осложняется это тем, что эти слои могут быть в несколько ангстрем толщиной. Они нужны, чтобы обеспечить необходимый уровень намагниченности. И еще одна сложность этого этапа – недопущение доступа воздуха в процессе нанесения слоев. То есть требуется проведение всего процесса на одном и том же оборудовании.

Последний, третий этап – формирование верхнего электрода, линии выбора битов, выполнение соединений между ячейками.

Сама STT-MRAM состоит из ячеек MTJ. В каждой ячейке есть тонкий, примерно 10 ангстрем, диэлектрический туннельный слой, выполненный из оксида магния (MgO), окруженного двумя ферромагнитными слоями, основанными на составе кобальт-железо-бор (CoFeB). Толщина этих слоев составляет от 10 до 30 ангстрем. Через эти слои, включая туннельный слой, и протекает ток.

Интересной особенностью технологии памяти MRAM является возможность получения чипов с возможностями, близкими к флеш-памяти или соответствующими SRAM, т. е. возможность варьировать характеристики. Все зависит от того, как формируются слои.

Следующая операция, которая выполняется после окончания формирования всех слоев ячейки памяти — травление. При производстве STT-MRAM не применяется привычное реактивно-ионное травление (RIE), т. к. эта операция может повредить слои. Вместо этого применяется ионно-лучевое травление (IBE), т. е. бомбардирование материала пучком заряженных ионов. Эта технология травления все еще совершенствуется, т. к. на сегодняшний день у нее есть ограничения на размер удаляемых участков.

Применение STT-MRAM

Есть два основных пути применения этого типа памяти. Во-первых – это замена встраиваемой флеш-памяти, которая используется во многих устройствах. Во-вторых – замена встраиваемой SRAM. Второй вариант более сложный. Вообще, уже сложилось некое разделение сфер применения памяти. Так, STT-MRAM и ReRAM – хороший выбор для встраиваемых решений, а память, выполненная по технологии фазового перехода, ориентируется на использование в автономных устройствах – накопителях и т. п.

Планы по замене DRAM на STT-MRAM пока что остаются планами, т. к. эти разработки еще не вышли из этапа исследовательско-конструкторских работ.

Есть и другие препятствия в переходе на память STT-MRAM. В частности, эта технология еще должна доказать надежность и соответствие требованиям по безопасному хранению данных при высоких температурах, например, для применения в автомобильной промышленности.

Так, Everspin планирует использовать свою память в качестве замены микросхем DRAM, которые применяются для кэширования операций записи в SSD‑накопителях и в RAID системах. Особенность DRAM в том, что при исчезновении напряжения питания все данные, которые находились в ней, и которые еще не были записаны на носитель, будут утеряны. Чтобы предотвратить это, в SSD устанавливаются конденсаторы, способные обеспечить питанием накопитель для того, чтобы успеть записать все находящиеся в буфере данные. К сожалению, эти конденсаторы увеличивают стоимость накопителей. В RAID-массивах применяют резервные батареи.

Эту проблему решает применение памяти STT-MRAM. Т. к. она энергонезависима, то данные не пропадают, а, значит, можно отказаться от использования резервных батарей или конденсаторов.

Еще одна сфера применения – встраиваемая память, например, в микроконтроллерах. Обычно, в одном чипе находятся несколько компонентов – процессор, SRAM, встроенная память, контроллеры для периферийных устройств и т. п. Причем, в качестве встроенной памяти, являющейся хранилищем микрокода контроллера и т. п., выступает флеш-память.

Выпуск подобных микроконтроллеров переходит на более тонкие техпроцессы, например, с 40 нм на 28 нм. Соответственно, утончается техпроцесс и применяемой флеш-памяти. Проблема в том, что при более тонких техпроцессах у этой памяти ухудшается долговечность, падают скорости записи/чтения. При этом стоимость такой флеш-памяти увеличивается, т. к. усложняется технология изготовления, при которой требуется применения нескольких масок. Вдобавок появляются сложности с масштабированием.

Все это неизбежно приводит к поискам альтернатив, а, учитывая тот факт, что встроенная память все больше используется в самых разных устройствах, этому сегменту рынка уделяется особое внимание. Замена привычной флеш-памяти – не такая простая задача. Для ее решения новый тип памяти должен выполнять несколько условий, среди которых надежность, быстродействие, плотность ячеек на кристалле и, конечно же, стоимость.

Существующая флеш-память будет востребована еще долго, т. к. там, где она применяется (в мобильных устройствах, в автомобильной электронике и т. п.), она справляется со своей работой хорошо, сочетая производительность, надежность и стоимость на хорошем уровне.

И все же, похоже на то, что именно память STT-MRAM уже практически готова к внедрению и наступлению на позиции традиционной флеш-памяти. В этом одно из преимуществ этой технологии, т. к. альтернативные решения, такие, как ReRAM или память на нанотрубках, пока что не вышли из этапа исследований и опытных образцов.

В одном из последних отчетов GlobalFoundries объявила, что провела демонстрацию использования технологии STT-MRAM для хранения данных. Зафиксировано низкое количество возникающих ошибок и заявлена возможность хранения данных в течение 10 лет при температуре 125°C.

Встроенная память STT-MRAM при использовании в микроконтроллерах может применяться не только для хранения микрокода, но и взять на себя часть функций кэширования, выполняемых сейчас SRAM. Это позволит уменьшить ее количество на кристалле, сэкономив тем самым место и удешевив. О полной замене SRAM речь пока что не идет.

Заключение. MRAM — что это, будущее?

Вполне возможно. Именно эта технология является лидером в списке альтернатив используемым ныне типам памяти. Причем использованием в автопромышленности, в устройствах интернета вещей, в мобильных устройствах, в качестве буферной памяти и т. п. дело не ограничится. Есть замашки и на вытеснение DRAM.

Четверка основных производителей готова в ближайшем будущем наладить выпуск микросхем памяти, использующих технологию STT-MRAM. Другое дело, готов ли рынок принять их. Да, достоинств у новой технологии много. Это и скорость работы, и долговечность, которая даже «не снилась» используемой ныне флеш-памяти. Но есть и недостатки, даже если сравнивать с NAND. Плотность расположения ячеек у STT-MRAM пока что ниже, чем у флеш-памяти. Да и техпроцессы, по которым может выпускаться новая память, пока что «толще», чем используемые при производстве NAND. Стоимость пока что тоже выше.

В то же время на рынке присутствует дефицит флеш-памяти, активно развивается тема многослойной NAND. В общем, быстрота перехода на новую память вызывает вопросы. И все же вероятность того, что именно STT-MRAM станет преемником, в первую очередь, флеш-памяти очень велика. А как там дальше будет – посмотрим.

Магниторезистивная память MRAM - быстродействующие ОЗУ и ПЗУ в одной микросхеме

Михаил Соколов, инженер по применению, компания Freescale Semiconductor
Александр Гришин, инженер, МЭИ (ТУ)

Исследование магниторезистивных структур как энергонезависимых элементов для хранения информации началось еще в первой половине ХХ века. Но только летом 2006 г. была представлена первая в мире микросхема энергонезависимой памяти, использующая технологию MRAM.

В некоторых публикациях этот факт называют прорывом в области разработки памяти за последние 10 лет. Так ли это, и что из себя представляет магниторезистивная память - на эти вопросы отвечает данная статья. Также приводится подробное описание характеристик микросхемы MR2A16A - первого продукта в линейке памяти MRAM.

Технология MRAM - долгий путь к успеху

История создания магниторезистивной памяти MRAM (Magnetoresistive Random Access Memory) насчитывает уже не один десяток лет. В частности, в России также проводились работы по созданию магниторезистивной памяти для применения в военной и аэрокосмической областях. Однако практически все попытки создания серийной памяти MRAM не приводили к появлению надежного продукта, пригодного для серийного производства.

Такие крупные фирмы, как IBM, Cypress, Toshiba, Renesas, Hitachi, Mitsubishi, Motorola и др., работали над созданием памяти более 10 лет. Компания Motorola приступила к исследованиям в области магниторезистивных структур в 1995 г. совместно с агентством перспективных исследований МО США (DARPA US). После отделения всего сектора полупроводниковых компонентов от Motorola в 2004 г. уже независимая компания Freescale Semiconductor продолжила работы по доведению продукта до серийного производства. В результате 10 июля 2006 г. был анонсирован законченный коммерческий продукт, использующий технологию MRAM, - автономный модуль MR2A16A с объемом памяти 4 Мбит.

Магниторезистивная память является революционной технологией, обладающей всеми необходимыми свойствами для того, чтобы стать действительно универсальной. Кроме того, она имеет ряд уникальных особенностей, открывающих широкие рыночные перспективы.

Преимущества магниторезистивной памяти

Объем мирового рынка микросхем памяти, по некоторым оценкам, превышает 48 млрд. долл. США и продолжает расти. Чтобы выйти на рынок и не быть статистом во втором десятке производителей устройств памяти, необходимо предложить новый, уникальный продукт, сочетающий в себе преимущества всех распространенных технологий: энергонезависимое хранение данных практически неограниченное время без необходимости регенерации, скорость чтения/записи, сравнимую с лидирующей на сегодняшней день технологией SRAM, неограниченное число циклов стирания/записи данных, высокую масштабируемость и плотность ячеек для создания микросхем памяти различного объема. Задача на первый взгляд невыполнима, однако наиболее близко к ее решению подошла технология MRAM. Конечно, скорость чтения/записи еще не достигла долей наносекунд, пока не отработаны технологические процессы создания микросхем MRAM объемом сотни мегабит и в компактных корпусах, стоимость не всегда та, что хотелось бы. Но уже сейчас можно с достаточной уверенностью утверждать, что технология MRAM преодолеет эти недостатки и через несколько лет постепенно начнет отвоевывать значительную часть рынка у существующих технологий памяти. На чем основаны такие утверждения? Рассмотрим более подробно особенности памяти MRAM, отличающие ее от распространенных технологий (см. табл. 1).

Таблица 1. Сравнительные характеристики основных типов памяти

MRAM SRAM DRAM FLASH FRAM
Скорость чтения Высокая Самая высокая Средняя Высокая Высокая
Скорость записи Высокая Самая высокая Средняя Низкая Средняя
Маштабируемость Хорошая Хорошая Ограниченная Ограниченная Ограниченная
Плотность ячеек Средняя/высокая Низкая Высокая Средняя Средняя
Энергонезависимость Да Нет Нет Да Да
Число циклов стирания/записи Неограниченное Неограниченное Неограниченное Ограниченное Ограниченное
Ток утечки ячеек Низкий Низкий/высокий Высокий Низкий Низкий
Возможность работы при низких напряжениях Да Да Ограниченная Ограниченная Ограниченная
Сложность производства Средняя Низкая Средняя Средняя Средняя

Энергонезависимая память EEPROM (ЭСППЗУ) на данный момент находится на последних стадиях своего жизненного цикла. Значительно более медленная скорость работы, а также ограниченное количество циклов перезаписи по сравнению с MRAM не позволяют использовать эту память в качестве оперативной. Она годится только для хранения кода программ либо данных, не требующих частого изменения либо обращения к ним.

Основным недостатком памяти типа Flash (флэш) является малое число циклов перезаписи. В зависимости от условий эксплуатации флэшпамять может быть перезаписана примерно 10 тыс. - 1 млн. раз прежде, чем битовая ячейка перестанет функционировать. В отличие от флэш-памяти, число циклов перезаписи памяти MRAM бесконечно благодаря принципиально другой технологии работы битовых ячеек. Здесь программирование происходит путем изменения полярности магнитных слоев, а данная операция не разрушает материал, из которого состоят ячейки памяти.

К другим недостаткам флэш-памяти стоит отнести низкую скорость записи, а также поблочный характер стирания/записи ячеек памяти. В MRAM можно выполнять любые операции над отдельными ячейками независимо. Кроме того, магниторезистивная память не требует предварительного стирания бита перед его перезаписью.

Динамическая память DRAM требует частой регенерации ячеек для сохранения данных, что приводит к повышенному потреблению электроэнергии и не позволяет использовать ее в качестве энергонезависимой памяти.

Статическая память SRAM не является энергонезависимой. К тому же, вследствие низкой плотности ячеек технология SRAM не позволяет создавать память значительного объема (десятки - сотни мегабит) в малом форм-факторе.

Статическую память с резервным батарейным питанием (Battery Backed SRAM) можно назвать универсальной памятью, но с существенными ограничениями. Встроенные батареи имеют ограниченный срок службы, лимитированную емкость вследствие компактных размеров батареи, а ее наличие в устройстве создает дополнительные проблемы при хранении, монтаже и эксплуатации памяти. Нельзя забывать и про сильную температурную зависимость характеристик батареи и дополнительные сложности при утилизации устройств.

Скорость записи/стирания памяти MRAM больше, чем у Battery Backed SRAM. Отсутствие батареи означает большую надежность и долговечность памяти MRAM, независимость ее рабочих характеристик от температуры во всем диапазоне, определенном производителем.

Энергонезависимая ферроэлектрическая память FRAM до недавнего времени наиболее полно соответствовала определению «универсальной памяти» из всех доступных на рынке серийно выпускаемых микросхем. Однако и у нее есть ряд недостатков, самый серьезный их которых заключается в большом размере ее ячеек. Благодаря усилиям разработчиков он постепенно приближается к физическому пределу, за которым дальнейшее уменьшение габаритов сопряжено с серьезными техническими и технологическими проблемами. Однако при этом ячейки остаются достаточно крупными, что не позволяет создавать микросхемы памяти большого объема с малыми габаритами. На сегодняшний день объем памяти микросхем FRAM составляет от единиц килобит до единиц мегабит. Производители предпринимают попытки создать память объемом десятки мегабит, однако серийное производство микросхем объемом 16, 32 либо 64 Мбит если и будет возможно, то не раньше чем через 3–5 лет.

Технология MRAM не накладывает ограничений на объем памяти. По сравнению с FRAM скорость чтения/ записи ячеек памяти MRAM ощутимо выше.

Модули памяти FRAM требуют повторной перезаписи данных в ячейки после считывания. Этот эффект связан с деградацией битовых ячеек памяти FRAM при операции чтения. Как следствие, это может привести к потере данных, если произойдет случайное отключение питания во время операции чтения, что для энергонезависимой памяти является очень существенным недостатком.

Структура и функционирование битовых ячеек MRAM

Первый коммерческий продукт, использующий технологию MRAM, микросхема MR2A16A состоит из массива ячеек памяти, каждая из которых содержит один транзистор и один магнитный туннельный переход (1T1MTJ). Магнитный туннельный переход (MTJ) является основой битовой ячейки MRAM. Он состоит из очень тонкого диэлектрического слоя оксида алюминия (AlOx), помещенного между двумя магнитными слоями. Каждый из магнитных слоев имеет свой вектор магнитного поля. Верхний магнитный слой называют свободным слоем, он может изменять вектор своего поля. Магнитный слой основания называют фиксированным слоем, вектор его магнитного поля заблокирован и не изменяется.

Направление вектора магнитного поля свободного слоя определяет состояние бита как логического нуля или единицы. Если векторы намагниченности свободного слоя и фиксированного слоя сориентированы в одном направлении, сопротивление структуры MTJ низкое (см. рисунок 1). Если векторы намагниченности свободного и фиксированного слоев развернуты на 180° относительно друг друга (противоположны), сопротивление структуры MTJ высокое. Величина сопротивления перехода MTJ определяет, будет ли прочитано содержимое ячейки как «0» или «1» при прохождении через ячейку тока чтения.

Рис. 1. Магнитные слои битовой ячейки 1Т1MTJ памяти MRAM для значений «0» и «1»

Во время операции установки бита магнитный вектор свободного слоя принимает одно из двух возможных состояний. Направление вектора поля задается с помощью внутренних медных проводников, расположенных в перпендикулярных направлениях относительно друг друга на вершине и в основании структуры MTJ. Импульсы тока, протекающего через перпендикулярно расположенные медные проводники, создают магнитное поле, которое изменяет намагниченность свободного слоя той битовой ячейки, которая находится в области перекрещивания проводников (см. рис. 2).


Рис. 2. Битовая ячейка 1T1MTJ: упрощенная структура, режимы чтения и записи

Такая трехслойная структура повышает скорость и стабильность операций стирания/записи, однако требует более высокого тока для выполнения этих операций, чем ячейки традиционной памяти. Однако на практике среднее потребление остается на том же уровне, так как при записи байта данных не все биты требуют изменения, если только мы не меняем значение байта с «FF» на «00» и обратно. Кроме того, процесс стирания/записи занимает крайне малое время порядка 25 нс. В результате по показателю потребления микросхема памяти типа MRAM выигрывает по сравнению с другими типами ПЗУ, которые, к тому же, существенно медленнее.

Микросхема памяти MR2A16A

Микросхема MR2A16A является первым продуктом от компании Freescale в линейке микросхем памяти MRAM. Модуль памяти MR2A16A изготовлен по технологии 0,18 мкм и является уже вторым поколением устройств на базе данной технологии. Емкость микросхемы составляет 4 Мбит с организацией 256К х 16 бит. Управление осуществляется по стандартным входам: chip enable, write enable, output enable и upper/lower byte select, обеспечивающим гибкость системы и предотвращающим конфликтные ситуации при обращении к шине (см. табл. 2). В зависимости от состояния управляющих входов данные могут быть записаны/считаны как в 8-битном, так и в 16-битном формате. Устройство также поддерживает полностью статические операции. Внутренняя структура микросхемы памяти представлена на рисунке 3.


Рис. 3. Блок-схема микросхемы MR2A16A

Таблица 2. Функции выводов MR2A16A

Времена циклов чтения/записи/стирания малы, симметричны по длительности и составляют 35 нс. Диапазон рабочих напряжений микросхемы - 3-3,6 В, встроенная схема мониторинга питания предотвращает запись ячеек памяти при снижении уровня питающего напряжения более чем на 0,5 В относительно рабочего. Рабочий температурный диапазон микросхем MRAM образца 2006 г. составляет 0-70°С. Во втором квартале 2007 г. компания Freescale начнет серийный выпуск микросхем MR2A16A с рабочим диапазоном – 40-105°С. В третьем квартале 2007 г. компания планирует анонсировать новые продукты на базе технологии MRAM. Ожидается, что следующими в линейке микросхем будут модули памяти объемом 1 Мбит и 16 Мбит.

Микросхемы MR2A16A выпускаются в корпусе 44-TSOP (type-II) в соответствии с техническими условиями RoHS. В корпус микросхемы встроено защитное экранирование от внешних электромагнитных помех. Конфигурация выводов MR2A16A полностью соответствует микросхемам памяти типа SRAM, по принципу работы с памятью MRAM также схожа с SRAM. Поэтому чипы памяти MR2A16A могут применяться в существующих устройствах и системах, использующих память SRAM, без каких-либо изменений в схеме.

Данные сохраняются в ячейках за счет намагниченности, а не за счет заряда, что позволяет сохранять информацию без регенерации и без питающего напряжения 10 лет и более. Переключение состояния битов осуществляется без перемещения атомов и электронов внутри материалов, поэтому отсутствует эффект постепенной деградации внутренней структуры битовой ячейки и обеспечивается стабильность характеристик памяти во время всего срока службы микросхемы. Благодаря этому число циклов перезаписи памяти MRAM практически бесконечно (более 10 16), а структура ячеек памяти и рабочие характеристики не деградируют в процессе эксплуатации во всем диапазоне рабочих температур и напряжений. Эксперименты показали, что ячейки памяти MR2A16A выдерживают более 58 трлн. циклов записи и стирания, работая в наихудших эксплуатационных условиях.

До настоящего времени не было зарегистрировано ни одного сбоя в работе ячеек памяти, и эксперимент по тестированию количества циклов записи/стирания ячеек памяти MRAM продолжается. В ходе испытаний микросхемы MR2A16A работали на частоте 4 МГц при температуре окружающей среды 90°С и на частоте 28,5 МГц при температуре окружающей среды 70°С.

Области применения энергонезависимой памяти MRAM

На сегодняшний день основными факторами, сдерживающими начало массового применения памяти MRAM, являются стоимость микросхем, скудость линейки продуктов с различным объемом памяти, а также новизна технологии. Пока разработчикам доступна только одна микросхема объемом 4 Мбит. По мере удешевления технологии производства и появления новых продуктов MRAM от различных производителей стоимость элементов памяти будет стремительно снижаться. Однако уже сейчас можно говорить о многочисленных областях электронной промышленности, в которых использование магниторезистивной памяти будет экономически оправдано.

Наиболее высока потребность в памяти MRAM в коммерческих системах, где требуется сохранение данных при различных нештатных ситуациях, например аварийном отключении питающего напряжения. Эта память является также идеальным решением для различных регистраторов и устройств типа «черного ящика». Данные могут сохраняться на скоростях, сравнимых с памятью типа SRAM, при этом они не будут утеряны вследствие отключения электроэнергии.

Другим ключевым рынком применения памяти MRAM являются приложения, в которых используется память SRAM с батарейным резервным питанием либо NVSRAM (см. рис. 4). По экономической эффективности, техническим и потребительским параметрам замена памяти на MRAM в подобного рода приложениях оправдана более чем в 80% случаев.


Рис. 4. MRAM в качестве альтернативы памяти Battery Backed SRAM

Рынок устройств автомобильной электроники будет в числе первых и основных потребителей магниторезистивной памяти. Осталось дождаться появления микросхем MRAM с автомобильным либо промышленным температурным диапазоном, тем более что уже давно назрела потребность в более надежной, долговечной, быстрой и эффективной памяти, нежели распространенные ЭСППЗУ и флэш-память. В одних электронных системах автомобиля уже сейчас процесс записи не успевает за потоком исходных данных, в других данные необходимо сохранять достаточно часто - все это заставляет разработчиков систем идти на различные ухищрения.

Используя MRAM, автомобильные аварийные регистраторы также будут в состоянии собрать и хранить значительное количество данных непосредственно перед и во время аварии, что может быть крайне полезно, например, для страховых компаний.

К другим областям применения памяти MRAM можно отнести следующие:

  • персональные компьютеры, офисная техника (мобильные и стационарные ПК, принтеры, факсы, сканеры и т.п.);
  • мобильные, носимые устройства (сотовые телефоны, MP3-плееры, фото- и видеокамеры, КПК и т.п.);
  • замена ОЗУ с резервным батарейным питанием;
  • хранение первоначальных установок и программ загрузчиков в разнообразных устройствах;
  • энергонезависимые буферы хранения оперативной информации в серверах и RAID-массивах;
  • счетчики и расходомеры (электричество, тепло, вода и прочее);
  • авиационная техника, военные приложения;
  • охранно-пожарные системы (журналы событий и т.п.);
  • хранение данных в различном медицинском оборудовании;
  • расширение оперативной памяти в коммуникационных приложениях и приложениях, требующих частого обращения к обрабатываемым данным.

Перспективы развития

Компания Freescale планирует развивать продукты MRAM в двух направлениях: выпуск отдельных чипов памяти и интеграция в собственные 8-, 16- и 32-разрядные микроконтроллеры и микропроцессоры.

По мере совершенствования технологии магниторезистивной памяти архитектура встраиваемых систем подвергнется радикальной перемене. В настоящее время MRAM имеет наилучший потенциал для замены комбинаций различных типов памяти, например SRAM + флэш + ПЗУ, применяемых сейчас в большинстве микроконтроллеров и систем на кристалле, так как обладает достоинствами всех перечисленных типов. Таким образом, станет возможна архитектура микроконтроллеров с единственной универсальной памятью (singlememory architecture).

Через 3-5 лет возможно появление персональных компьютеров с магниторезистивной памятью. На первоначальной стадии начнется производство ПК, в которых флэшпамять для хранения базовой системы ввода/вывода (т.н. BIOS) будет заменена на память MRAM. В дальнейшем по мере увеличения объемов и скоростей работы MRAM начнется постепенная замена оперативной и кэш-памяти в ПК.

Уже сейчас появляются портативные ПК, в которых накопители на жестких дисках заменяются памятью типа флэш. Если в процессе развития технологии MRAM не возникнет ограничений на создание памяти объемом десятки и сотни гигабит в компактном форм-факторе, следует ожидать появления быстродействующих накопителей для хранения прикладного программного обеспечения и данных. Это даст возможность создавать персональные компьютеры и другие системы и устройства, которые будут загружаться практически мгновенно по сравнению, например, с нынешними ПК, в которых процесс загрузки занимает от десятков секунд до нескольких минут. Кроме того, появится возможность возобновлять выполнение программ после включения устройства с того момента, на котором оно было прервано при выключении напряжения питания.

В результате через несколько лет технология MRAM постепенно начнет не только осваивать новые области применения электронной памяти, но и сможет взять на себя значительную часть уже имеющегося рынка полупроводниковой памяти, заменяя распространенные сегодня энергонезависимые ЭСППЗУ, флэш, FRAM, а также наиболее популярные быстродействующие типы памяти, как статическая SRAM, динамическая DRAM и другие.

Министерство образования и науки Российской Федерации

Федеральное государственное образовательное учреждение высшего профессионального образования

« Южно-Уральский Государственный Университет »

Факультет « Энергетический »

Кафедра « ЭСИС »

Магниторезистивная оперативная память реферат по дисциплине« Информатика »

Проверил, (доцент) _______________ / Башмакова Н.Ю. / _______________ 20__г. Автор работы студент группы Э-164 _______________ / Кулагин А.Д. / _______________ 20__г. Реферат защищён с оценкой (прописью, цифрой) _____________________ _______________20__г.

Аннотация

Кулагин А.Д. Магниторезистивная оперативная память Э-164 13

Цель реферата – отразить процесс энергонезавсемости при отсутствии внешнего питания.

Задачи реферата – изучить свойства и назначения запоминающего устройства с произвольным доступом MRAM.

1 Введение 4

2 История создания технологии MRAM 5

3 Свойства магниторезистивной памяти 5

3.1 Преимущества 5

3.2 Недостатки 5

3.2.1 Сравнительные характеристики основных типов памяти 6

4 Структура и функционирование битовых ячеек MRAM 6

5 Микросхема памяти MR2A16A 8

5.1 Функции выводов MR2A16A 8

6 Области применения энергонезависимой памяти MRAM 9

7 Перспективы развития 10

8 Заключение 12

9 Библиографический список 13

  1. Введение

Магниторезистивная оперативная память (MRAM) - запоминающее устройство с произвольным доступом, которое хранит информацию при помощи магнитных моментов, а не электрических зарядов.

Важнейшее преимущество этого типа памяти - энергонезависимость, то есть способность сохранять записанную информацию при отсутствии внешнего питания.

  1. История создания технологии mram

История создания магниторезистивной памяти MRAM (Magnetoresistive Random Access Memory) насчитывает уже не один десяток лет. В частности, в России также проводились работы по созданию магниторезистивной памяти для применения в военной и аэрокосмической областях. Однако практически все попытки создания серийной памяти MRAM не приводили к появлению надежного продукта, пригодного для серийного производства.

Такие крупные фирмы, как IBM, Cypress, Toshiba, Renesas, Hitachi, Mitsubishi, Motorola и др., работали над созданием памяти более 10 лет. Компания Motorola приступила к исследованиям в области магниторезистивных структур в 1995 г. совместно с агентством перспективных исследований МО США (DARPA US). После отделения всего сектора полупроводниковых компонентов от Motorola в 2004 г. уже независимая компания Freescale Semiconductor продолжила работы по доведению продукта до серийного производства. В результате 10 июля 2006 г. был анонсирован законченный коммерческий продукт, использующий технологию MRAM, - автономный модуль MR2A16A с объемом памяти 4 Мбит.

Магниторезистивная память является революционной технологией, обладающей всеми необходимыми свойствами для того, чтобы стать действительно универсальной. Кроме того, она имеет ряд уникальных особенностей, открывающих широкие рыночные перспективы.

  1. Свойства магниторезистивной памяти

    1. Преимущества

    энергонезависимость;

    высокое быстродействие;

    не требуется регенерация ячеек.

    1. Недостатки

    сложности с существующими способами записи;

    большой размер ячейки памяти, из-за технологии записи;

    высокое энергопотребление по той же причине.

Магниторезистивная оперативная память

Магниторезистивная память – это один из перспективных типов оперативной памяти, пока еще не получивший широкого распространения, но обладающий рядом преимуществ, по сравнению с остальными типами оперативной памяти. В ближайшем будущем этот тип памяти, несомненно, приобретет большую популярность.

Давайте разберемся, как она работает. И начнем с устройства ячейки магниторезистивной памяти. Упрощенная структурная схема ячейки магниторезистивной памяти представлена на рисунке 1.

Каждая ячейка магниторезистивной памяти хранит 1 бит данных в магнитном элементе (MTJ 1), состоящем из двух ферромагнетиков, между которыми располагается тонкий слой диэлектрика.

Ферромагнетик – это вещество, которое обладает намагниченностью (при температуре ниже точки Кюри), даже в отсутствии внешнего магнитного поля.

Диэлектрик - это вещество, плохо проводящее электрический ток.

Причем один из ферромагнетиков (ферромагнетик F 2) – это постоянный магнит, намагниченный в определенном направлении, а другой ферромагнетик (ферромагнетик F 1) может изменять направление намагниченности под действием электрического поля. Если оба ферромагнетика имеют одинаковую направленность намагниченности, то считается, что в ячейке памяти храниться ноль. Если направления намагниченности ферромагнетиков перпендикулярны, то считается, что в ячейке памяти хранится единица.

Для изменения направления намагниченности ферромагнетика F 1 , необходимо подать ток в линии WC 1 и WL 1 . В точке пересечения этих линий, как раз там, где располагается магнитный элемент, создастся электрическое поле достаточной мощности, чтобы ферромагнетик F 1 изменил направление намагниченности. Остальные ячейки магниторезистивной памяти, располагающиеся вдоль строки и столбца, на которые подан ток, не изменят направления намагниченности, так как мощность поля, создаваемого только током в линии WC 1 , или только током в линии WL 1 , недостаточна.

Такой способ изменения намагниченности (записи данных в ячейку памяти) очень похож на принцип работы памяти на магнитных сердечниках, широко используемой во втором поколении ЭВМ.

Схематически описанная ячейка магниторезистивной памяти изображена на рисунке 2.

Однако запись данных в ячейки магниторезистивной памяти описанным выше способом требует создания мощного электрического поля, поэтому магнитные элементы соседних ячеек приходится располагать далеко друг от друга, а, следовательно, размер магниторезистивной памяти будет достаточно большим. Да и энергопотребление будет велико, особенно для применения такой памяти в мобильных вычислительных системах, даже с учетом того, что на хранение данных в ячейках магниторезистивной памяти энергия не расходуется.

По этой причине ведутся активные поиски альтернативных способов записи данных в магниторезистивную память, например, термическая запись, при которой ячейка памяти непосредственно перед записью нагревается, упрощая изменение направления намагниченности, или поэтапная запись с использованием антиферромагнетиков и многослойной ячейки памяти. Существуют и другие способы записи в магниторезистивную память, однако все они пока находятся на этапе создания опытных образцов и пока не готовы к использованию в массовом производстве.

Но в будущем этот тип памяти может вытеснить все остальные типы ОЗУ, так как потенциально обладает значительно лучшими характеристиками, как по скорости работы, так и по качеству и объемам хранимой информации. Хотя и сейчас эта память применяется, но, в основном, в больших научных и технических проектах. Так в 2008 году в японском искусственном спутнике SpriteSat была применена магниторезистивная память производства Freescale Semiconductor. А с апреля 2011 года доступны первые коммерческие микросхемы MRAM, ёмкостью 16 Мбит, и это только начало.

С чтением данных из магниторезистивной памяти все проще. Здесь уже существует вполне приемлемый способ, основанный на изменении электрического сопротивления при протекании тока между двумя слоями ферромагнетика, разделенного тонким слоем диэлектрика. Общее сопротивление будет выше при перпендикулярной ориентации намагниченности слоев диэлектрика. По величине протекающего через ячейку тока можно определить ориентацию намагниченности и, соответственно, определить содержание ячейки памяти.

Если вернуться к рисунку 2, то чтение данных из ячейки памяти будет организовано следующим образом:

  • на линию RL 1 подается ток, открывающий транзистор VT 1 и разрешающий чтение данных из ячейки памяти;
  • на линию WC 1 подается ток, проходящий через магнитный элемент MTJ 1 , а далее, через открытый транзистор VT 1 , – в устройство чтения данных, где по величине тока будет определено значение, хранящееся в ячейке памяти.

Давайте рассмотрим основные преимущества и недостатки магниторезистивной памяти.

Достоинства:

  • энергонезависимость;
  • высокое быстродействие (быстрее DRAM, но медленнее SRAM);
  • не требуется регенерация ячеек.

Недостатки:

  • сложности с существующими способами записи;
  • большой размер ячейки памяти, из-за технологии записи;
  • высокое энергопотребление по той же причине.

На этом закончим обзор оперативной памяти. Естественно, существуют и другие типы памяти и способы оперативного хранения информации, но они пока что мало распространены или вовсе существуют только в теории. Поэтому в этой статье мы их рассматривать не будем, но обязательно затронем эту тему в статьях, посвященных перспективам развития вычислительной техники.


Магниторезистивная оперативная память с переносом спинового момента (ST-MRAM) становится наиболее перспективной технологией для запоминающих устройств следующих поколений. ST-MRAM энергонезависима, так как сохраняет данные при выключении питания. Она быстра, а скорости чтения и записи сравнимы с DRAM, и даже с кэш SRAM. Кроме того, она эффективна по стоимости, так как использует небольшую однотранзисторную битовую ячейку и требует лишь два или три дополнительных этапа маскирования.

Однако MRAM имеет свои особенности. Давайте рассмотрим некоторые из наиболее распространенных заблуждений или мифов о MRAM.

1. Запись в ST-MRAM на 100% предсказуема и детерминирована.

Скорее всего, именно так и вы думаете. Ведь если вы записываете один триллион раз в хорошую ячейку SRAM или DRAM памяти, то, не считая программных ошибок или различных внешних событий, ячейка будет корректно записана один триллион раз. Однако MRAM отличается тем, что установка вектора магнитной поляризации является вероятностным событием - запись в ячейку MRAM один триллион раз практически всегда будет выполнена, но изредка - нет. Одна из самых больших проблем технологии MRAM, требующих решения, заключается в снижении частоты ошибок записи (write error rate - WER) до минимально возможного уровня, а также в исправлении тех немногих ошибок, которые все же будут возникать.

2. Я увидел в документации очень впечатляющую характеристику MRAM - быстродействие. При скоростях от 2 до 3 нс создается впечатление, что она сможет полностью заменить SRAM.

Характеристики MRAM могли быть оптимизированы. Например, увеличение напряжения записи улучшает как время переключения, так и упомянутый выше показатель WER. Но есть и обратная сторона. Повышенное напряжение существенно увеличивает потребление мощности и снижает срок службы - количество циклов записи до износа туннельного барьера. Как и для всех типов памяти, ключом к созданию MRAM является поиск правильного сочетания скорости, потребляемой мощности, срока службы и времени сохранения информации, отвечающего требованиями приложения.

В этом отношении ST-MRAM имеет большие перспективы. Информация в ней не разрушается при выключенном питании. Ее быстродействие сопоставимо с DRAM, и даже кэш SRAM. Наконец, она недорога, поскольку использует небольшую однотранзисторную битовую ячейку и в производстве требует лишь двух или трех дополнительных операций литографии.

3. Современная MRAM - это практически та же память на магнитных сердечниках, которая использовалась несколько десятилетий назад, только меньше.

В категорию «MRAM» входят три поколения устройств. К первому поколению относятся устройства памяти на магнитных сердечниках и другие MRAM-устройства с малой степенью интеграции, в которых используется «коммутация поля» с двумя разновидностями технологий ST-MRAM. MRAM второго поколения - «плоскостные» - используют векторы магнитной поляризации, параллельные плоскости магнитного слоя (то есть, поверхности пластины). В «перпендикулярных» MRAM третьего поколения вектор магнитной индукции перпендикулярен плоскости пластины. Сегодня основные усилия разработчиков MRAM сосредоточены на устройствах с перпендикулярным магнитным туннельным переходом (magnetic-tunnel-junction - MTJ).

4. MRAM потребляет очень много энергии.

На самом деле потребляемая MRAM мощность крайне мала. Например, по сравнению с флэш-памятью, для записи бита данных в ST-MRAM требуется энергии в 1000…10000 раз меньше, что делает ее идеальной малопотребляющей памятью для устройств Интернета вещей. Используемая в приложениях SRAM, MRAM не расходует энергию на хранение данных. А в приложениях, аналогичных DRAM, MRAM не нуждается в энергии ни для хранения, ни для обновления данных. Таким образом, экономия мощности оказывается весьма значительной.

5. MRAM - самая сложная из всех технологий памяти следующего поколения.

На пути любой развивающейся технологии памяти возникают определенные сложности, и, конечно же, после прочтения предыдущих пунктов может показаться, что MRAM также сложна. Вероятностная природа MRAM создает проблемы для ее использования, и некоторые компании все еще борются над полным устранением битовых ошибок.

Тем не менее, в сравнении с другими технологиями памяти следующего поколения, принципы MRAM намного лучше изучены и коммерциализированы, поскольку эта технология пришла из индустрии дисковых накопителей. Магнитный туннельный переход в считывающей головке дискового накопителя подобен MTJ в плоской битовой ячейке MRAM. Ежегодно изготавливаются и устанавливаются во вращающиеся дисковые приводы многие сотни миллионов таких головок. И, возможно, самое важное - в MRAM все физические материалы статичны. Не требуется ни перемещения атомов, как в RRAM (резистивная память с произвольным доступом - ред.), ни изменения состояния материалов, как в ОЗУ на фазовых переходах.

6. MRAM является первичной памятью, имеющей скорость кэша SRAM и время хранения FLASH.

Это утверждение истинно, если каждую его часть рассматривать по отдельности, так как время хранения и скорость записи находятся в противоречии - увеличение одного приводит к ухудшению другого. Также верно, что по характеристикам хранения MRAM может не уступать флеш памяти, или превосходить ее, и при этом быть на несколько порядков более долговечной, быстрой и экономичной. Кроме того, хотя устройства MRAM и могут работать на скоростях кэш, при времени хранения, сопоставимом с флеш памятью, MRAM окажутся в несколько раз медленнее - их скорости записи, возможно, будут в диапазоне от 40 до 100 нс. Между тем, кэш MRAM с быстродействием менее 10 нс невозможно изготовить по обычной технологии ST-MRAM так, чтобы иметь время хранения больше секунд или, возможно, часов.

7. MRAM очень сложна в производстве.

На самом деле все этапы производства MRAM очень просты: послойное осаждение материалов, травление и формирование межсоединений. Конечно же, при изготовлении MRAM высокой плотности возникают определенные проблемы, связанные с разработкой материалов для внутренних слоев и процессом травления. Но однажды освоенная технология изготовления MRAM будет лишь немного дороже КМОП за счет всего двух или трех дополнительных операций литографии и связанных с ними производственных процессов.

8. Люди говорят о различных диаметрах магнитных туннельных переходов. Я думаю, что диаметр перехода должен соответствовать используемому техпроцессу.

Диаметр магнитного туннельного перехода слабо связан с топологическими нормами используемого техпроцесса. MTJ должен быть достаточно малым, чтобы соответствовать площади элементов, изготавливаемых в базовом техпроцессе, но обычно его размеры бывают намного больше. Например, в техпроцессе изготовления логических схем с проектными нормами 28 нм, скорее всего, будут использоваться MTJ диаметром от 40 до 60 нм. Выбор диаметра MTJ на самом деле достаточно сложен, поскольку многие его свойства меняются при уменьшении размеров устройства.

9. Оборудование для производства MRAM заимствуется из индустрии жестких дисков и не годится для крупносерийного изготовления полупроводников.

Сегодня TEL, Applied Materials, отделение Anelva группы Canon, Singulus, LAM и другие компании разрабатывают или поставляют оборудование для массового производства 300-мм пластин MRAM

10. Исходящее из MRAM магнитное поле будет нарушать работу расположенных ниже КМОП схем, так же как магнитные датчики и компасы в мобильных устройствах.

Поле небольшого столбика MTJ очень быстро спадает, и на глубине полевого транзистора им уже можно пренебречь.

11. Вероятность потери данных в памяти MRAM выше, чем в SRAM.

В устройствах SRAM и DRAM всегда существует вероятность потери данных из-за воздействия фонового ионизирующего излучения. И эта проблема усугубляется, поскольку размеры элементов постоянно уменьшаются. Для устройств хранения на основе MTJ MRAM такой проблемы не существует, так как по своей природе они невосприимчивы к ионизирующему излучению. Это значит, что технология MRAM, в сочетании с соответствующей КМОП технологией, идеальна для аэрокосмических приложений и других областей, где присутствует радиация.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то