Стек виды. Функция удаления элемента из «Стека» по данным. Пример стека вызовов

Стек - это феномен программирования и естественное решение. Стек сразу пришел в компьютерное дело и стал таким «родным», как будто именно с него все начиналось.

Без стека не работает процессор, нет рекурсии и эффективные вызовы функций организовать невозможно. Любой алгоритм может обойтись без очереди, списка, коллекции, массива или системы организованных объектов, но без памяти и стека не работает ничего, в том числе все перечисленное.

На заре начала: процессор, память и стек

Идеальная память обеспечивает адресацию прямо к значению - это уровни машины и языка высокой степени. В первом случае процессор последовательно перебирает адреса памяти и выполняет команды. Во втором случае программист манипулирует массивами. В обоих эпизодах есть:

  • адрес = значение;
  • индекс = значение.

Адрес может быть абсолютным и относительным, индекс может быть цифровым и ассоциативным. По адресу и индексу может находиться другой адрес, а не значение, но это детали косвенной адресации. Без памяти процессор работать не может, а без стека команд и данных - он, как лодка без весел.

Стопка тарелок - традиционная новелла о сути стека: понятие stack и перевод в общебытовом сознании. Нельзя взять тарелку снизу, можно брать только сверху, и тогда все тарелки будут целы.

Все, что последним приходит в стек, уходит первым. Идеальное решение. По сути, stack, как перевод одного действия в другое, трансформирует представления об алгоритме как последовательности операций.

Суть и понятие стека

Процессор и память - основные конструктивные элементы компьютера. Процессор исполняет команды, манипулирует адресами памяти, извлекает и изменяет значения по этим адресам. На языке программирования все это трансформируется в переменные и их значения. Суть стека и понятие last in first out (LIFO) остается неизменным.

Аббревиатура LIFO уже не используется так часто, как раньше. Вероятно потому, что списки трансформировались в объекты, а очереди first in first out (FIFO) применяются по мере необходимости. Динамика типов данных потеряла свою актуальность в контексте описания переменных, но приобрела свою значимость на момент исполнения выражений: тип данного определяется в момент его использования, а до этого момента можно описывать что угодно и как угодно.

Так, стек - что это такое? Теперь вы знаете, что это вопрос неуместный. Ведь без стека нет современного программирования. Любой вызов функции - это передача параметров и адреса возврата. Функция может вызвать другую функцию - это опять передача параметров и адреса возврата. Наладить механизм вызова значений без стека - это лишняя работа, хотя достижимое решение, безусловно, возможное.

Многие спрашивают: "Стек - что это такое?". В контексте вызова функции он состоит из трех действий:

  • сохранения адреса возврата;
  • сохранения всех передаваемых переменных или адреса на них;
  • вызова функции.

Как только вызванная функция исполнит свою миссию, она просто вернет управление по адресу возврата. Функция может вызывать любое количество других функций, так как ограничение накладывается только размером стека.

Свойства стека

Стек - это не абстрактный тип данных, а реальный механизм. На уровне процессора - это «движок», который уточняет и дополняет работу основного цикла процессора. Как битовая арифметика, стек фиксирует простые и очевидные правила работы. Это надежно и безопасно.

Характерные свойства стека - это его размер и длина элементов. На уровне процессора все определяется разрядностью, адресацией памяти и физикой доступа к ней. Интересная особенность и традиция: стек растет вниз, то есть в сторону уменьшения адресов памяти, а память программ и данных - вверх. Это обычно, но не обязательно. Здесь важен смысл - пришел последним, а ушел первым. Это удивительно простое правило позволяет строить интересные алгоритмы работы прежде всего на языках высокого уровня. Теперь вы не будете спрашивать, стек - что это такое.

Безукоризненная работа аппаратного обеспечения уже очень давно является нормой, но на передовом крае информационных технологий идея стека обретает новые и перспективные применения.

По сути не важно, что такое стек на уровне процессора. Это естественная составляющая архитектуры компьютера. Но в программировании стек зависит от конкретного применения и способностей программиста.

Массивы, коллекции, списки, очереди... Стек!

Часто люди задают вопрос: "Стек - что это такое?". "Программирование" и "систематизация" - интересные понятия: они не синонимы, но так тесно связаны. Программирование прошло очень быстро такой длительный путь, что достигнутые вершины кажутся идеальными. Скорее всего, это не так. Но очевидно другое.

Идея стека стала привычной не только на уровне различных языков программирования, но и на уровне их конструкций и возможностей по созданию типов данных. Любой массив имеет push и pop, а понятия "первый и последний элементы массива" стали традиционными. Раньше были просто элементы массива, а сегодня есть:

  • элементы массива;
  • первый элемент массива;
  • последний элемент массива.

Операция помещения элемента в массив сдвигает указатель, а извлечение элемента с начала массива или с его конца имеет значение. По сути это тот же стек, но в применении к другим типам данных.

Особенно примечательно, что популярные языки программирования не имеют конструкции stack. Но они предоставляют его идею разработчику в полном объеме.

– Игорь (Администратор)

В рамках данной статьи, я расскажу вам что такое стек , а так же для чего он нужен и где применяется.

Большое количество задач, связанных с информацией, поддаются типизированному решению. Поэтому нет ничего удивительного в том, что для многих из них уже давно придуманы методы, термины и описания. Например, нередко можно услышать такие слово, как стек. Звучит весьма сложно, однако все существенно проще.

Стек (stack) - это метод представления однотипных данных (можно просто называть типом) в порядке LIFO (Last In - First Out, что означает "первый вошел - последний вышел"). Стоит упомянуть, что в русской технике его так же называют "магазином". И речь тут не о продуктовом магазине, а о рожке с патронами для оружия, так как принцип весьма схож - первый вставленный патрон будет использован последним.

Примечание : Стоит знать, что у этого слова могут быть и другие значения. Поэтому если речь не касается компьютеров, то имеет смысл уточнить.

Чтобы лучше понять, приведу жизненный пример. Допустим у вас есть стопка листов. Каждый исписанный лист вы кладете рядом, а каждый следующий поверх остальных. Чтобы достать к примеру, самый первый лист из полученной стопки, вам необходимо вытащить все остальные листы. Вот по этому же самому принципу и устроен stack. То есть, каждый последний добавленный элемент становится верхним и чтобы достать, к примеру, самый первый элемент необходимо вытащить все остальные.

Для чего нужен стек? Основное предназначение это решение типовых задач, где необходимо поддерживать последовательность состояний чего-либо или где нужно инверсионное представление данных (то есть в обратную сторону).

В компьютерной сфере стек используется в аппаратных устройствах (например, процессоре), в операционной системе и многих программах. Если рассматривать пример, с которым знаком практически каждый, кто занимался программированием, то без стека не была бы возможна рекурсия, ведь при каждом повторном входе в функцию нужно сохранять текущее состояние на вершине, а при каждом выходе из функции быстро восстанавливать это состояния (то есть, как раз последовательность LIFO). А если копнуть еще глубже, то в принципе весь подход к запуску и выполнению программ устроен на принципе стека, где прежде чем следующая программа, запущенная из основной, будет выполняться, состояние предыдущей заносится в стек, чтобы когда запущенное приложение или подпрограмма закончила выполняться, предыдущая программа нормально продолжила выполняться с места остановки.

Какие операции у stack? Основных операций всего две:

1. Добавление элемента в вершину стека называется push

2. Извлечения верхнего элемента называется pop

Но, так же периодически можно встретить реализацию операции чтения верхнего элемента без его извлечения - называется peek .

Как организуется стек? Обычно стек реализуется двумя вариантами:

1. С помощью массива и переменной, которая указывает на ячейку с вершиной стека

2. С помощью связанных списков

У каждого из этих 2-х вариантов есть свои плюсы и минусы. Например, связанные списки более безопасны в плане применения, так как каждый добавляемый элемент помещается в динамически созданную структуру (нет проблем с количеством элементов - нет дырок безопасности, позволяющих свободно перемещаться в памяти программы). Однако, в плане хранения и быстроты использования они менее эффективны (требуют дополнительное место для хранения указателей; разбросаны в памяти, а не расположены друг за другом, как в массивах).

Теперь, вы знаете что такое стек, а так же зачем он нужен и для чего применяется.

Стек

Стек - самая популярная и, пожалуй, самая важная структура данных в программировании. Стек представляет собой запоминающее устройство, из которого элементы извлекаются в порядке, обратном их добавлению. Это как бы неправильная очередь, в которой первым обслуживают того, кто встал в нее последним. В программистской литературе общепринятыми являются аббревиатуры, обозначающие дисциплину работы очереди и стека. Дисциплина работы очереди обозначается FIFO, что означает первым пришел - первым уйдешь (First In First Out). Дисциплина работы стека обозначается LIFO, последним пришел - первым уйдешь (Last In First Out).

Стек можно представить в виде трубки с подпружиненым дном, расположеной вертикально. Верхний конец трубки открыт, в него можно добавлять, или, как говорят, заталкивать элементы. Общепринятые английские термины в этом плане очень красочны, операция добавления элемента в стек обозначается push, в переводе "затолкнуть, запихнуть". Новый добавляемый элемент проталкивает элементы, помещеные в стек ранее, на одну позицию вниз. При извлечении элементов из стека они как бы выталкиваются вверх, по-английски pop ("выстреливают").

Примером стека может служить стог сена, стопка бумаг на столе, стопка тарелок и т.п. Отсюда произошло название стека, что по-английски означает стопка. Тарелки снимаются со стопки в порядке, обратном их добавлению. Доступна только верхняя тарелка, т.е. тарелка на вершине стека . Хорошим примером будет также служить железнодорожный тупик, в который можно составлять вагоны.

Стек применяется довольно часто, причем в самых разных ситуациях. Объединяет их следующая цель: нужно сохранить некоторую работу, которая еще не выполнена до конца, при необходимости переключения на другую задачу. Стек используется для временного сохранения состояния не выполненного до конца задания. После сохранения состояния компьютер переключается на другую задачу. По окончании ее выполнения состояние отложенного задания восстанавливается из стека, и компьютер продолжает прерванную работу.

Почему именно стек используется для сохранения состояния прерванного задания? Предположим, что компьютер выполняет задачу A. В процессе ее выполнения возникает необходимость выполнить задачу B. Состояние задачи A запоминается, и компьютер переходит к выполнению задачи B. Но ведь и при выполнении задачи B компьютер может переключиться на другую задачу C, и нужно будет сохранить состояние задачи B, прежде чем перейти к C. Позже, по окончании C будет сперва восстановлено состояние задачи B, затем, по окончании B, - состояние задачи A. Таким образом, восстановление происходит в порядке, обратном сохранению, что соответствует дисциплине работы стека.



Стек позволяет организовать рекурсию, т.е. обращение подпрограммы к самой себе либо непосредственно, либо через цепочку других вызовов. Пусть, например, подпрограмма A выполняет алгоритм, зависящий от входного параметра X и, возможно, от состояния глобальных данных. Для самых простых значений X алгоритм реализуется непосредственно. В случае более сложных значений X алгоритм реализуется как сведение к применению того же алгоритма для более простых значений X. При этом подпрограмма A обращается сама к себе, передавая в качестве параметра более простое значение X. При таком обращении предыдущее значение параметра X, а также все локальные переменные подпрограммы A сохраняются в стеке. Далее создается новый набор локальных переменных и переменная, содержащая новое (более простое) значение параметра X. Вызванная подпрограмма A работает с новым набором переменных, не разрушая предыдущего набора. По окончании вызова старый набор локальных переменных и старое состояние входного параметра X восстанавливаются из стека, и подпрограмма продолжает работу с того места, где она была прервана.

На самом деле даже не приходится специальным образом сохранять значения локальных переменных подпрограммы в стеке. Дело в том, что локальные переменные подпрограммы (т.е. ее внутренние, рабочие переменные, которые создаются в начале ее выполнения и уничтожаются в конце) размещаются в стеке, реализованном аппаратно на базе обычной оперативной памяти. В самом начале работы подпрограмма захватывает место в стеке под свои локальные переменные, этот участок памяти в аппаратном стеке называют обычно блок локальных переменных или по-английски frame ("кадр "). В момент окончания работы подпрограмма освобождает память, удаляя из стека блок своих локальных переменных.

Кроме локальных переменных, в аппаратном стеке сохраняются адреса возврата при вызовах подпрограмм. Пусть в некоторой точке программы A вызывается подпрограмма B . Перед вызовом подпрограммы B адрес инструкции, следующей за инструкцией вызова B, сохраняется в стеке. Это так называемый адрес возврата в программу A. По окончании работы подпрограмма B извлекает из стека адрес возврата в программу A и возвращает управление по этому адресу. Таким образом, компьютер продолжает выполнение программы A, начиная с инструкции, следующей за инструкцией вызова. В большинстве процессоров имеются специальные команды, поддерживающие вызов подпрограммы с предварительным помещением адреса возврата в стек и возврат из подпрограммы по адресу, извлекаемому из стека. Обычно команда вызова назывется call, команда возврата - return.

В стек помещаются также параметры подпрограммы или функции перед ее вызовом. Порядок их помещения в стек зависит от соглашений, принятых в языках высокого уровня. Так, в языке Си или C++ на вершине стека лежит первый аргумент функции, под ним второй и так далее. В Паскале все наоборот, на вершине стека лежит последний аргумент функции. (Поэтому, кстати, в Си возможны функции с переменным числом аргументов, такие, как printf, а в Паскале нет.)

В Фортране-4, одном из самых старых и самых удачных языков программирования, аргументы передаются через специальную область памяти, которая может располагаться не в стеке, поскольку до конца 70-х годов XX века еще существовали компьютеры вроде IBM 360 или ЕС ЭВМ без аппаратной реализации стека. Адреса возврата также сохранялись не в стеке, а в фиксированных для каждой подпрограммы ячейках памяти. Программисты называют такую память статической в том смысле, что статические переменные занимают всегда одно и то же место в памяти в любой момент работы программы. При использовании только статической памяти рекурсия невозможна, поскольку при новом вызове предыдущие значения локальных переменных разрушаются. В эталонном Фортране-4 использовались только статические переменные, а рекурсия была запрещена. До сих пор язык Фортран широко используется в научных и инженерных расчетах, однако, современный стандарт Фортрана-90 уже вводит стековую память, устраняя недостатки ранних версий языка.

Мы используем всё более продвинутые языки программирования, которые позволяют нам писать меньше кода и получать отличные результаты. За это приходится платить. Поскольку мы всё реже занимаемся низкоуровневыми вещами, нормальным становится то, что многие из нас не вполне понимают, что такое стек и куча, как на самом деле происходит компиляция, в чём разница между статической и динамической типизацией, и т.д. Я не говорю, что все программисты не знают об этих понятиях - я лишь считаю, что порой стоит возвращаться к таким олдскульным вещам.

Сегодня мы поговорим лишь об одной теме: стек и куча. И стек, и куча относятся к различным местоположениям, где происходит управление памятью, но стратегия этого управления кардинально отличается.

Стек

Стек - это область оперативной памяти, которая создаётся для каждого потока. Он работает в порядке LIFO (Last In, First Out), то есть последний добавленный в стек кусок памяти будет первым в очереди на вывод из стека. Каждый раз, когда функция объявляет новую переменную, она добавляется в стек, а когда эта переменная пропадает из области видимости (например, когда функция заканчивается), она автоматически удаляется из стека. Когда стековая переменная освобождается, эта область памяти становится доступной для других стековых переменных.

Из-за такой природы стека управление памятью оказывается весьма логичным и простым для выполнения на ЦП; это приводит к высокой скорости, в особенности потому, что время цикла обновления байта стека очень мало, т.е. этот байт скорее всего привязан к кэшу процессора. Тем не менее, у такой строгой формы управления есть и недостатки. Размер стека - это фиксированная величина, и превышение лимита выделенной на стеке памяти приведёт к переполнению стека. Размер задаётся при создании потока, и у каждой переменной есть максимальный размер, зависящий от типа данных. Это позволяет ограничивать размер некоторых переменных (например, целочисленных), и вынуждает заранее объявлять размер более сложных типов данных (например, массивов), поскольку стек не позволит им изменить его. Кроме того, переменные, расположенные на стеке, всегда являются локальными.

В итоге стек позволяет управлять памятью наиболее эффективным образом - но если вам нужно использовать динамические структуры данных или глобальные переменные, то стоит обратить внимание на кучу.

Куча

Куча - это хранилище памяти, также расположенное в ОЗУ, которое допускает динамическое выделение памяти и не работает по принципу стека: это просто склад для ваших переменных. Когда вы выделяете в куче участок памяти для хранения переменной, к ней можно обратиться не только в потоке, но и во всем приложении. Именно так определяются глобальные переменные. По завершении приложения все выделенные участки памяти освобождаются. Размер кучи задаётся при запуске приложения, но, в отличие от стека, он ограничен лишь физически, и это позволяет создавать динамические переменные.

Вы взаимодействуете с кучей посредством ссылок, обычно называемых указателями - это переменные, чьи значения являются адресами других переменных. Создавая указатель, вы указываете на местоположение памяти в куче, что задаёт начальное значение переменной и говорит программе, где получить доступ к этому значению. Из-за динамической природы кучи ЦП не принимает участия в контроле над ней; в языках без сборщика мусора (C, C++) разработчику нужно вручную освобождать участки памяти, которые больше не нужны. Если этого не делать, могут возникнуть утечки и фрагментация памяти, что существенно замедлит работу кучи.

В сравнении со стеком, куча работает медленнее, поскольку переменные разбросаны по памяти, а не сидят на верхушке стека. Некорректное управление памятью в куче приводит к замедлению её работы; тем не менее, это не уменьшает её важности - если вам нужно работать с динамическими или глобальными переменными, пользуйтесь кучей.

Привет, я студент второго курса технического университета. После пропуска нескольких пар программирования по состоянию здоровья, я столкнулся с непониманием таких тем, как «Стек» и «Очередь». Путем проб и ошибок, спустя несколько дней, до меня наконец дошло, что это такое и с чем это едят. Чтобы у вас понимание не заняло столько времени, в данной статье я расскажу о том что такое «Стек», каким образом и на каких примерах я понял что это такое. Если вам понравится, я напишу вторую часть, которая будет затрагивать уже такое понятие, как «Очередь»

Теория

На Википедии определение стека звучит так:

Стек (англ. stack - стопка; читается стэк) - абстрактный тип данных, представляющий собой список элементов, организованных по принципу LIFO (англ. last in - first out, «последним пришёл - первым вышел»).

Достаточно полное определение, но возможно для новичков оно будет немного трудным для понимания.

Поэтому первое, на чем бы я хотел заострить внимание, это представление стека в виде вещей из жизни. Первой на ум мне пришла интерпретация в виде стопки книг, где верхняя книга - это вершина.


На самом деле стек можно представить в виде стопки любых предметов будь то стопка листов, тетрадей, рубашек и тому подобное, но пример с книгами я думаю будет самым оптимальным.

Итак, из чего же состоит стек.

Стек состоит из ячеек(в примере - это книги), которые представлены в виде структуры, содержащей какие-либо данные и указатель типа данной структуры на следующий элемент.
Сложно? Не беда, давайте разбираться.

На данной картинке схематично изображен стек. Блок вида «Данные/*next» и есть наша ячейка. *next, как мы видим, указывает на следующий элемент, другими словами указатель *next хранит адрес следующей ячейки. Указатель *TOP указывает на вершину стек, то есть хранит её адрес.


С теорией закончили, перейдем к практике.

Практика

Для начала нам нужно создать структуру, которая будет являться нашей «ячейкой»


Код на C++

struct comp { //Структура с названием comp(от слова component) int Data; //Какие-то данные(могут быть любыми, к примеру можно написать int key; char Data; так-же можно добавить еще какие-либо данные) comp *next;//Указатель типа comp на следующий элемент };


Новичкам возможно будет не понятно, зачем наш указатель - типа comp, точнее сказать указатель типа структуры comp. Объясню, для того чтобы указатель *next мог хранить структуру comp, ей нужно обозначить тип этой структуры. Другими словами указать, что будет хранить указатель.


После того как у нас задана «Ячейка», перейдем к созданию функций.

Функции

Функция создания «Стека»/добавления элемента в «Стек»

При добавлении элемента у нас возникнет две ситуации:

  • Стек пуст, и нужно создать его
  • Стек уже есть и нужно лишь добавить в него новый элемент
Функцию я назову s_push, перейдем к коду.

Код на C++

void s_push(comp **top, int D) { //функция типа void(ничего не возвращает) которая принимает указатль на вершину стека и переменную которая будет записываться в ячейку comp *q; //Создаем новый указатель q типа структуры comp. По сути это и есть наш новый элемент q = new comp(); //выделяем память для нового элемента q->Data = D; //Записываем необходимое число в Data элемента if (top == NULL) { //Если вершины нет, то есть стек пустой *top = q; //вершиной стека будет новый элемент } else //если стек не пустой { q->next = *top; //Проводим связь от нового элемента, к вершине. Тоесть кладем книжку на вершину стопки. *top = q; //Обозначаем, что вершиной теперь является новый элемент } }


Разберем чуть чуть по-подробнее.
Во-первых, почему функция принимает **top, то есть указатель на указатель, для того чтобы вам было наиболее понятно, я оставлю рассмотрение этого вопроса на потом. Во-вторых, по-подробнее поговорим о q->next = *top и о том, что же означает -> .


-> означает то, что грубо говоря, мы заходим в нашу структуру и достаем оттуда элемент этой структуры. В строчке q->next = *top мы из нашей ячейки достаем указатель на следующий элемент *next и заменяем его на указатель, который указывает на вершину стека *top. Другими словами мы проводим связь, от нового элемента к вершине стека. Тут ничего сложного, все как с книгами. Новую книгу мы кладем ровно на вершину стопки, то есть проводим связь от новой книги к вершине стопки книг. После этого новая книга автоматически становится вершиной, так как стек не стопка книг, нам нужно указать, что новый элемент - вершина, для этого пишется: *top = q; .

Функция удаления элемента из «Стека» по данным

Данная функция будет удалять элемент из стека, если число Data ячейки(q->Data) будет равна числу, которое мы сами обозначим.


Здесь могут быть такие варианты:

  • Ячейка, которую нам нужно удалить является вершиной стека
  • Ячейка, которую нам нужно удалить находится в конце, либо между двумя ячейками

Код на C++

void s_delete_key(comp **top, int N) {//функция которая принимает вершину top и число которое нужно удалить comp *q = *top; //создаем указатель типа comp и приравниваем(ставим) его на вершину стека comp *prev = NULL;//создаем указатель на предыдуший элемент, с начала он будет пустым while (q != NULL) {//пока указатель q не пустой, мы будем выполнять код в цикле, если он все же пустой цикл заканчивается if (q->Data == N) {//если Data элемента равна числу, которое нам нужно удалить if (q == *top) {//если такой указатель равен вершине, то есть элемент, который нам нужно удалить - вершина *top = q->next;//передвигаем вершину на следующий элемент free(q);//очищаем ячейку q->Data = NULL; //Далее во избежание ошибок мы обнуляем переменные в удаленной ячейке, так как в некоторых компиляторах удаленная ячейка имеет переменные не NULL значения, а дословно "Чтение памяти невозможно" или числа "-2738568384" или другие, в зависимости от компилятора. q->next = NULL; } else//если элемент последний или находится между двумя другими элементами { prev->next = q->next;//Проводим связь от предыдущего элемента к следующему free(q);//очищаем ячейку q->Data = NULL;//обнуляем переменные q->next = NULL; } }// если Data элемента НЕ равна числу, которое нам нужно удалить prev = q; //запоминаем текущую ячейку как предыдущую q = q->next;//перемещаем указатель q на следующий элемент } }


Указатель q в данном случае играет такую же роль, что и указатель в блокноте, он бегает по всему стеку, пока не станет равным NULL(while(q != NULL) ), другими словами, пока стек не закончится.

Для лучшего понимания удаления элемента проведем аналогии с уже привычной стопкой книг. Если нам нужно убрать книгу сверху, мы её убираем, а книга под ней становится верхней. Тут то же самое, только в начале мы должны определить, что следующий элемент станет вершиной *top = q->next; и только потом удалить элемент free(q);


Если книга, которую нужно убрать находится между двумя книгами или между книгой и столом, предыдущая книга ляжет на следующую или на стол. Как мы уже поняли, книга у нас-это ячейка, а стол получается это NULL, то есть следующего элемента нет. Получается так же как с книгами, мы обозначаем, что предыдущая ячейка будет связана с последующей prev->next = q->next; , стоит отметить что prev->next может равняться как ячейке, так и нулю, в случае если q->next = NULL , то есть ячейки нет(книга ляжет на стол), после этого мы очищаем ячейку free(q) .

Так же стоит отметить, что если не провести данную связь, участок ячеек, который лежит после удаленной ячейки станет недоступным, так как потеряется та самая связь, которая соединяет одну ячейку с другой и данный участок просто затеряется в памяти

Функция вывода данных стека на экран

Самая простая функция:


Код на C++

void s_print(comp *top) { //принимает указатель на вершину стека comp *q = top; //устанавливаем q на вершину while (q) { //пока q не пустой (while(q) эквивалентно while(q != NULL)) printf_s("%i", q->Data);//выводим на экран данные ячейки стека q = q->next;//после того как вывели передвигаем q на следующий элемент(ячейку) } }


Здесь я думаю все понятно, хочу сказать лишь то, что q нужно воспринимать как бегунок, он бегает по всем ячейкам от вершины, куда мы его установили вначале: *q = top; , до последнего элемента.

Главная функция

Хорошо, основные функции по работе со стеком мы записали, вызываем.
Посмотрим код:

Код на C++

void main() { comp *top = NULL; //в начале программы у нас нет очереди, соответственно вершины нет, даем ей значение NULL //Дальше начинаем добавлять цифры от 1 до 5 в наш стек s_push(&top, 1); s_push(&top, 2); s_push(&top, 3); s_push(&top, 4); s_push(&top, 5); //после выполнения функций в стеке у нас будет 54321 s_print(top);//выводим s_delete_key(&top, 4); //Затем удаляем 4, в стеке получается 5321 printf_s("\n");//переводим на новую строку s_print(top);//выводим system("pause");//ставим на паузу }


Вернемся к тому, почему же в функцию мы передавали указатель на указатель вершины. Дело в том, что если бы мы ввели в функцию только указатель на вершину, то «Стек» создавался и изменялся только внутри функции, в главной функции вершина бы как была, так и оставалась NULL. Передавая указатель на указатель мы изменяем вершину *top в главной функции. Получается если функция изменяет стек, нужно передавать в нее вершину указателем на указатель, так у нас было в функции s_push,s_delete_key. В функции s_print «Стек» не должен изменяться, поэтому мы передаем просто указатель на вершину.
Вместо цифр 1,2,3,4,5 можно так-же использовать переменные типа int.

Заключение

Полный код программы:


Код на C++

#include ; #include ; struct comp { //Структура с именем comp int Data; //Кикие то данные(могут быть любими, к примеру можно написать int key; char Data; или добавить еще какие то данные) comp *next;//Указатель типа comp на следующий эелемент }; void s_push(comp **top, int D) { //функция типа void(ничего не возвращает) которая принимает указатль на вершину стека и переменную которая будет записываться в ячейку comp *q; //Создаем новый указатель q, который приравниваем к вершине стека. По сути это и есть наш новый элемент q = new comp(); //выделяем память для нового элемента q->Data = D; //Записываем D в Data элемента if (top == NULL) { //Если вершины нет, тоесть стек пустой *top = q; //вершиной стека будет новый элемент } else //если стек не пустой { q->next = *top; //Проводим связь от нового элемента, к вершине. Тоесть кладем книжку на вершину стопки. *top = q; //Пишем, что вершиной теперь является новый элемент } } void s_delete_key(comp **top, int N) {//функция которая принимает вершину top и число которое нужно удалить comp *q = *top; //создаем указатель типа comp и приравниваем(ставим) его на вершину стека comp *prev = NULL;//создаем указатель на предыдуший элемент, с начала он будет пустым while (q != NULL) {//пока указатель q не путой, мы его будем проверять, если он все же пусть цикл заканчивается if (q->Data == N) {//если Data элемента равна числу, которое нам нужно удалить if (q == *top) {//если такой указатель равен вершине, то есть элемент, который нам нужно удалить - вершина *top = q->next;//передвигаем вершину на следующий элемент free(q);//очищаем ячейку q->Data = NULL; //Далее во избежание ошибок мы обнуляем переменные в удаленной ячейке, так как в некоторых компиляторах удаленная ячейка имеет переменные не NULL значения, а дословно "Чение памяти невозможно" или числа "-2738568384" или других, в зависимости от компилятора. q->next = NULL; } else//если элемент последний или находится между двумя другими элементами { prev->next = q->next;//Проводим связь от предыдущего элемента к следующему free(q);//очищаем ячейку q->Data = NULL;//обнуляем переменные q->next = NULL; } }// если Data элемента НЕ равна числу, которое нам нужно удалить prev = q; //запоминаем текущую ячейку как предыдущую q = q->next;//перемещаем указатель q на следующий элемент } } void s_print(comp *top) { //принимает указатель на вершину стека comp *q = top; //устанавливаем q на вершину while (q) { //пока q не пустой (while(q) эквивалентно while(q != NULL)) printf_s("%i", q->Data);//выводим на экран данные ячейки стека q = q->next;//после того как вывели передвигаем q на следующий элемент(ячейку) } } void main() { comp *top = NULL; //в начале программы у нас нет очереди, соответственно вершины нет, даем ей значение NULL //Дальше начинаем добавлять цифры от 1 до 5 в наш стек s_push(&top, 1); s_push(&top, 2); s_push(&top, 3); s_push(&top, 4); s_push(&top, 5); //после выполнения функций в стеке у нас будет 54321 s_print(top);//выводим s_delete_key(&top, 4); //Затем удаляем 4, в стеке получается 5321 printf_s("\n");//переводим на новую строку s_print(top);//выводим system("pause");//ставим на паузу }

Результат выполнения



Так как в стек элементы постоянно добавляются на вершину, выводиться элементы будут в обратном порядке



В заключение хотелось бы поблагодарить за уделенное моей статье время, я очень надеюсь что данный материал помог некоторым начинающим программистам понять, что такое «Стек», как им пользоваться и в дальнейшем у них больше не возникнет проблем. Пишите в комментариях свое мнение, а так же о том, как мне улучшить свои статьи в будущем. Спасибо за внимание.

Теги: Добавить метки

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то