Термометр на Arduino с температурным датчиком LM35. Датчик температуры Arduino DS18B20

Узнайте, как использовать RF модуль 433 МГц совместно с ATMega328P-PU. В данной статье мы соберем схему из датчика DHT11 и радиочастотного передатчика. А также соберем приемное устройство с радиоприемником 433 МГц и LCD дисплеем.

Что нам потребуется

  • компьютер с установленной Arduino IDE (я использую версию 1.6.5);
  • библиотека VirtualWire (ссылка ниже);
  • ATMega328P;
  • программатор AVR MKII ISP;
  • датчик температуры и относительной влажности воздуха DHT11 ;
  • компоненты из перечня элементов, приведенного ниже.

Введение

В данной статье я покажу вам, как собрать устройство, которое измеряет температуру и относительную влажность воздуха и посылает измеренные значения с помощью стандартного радиочастотного модуля 433 МГц. Датчик температуры и влажности, используемый в устройстве, - это DHT11.

Существует множество способов передачи небольшого объема данных с помощью Arduino или контроллеров ATMega. Один из них использует уже готовую библиотеку, подобную RCSwitch, Radiohead или VirtualWire. Кроме того, можно отправить необработанные данные с помощью встроенного в микроконтроллер модуля UART. Но использовать встроенный модуль UART не рекомендуется, так как приемник будет собирать и все помехи, и микроконтроллер будет работать не так, как предполагалось. В данной статье для передачи и приема данных я использую библиотеку VirtualWire. Эта библиотека работает с Arduino IDE 1.6.2 и 1.6.5.

Модуль передатчика 433 МГц, когда не передает данные, всё равно излучает радиочастотные колебания и передает шум. Он также может создавать помехи другим радиочастотным устройствам. Чтобы не допустить этого, я включаю его, когда необходимо передать данные, и выключаю его, когда передача закончена.

Аппаратная часть

Нам необходимы две структурные схемы. Одна для передающего устройства, вторая для приемного.

Передатчик

Нам необходимы:

  • способ прошивки микроконтроллера → ISP;
  • датчик для измерения температуры и влажности → DHT11;
  • микроконтроллер для обработки данных → ATMega32p;
  • способ беспроводной передачи данных → радиочастотный модуль 433 МГц.

Приемник

Нам необходимы:

  • способ приема радиосигнала → радиочастотный модуль 433 МГц;
  • способ обработки принятых данных → Arduino Mega;
  • способ отображения температуры и влажности → 16x2 LCD.

Принципиальные схемы

Передатчик


Передающая часть беспроводного термометра на ATMega328p
()

В данном примере я не буду выводить неиспользуемые выводы микроконтроллера на внешние контакты термометра, после чего их можно было бы использовать для дальнейшего усовершенствования устройства. Здесь мы рассматриваем лишь идею для устройства и соберем его только на макетной плате.

Приемник



(для увеличения масштаба можно кликнуть по картинке правой кнопкой мыши и выбрать «Открыть ссылку/изображение в новой вкладке/новом окне» )

Пожалуйста, обратите внимание, что приемник построен на базе платы Arduino Mega, которая не изображена на схеме. Для подключения платы Arduino Mega соедините с ней радиочастотный модуль и LCD дисплей согласно метка на схеме.

Перечень элементов

Передатчик


Перечень элементов передающей части беспроводного термометра на ATMega328p
(для увеличения масштаба можно кликнуть по картинке правой кнопкой мыши и выбрать «Открыть ссылку/изображение в новой вкладке/новом окне» )

Приемник



(для увеличения масштаба можно кликнуть по картинке правой кнопкой мыши и выбрать «Открыть ссылку/изображение в новой вкладке/новом окне» )

Программа

Программа передатчика

Сперва рассмотрим программу передающей части:

#include // Определение #define dhtPin 4 #define dhtType DHT11 #define txPowerPin 8 // Использование библиотеки DHT DHT dht(dhtPin, dhtType); // Переменные char msg0; char msg1; int tem = 0; int hum = 0; // Функция первоначальной настройки - выполняется только один раз при включении void setup() { pinMode(txPowerPin, OUTPUT); pinMode(txPowerPin, LOW); vw_setup(4800); // Скорость соединения VirtualWire vw_set_tx_pin(9); // Вывод передачи VirtualWire } // Функция цикла - выполняется всегда void loop() { digitalWrite(txPowerPin, HIGH); hum = dht.readHumidity(); // Переменная хранит влажность tem = dht.readTemperature(); // Переменная хранит температуру itoa(hum, msg1, 10); // Преобразование влажности в массив char itoa(tem, msg0, 10); // Преобразование температуры в массив char strcat(msg0, msg1); // Сложение/объединение двух массивов vw_send((uint8_t *)msg0, strlen(msg0)); // Передача сообщения vw_wait_tx(); // Ждем завершения передачи digitalWrite(txPowerPin, LOW); delay(5000); // Ждем 5 секунд и повторяем всё снова }

Для передачи влажности и температуры в одном сообщении я соединяю их вместе. Сначала данные считываются в переменную как целые числа, потом целые числа преобразовываются в массив символов, а затем они соединяются друг с другом. На приемной стороне данные будут разделены на отдельные символы. Делая это, я ограничиваю себя двумя цифрами градусов. Если датчик находится в среде с температурой менее 10°C, я буду получать на дисплее символы мусора. Например, если температура составляет 20°C, а влажность - 45%, то будет передаваться сообщение 2045, и всё хорошо. Если температура равна 9°C, а влажность - 78%, то передастся сообщение 978x, где «x» - случайный символ. Поэтому, если вы будете собирать данный беспроводной термометр, я советую вам изменить программу для передачи правильных данных, когда температура будет меньше 10°C.

Программа приемника

// Подключаем необходимые библиотеки #include #include // Определение подключение LCD #define RS 9 #define E 10 #define D4 5 #define D5 6 #define D6 7 #define D7 8 LiquidCrystal lcd(RS, E, D4, D5, D6, D7); // Отрисовка символа градусов byte degreesymbol = { B01100, B10010, B10010, B01100, B00000, B00000, B00000, B00000 }; // Переменные int tem = 0; int i; // Функция первоначальной настройки - выполняется только один раз при включении void setup() { lcd.begin(16,2); // Инициализация LCD lcd.createChar(1, degreesymbol); // Создание символа градусов в месте 1 Serial.begin(9600); // Для отладки vw_setup(4800); // Скорость соединения VirtualWire vw_rx_start(); // Готовность для приема vw_set_rx_pin(2); // Вывод приема VirtualWiore lcd.clear(); // Очистить LCD } // Функция цикла - выполняется всегда void loop() { uint8_t buf; // Переменная для хранения принятых данных uint8_t buflen = VW_MAX_MESSAGE_LEN; // Переменная для хранения длины принятых данных lcd.setCursor(0,0); lcd.print("Temp: "); if (vw_get_message(buf, &buflen)) // Если данные приняты { for (i=0;i<2;i++) // Получить два первых байта { Serial.write(buf[i]); // Для отладки lcd.write(buf[i]); // Вывести первые байты на LCD } Serial.println(); // Для отладки lcd.write(1); // Вывести символ градусов на LCD lcd.print(" C"); lcd.setCursor(0,1); lcd.print("Hum: "); for (i=2;i<4;i++) // Получаем последние два байта { Serial.write(buf[i]); // Отладка lcd.write(buf[i]); // Вывести последние байты на LCD } lcd.print("% RH"); } }

Интересный способ использования библиотеки LiquidCrystal - это создание пользовательских символов. С помощью createChar я создал символ градусов. Таким же способом вы можете создать и свои собственные символы. Чтобы создать пользовательский символ или значок, вам необходимо объявить его, как массив из восьми байт, и «нарисовать», какие пиксели будут включены (1 - включен, 0 - выключен).

О цифровых термометрах на основе Arduino было сказано немало. Все они либо подключались к компьютеру, либо выводили температуры сразу на дисплей.
Но мне был нужен уличный термометр, который автономно и отправляет данные на сайт. Итак, приступим.

Что нам понадобится:
  • Arduino Duemilanove (Freeduino 2009)
  • Ethernet Shield v2
  • цифровой датчик температуры - DS18B20
  • вентилятор для корпуса (120 мм)
  • банка от водоэмульсионки или клея ПВА (2 литра)
  • светодиод
  • витая пара
Задачи
Опрашивать датчик температуры по шине 1-Wire и каждые 3 секунды самостоятельно отправлять результаты на Web-сервер, на котором они будут храниться.
Алгоритм работы устройства:
  1. присваиваем нашему Ethernet Shield`у MAC адрес и ip-адрес
  2. инициализируем соединение с сервером на 80 порт
  3. получаем данные с цифрового датчика температуры, по 1-Wire шине
  4. формируем GET запрос
  5. отправляем GET запрос
  6. разрываем соединение
Исходный код скетча:
Комментарии по ходу кода должны внести ясность.
include
// Библиотеки ниже нет в стандартной поставке среды разработки Arduino.
// придётся её скопировать.
include

// MAC-адрес нашего устройства
byte mac = { 0x00, 0x3A, 0xF1, 0x19, 0x69, 0xFC };
// ip-адрес устройства
byte ip = { 192, 168, 1, 156 };
// ip-адрес удалённого сервера
byte server = { 79, 140, 28, 20 }; // измените на свой
char temp;
byte isdata=0;

Client client(server, 80); // 80-порт.
DallasTemperature tempSensor;

void setup()
{
Ethernet.begin(mac, ip); // Инициализируем Ethernet Shield
tempSensor.begin(7); // Датчик температуры на 7-й пин
Serial.begin(9600); // Скорость консольного порта 9600 (пригодится для отладки)
}

void loop()
{
delay(3000); // задержка в 3 сек.
// Соединяемся
if (client.connect()) {
Serial.println("connecting..." ); // Serial.println для отладки. Лучше его оставить, на всякий случай, потом будет легче понять, в чём проблема.
// Обработчик ошибок датчика
switch (tempSensor.isValid())
{
case 1:
Serial.println("Invalid CRC" ); // ошибка контрольной суммы
tempSensor.reset(); // сбросить девайс
return ;
case 2:
Serial.println("Invalid device" ); // какой-то "левый" датчик:)
tempSensor.reset(); // сбросить девайс
return ;
}

Serial.println("connected" );
char buf;
float f=tempSensor.getTemperature(); // получаем температуру

Serial.println(tempSensor.getTemperature());

// Ниже извращения с отделением дробной части и целой. Почему-то Arduino не хочет работать с float.
// Вместо числа вставляет вопросик. Наверное, виной тому отсутствие аппаратной поддержки работы с
// числами с плавающей запятой в Arduino. Буду рад увидеть более красивое решение в комментариях.
int temp1 = (f - (int )f) * 100; // выделяем дробную часть
// Составляем GET запрос. Переменная code нужна для того, чтобы вражеский термометр не слал какие попало значения.
// проверяется на стороне Web-сервера.
sprintf(buf, "GET /class/backend/meteo.php?temp=%0d.%d&code=123456 HTTP/1.0" , (int )f, abs(temp1));

Serial.println(buf);
client.println(buf); // Отправляем GET запрос
client.println("Host: opck.info" ); // Указываем, какой конкретно host на данном ip нас интересует.
client.println();

} else {
Serial.println("connection failed" );
}

while (client.available()) {
isdata=1;
char c = client.read(); // Читаем, что нам ответил Web-сервер
Serial.print(c);

if (!client.connected()) {
isdata=0;
Serial.println();
Serial.println("disconnecting." );
client.stop(); // Завершаем соединение
}
}


Сборка устройства:
  1. первую «ногу» датчика цепляем на «минус» GND
  2. вторую «ногу» (DQ) на 7-й пин
  3. третью на «плюс»
  4. вторую и третью нужно соединить резистором на ~ 4,7 К. Но я заменил резистор на светодиод и получил индикатор обращения к шине датчика (ВНИМАНИЕ! Без резистора или светодиода работать ничего не будет. Не забудьте!)

По идее, вот и всё. Должно работать.
Работает, но боевые условия показали, что когда падает солнечный свет на датчик, тот может нагреваться и показывать температуру гораздо выше реальной. Всё правильно - он покажет температуру на солнце. А нам нужна температура воздуха.

В первый раз для этого был собран корпус из-под банки от кофе, обёрнутый в фольгу. Но это ничем не помогло.

Изучение фотографий реальных метео-станций помогло найти решение. Корпус для датчика должен быть больше, и к тому же иметь активную вентиляцию для таких случаев.

Делаем корпус для датчика
Подходящей по размеру оказалась банка от водоэмульсионной краски (такие же бывают из-под клея ПВА, объёмом 2-3 литра). В нижней части банки делаем отверстие под вентилятор. И прикрепляем его к банке. В центре банки размещаем площадку под датчики, диаметром немного меньшим самой банки, чтобы воздух мог циркулировать.
Несколько фото:

Как вы помните, резистор я заменил светодиодом, поэтому делаем и для него отверстие, чтобы всегда было видно работу устройства.

Крышка от банки нам не нужна, вместо неё нужен навес, такой, чтобы и воздух пропускал, и чтобы атмосферные осадки не попадали внутрь (датчик-то будет расположен на улице).

Корпус для Arduino я сделал из пластмассовой коробки от mp3-плеера Explay C360.

Backend, принимающий данные:
На стороне сервера работает скрипт, к которому обращается термометр. Скрипт проверяет правильность секретного кода, чтобы показания нельзя было подменить.
А затем добавляет новую запись в таблицу MySql. Потом эти данные можно выводить как угодно. При этом каждую минуту данные за прошедшую минуту усредняются и добавляются в другую таблицу.
Нужно это для того, чтобы:
1. проще было делать выборки в базе (не правда ли, удобнее указать конкретную минуту и получить результат)
2. выборки были быстрее (за год ~500 000 записей вместо 10 000 000)

Во время длительной работы датчика обнаружилась проблема, иногда он самопроизвольно (раз в 3-4 часа) выдаёт рандомное значение. Поэтому я добавил проверку на изменение температуры больше чем на 1 градус в течении 15 секунд. Такие значения игнорируются.

Недостатки:
Точность датчика 0.5* С, что для меня недостаточно. Но есть способ улучшить его характеристики. Понадобится ещё один, или более датчиков (желательно из разных партий). Получаем данные со всех датчиков и считаем среднее арифметическое. Так можно добиться точности до сотых градуса.
Планы на будущее:
  • датчик влажности
  • датчик давления
  • датчик скорости ветра
  • датчик освещённости
  • поставить несколько таких в городе и делать свои прогнозы погоды
  • питать Arduino по Power over Ethernet
  • автоматизировать включение и частоту вращения вентилятора в зависимости от освещения
  • удалённое управление
  • сброс данных на случай отсутствия связи (для меня это критично)
Известные мне недостатки:
- высокая цена - 2180 руб. (Freeduino 2009 (800 р.) + Ethernet Shield v2 (1300 р.) + 1 датчик (80 р.))
- если вентилятор включить слишком быстро, то он сам вносит погрешность в температуру, обдувая датчик. Он не должен сдувать, а лишь проталкивать воздух.

В этом уроке мы будем использовать датчик температуры DS18B20 с Arduino UNO для создания термометра. Датчик DS18B20 является хорошим вариантом, когда в проекте с высокой точностью требуется хорошая реакция. Мы покажем как подключить DS18B20 к вашему и отобразить данные температуры на ЖК-дисплее 16x2.

Датчик DS18B20 взаимодействует с Arduino через 1-проводную шину. По определению для связи с Arduino требуется только одна линия данных (и земля).

Каждый DS18B20 имеет уникальный 64-битный последовательный код или адрес, который позволяет нескольким DS18B20s работать на той же однопроводной шине. Поэтому использование микропроцессора упрощает управление несколькими DS18B20, распределенными по большой площади. Приложения для этой функции включают в себя экологический контроль, системы контроля температуры в зданиях и механическом оборудовании.

Особенности DS18B20

  • Необходим только один однопроводный интерфейс для связи между микроконтроллером и датчиком.
  • Требуется только один внешний компонент: резистор 4,7 кОм.
  • Может питаться от линии передачи данных напрямую, требуя напряжения от 3,0 до 5,5 В.
  • Каждое устройство имеет уникальный 64-битный последовательный код, хранящийся на встроенном ПЗУ.
  • Может измерять температуру в диапазоне от -55° C до + 125° C (от -67° F до + 257° F).
  • Точность ± 0,5° C в диапазоне от -10° C до + 85° C.

В этом проекте используется DS18B20, который поставляется в форме температурного зонда, который является водонепроницаемым. Использование водонепроницаемого датчика расширяет возможности - датчик температуры сможет измерить температуру жидкостей, таких как вода, химикаты, чай и кофе.

Требования к комплектующим

Требования к оборудованию для вашего термометра достаточно стандартные, нам пригодятся:

  • ЖК-дисплей 16х2
  • Датчик температуры DS18B20
  • Провода для перемычек
  • Резистор 1K
  • Макетная плата

Схема соединения

Сделайте соединения согласно приведенной ниже схеме.

Соединяем датчик и Ардуино

  • VCC -> Arduino 5V, плюс резистор 4,7K, идущий от VCC к Data
  • Data -> Пин 7 Arduino
  • GND -> GND Arduino

Соединения для ЖК-дисплея и Arduino UNO

  • Пин 1 -> GND
  • Пин 2 -> VCC
  • Пин 3 -> Arduino Пин 3
  • Пин 4 -> Arduino Пин 33
  • Пин 5 -> GND
  • Пин 6 -> Arduino Пин 31
  • Пин 7-10 -> GND
  • Пин 11 -> Arduino Пин 22
  • Пин 12 -> Arduino Пин 24
  • Пин 13 -> Arduino Пин 26
  • Пин 14 -> Arduino Пин 28
  • Пин 15 -> VCC через резистор 220 Ом
  • Пин 16 -> GND

Подключите потенциометр, как показано выше, к контакту 3 на ЖК-дисплее, для управления контрастностью.

Этот проект работает на температурах до 125° C. В случае наличия некоторого диссонанса в значении показанной температуры дважды проверьте соединения с резистором, подключенным к DS18B20. После соединения всего, что описано выше, мы можем перейти к программированию.

Исходный код для термометра

Перед загрузкой исходного кода вам нужно настроить две библиотеки, необходимые для запуска этого кода в среде Arduino.

  • Первая библиотека называется - OneWire ().
  • Вторая библиотека называется - DallasTemperature ().

После скачивания обеих библиотек переместите файлы в папку библиотек Arduino по умолчанию. Затем скопируйте код в и загрузите его после двойной проверки правильности подключения вашего датчика.

//Code begins #include #include #include #define ONE_WIRE_BUS 7 OneWire oneWire(ONE_WIRE_BUS); DallasTemperature sensors(&oneWire); float tempC = 0; float tempF = 0; LiquidCrystal lcd(12,11,5,4,3,2); void setup() { sensors.begin(); lcd.begin(16,2); lcd.clear(); pinMode(3, OUTPUT); analogWrite(3, 0); Serial.begin(9600); } void loop() { sensors.requestTemperatures(); tempC = sensors.getTempCByIndex(0); tempF = sensors.toFahrenheit(tempC); delay(1000); Serial.println(tempC); lcd.setCursor(0,0); lcd.print("C: "); lcd.print(tempC); lcd.print(" degrees"); lcd.setCursor(0,1); lcd.print("F: "); lcd.print(tempF); lcd.print(" degrees"); }

Примерно это выглядит так:

Мы смогли измерить температуру до 100°C с помощью этого датчика! Он очень отзывчив.

После того, как вы создали проект, потестируйте устройство, погрузив датчик в горячую и холодную воду.

Казалось бы, что может быть интересного и нового в измерении температуры при помощи Ардуино? Написаны сотни статей, объемом десятки мегабайт, может чуть меньше, а может и чуть больше скетчей… А вот еще и моя статья. Зачем? Честно говоря, я тоже думал, что вопрос этот «разжеван вдоль и поперек», пока сам не столкнулся с измерением температуры. А тут полезло. Что-то не работает, что-то работает не так, возникает масса вопросов, на которые ответы приходится «выцарапывать» перерывая половину интернета, причем не только русскоязычного. Данная статья, в отличие от моих прошлых статей на данном ресурсе гораздо более практичная, но начнем сначала. Зачем, собственно измерять температуру чем-то новым, когда термометров продается – на любой вкус и кошелек? А дело в том, что температуру, зачастую, приходится не только измерять, но потом, на основе полученных данных что-то делать, либо просто регистрировать с целью отслеживания изменений. Соединив, при помощи , термодатчик с релейным блоком получим простейший терморегулятор, а если данный терморегулятор сможет отслеживать температуру по нескольким точкам (зонам) и действовать по определенному алгоритму получим довольно серьезный прибор, промышленный аналог которого стоит сопоставимо со стоимостью неплохого ноутбука. Однако, целью данной статьи не является создание заумно-сложных устройств. Цель в другом - предложить новичку простое, проверенное на практике, решение для измерения температуры. Также, как и предыдущие статьи эта будет состоять из частей. В каждой из которых будет рассмотрен свой вопрос. Части будут идти по возрастанию сложности.

Часть первая. Простейшая, но тоже полезная

Итак, от слов к делу! Для реализации данного проекта на первом этапе нам понадобится цифровой термодатчик DS18B20, ARDUINO UNO, резистор на 4,7 кОм (мощность особого значения не имеет, от 0,125 до 2 Вт целиком подходит, но имеет значение точность, чем точнее – тем лучше), кусочек 3-жильного провода (и отдельные проводки на этапе эксперимента тоже подойдут), а еще - несколько штырьков для платы. Хотя и без них тоже можно, если аккуратно, конечно. Выбор данного датчика не случаен. Дело в том, что он может отслеживать температуру в диапазоне от -55оС до +125оС с точностью в основной части диапазона 0,5оС, что вполне хватает для управления, как бытовым отоплением, так и разнообразными морозильными и холодильными установками, а также банями, саунами, теплицами, инкубаторами, рассадниками и прочим. Напоминаю, что ARDUINO UNO можно свободно приобрести здесь: или здесь: , термодатчик DS18B20 - , хотя лично у меня – такой: достоинство моего - малые размеры, сопоставимые с размерами кабеля. Недостатки – отсутствие платы, что в некоторых условиях отрицательно сказывается на удобстве монтажа и жизнеспособности датчика. Также – у датчика встроен резистор и больше никаких резисторов паять не нужно, зато исчезает возможность подключить несколько датчиков «цепочкой». Подключение датчика к Ардуино видно на Рис. 1 и указано в Таблице 1. На термодатчике определить контакты просто. Нужно взять его так, чтобы смотреть на срез с цифрами, а ножки были внизу. Крайняя левая ножка будет GND, средняя DQ, а крайняя правая VDD.

Таблица 1.

Пин Ардуино Уно

Примечание

5V, также подпаивается одна ножка резистора 4,7 кОм.




Рисунок 1. Подключение одного термодатчика.

На рисунке видно, что было использовано два резистора. Это связано с тем, что найденный мной резистор с маркировкой «4К7», на самом деле имел довольно высокую погрешность, которую и пришлось компенсировать вторым резистором. Общее сопротивление данной сборки составило 4,695 кОм, что я считаю вполне приемлемым. Также на рисунке можно видеть, что датчик не подпаян непосредственно к проводам (обрезок шлейфа), а вставлен в разъем. Сделано это было из соображений развития эксперимента. Паять данные датчики настоятельно рекомендуется. Сам скетч также получился довольно компактным:


Всего 14 строчек кода с комментариями. Любому новичку будет по силам разобраться. В результате работы программа выдаст нечто подобное:



Рисунок 2. Результат работы с одним датчиком.



Часть вторая. Немного усложненная.

Усложним мы эту часть тем, что добавим еще один датчик. Предположим, что нам нужно измерять температуру на улице и в помещении. Для этого всего лишь допаиваем один датчик «в цепочку». Очень напоминает параллельное подключение. Знатоки электрики поймут, о чем я. Но отличие есть: в данном случае выводы от центрального провода должны быть как можно короче.



Рисунок 3. Плата с двумя датчиками.



Скетч вырос всего на 3 строчки. Теперь в нем 17 строк:


Результаты работы этого скетча видно на Рисунке 4.



Рисунок 4. Работа с двумя датчиками.



Часть третья. Заключительная.

А теперь подключим к Ардуино светодиод, который будет загораться при достижении определенной температуры. Такой себе «пороговый сигнализатор». Для этого нужен обычный светодиод и токоограничивающий резистор. Мне под руку попался на 100 Ом, его я и использовал, подключив к 7-у контакту Ардуино. Длинную ножку светодиода (анод) подпаиваем к резистору, а короткую (катод) подключаем к контакту GND Ардуино. Должно получиться, примерно, как на рисунке 5.




Скетч также вырос совсем не на много:


Работа данной программы на компьютере отображается точно также, как показано на Рисунке 4. Естественно переменной sensors.getTempCByIndex(1) можно оперировать в очень широких пределах и управление светодиодиком лишь самый простой пример из всех возможных.

И в заключение данной статьи еще один шаг. Сейчас я расскажу, как к одной Ардуинке подключить несколько «гирлянд» данных устройств. Дело в том, что длина «гирлянды» не может быть бесконечной, более того – она очень сильно ограничена. В идеальных условиях – 300 метров, но создание «идеальных» условий – довольно дорогостоящее удовольствие. В реальных условиях – не рекомендуется превышать 10 метров. Для обычного «комнатного» термометра этого более чем достаточно, но если речь идет о каком-либо более серьезном оборудовании – этого катастрофически мало. Тем более, что для стабильной работы необходимо, чтобы датчики располагались как можно ближе к проводникам шины – «гирляндой». Отводить, конечно, тоже можно, но точность и помехозащищенность в этом случае будут крайне низкими. Итак, подключаем мы несколько «гирлянд» именно для того, чтобы собрать информацию с большого числа точек, при этом сохранив достаточную точность и помехозащищенность. Добавляем контакты согласно таблице 2:

Пин Ардуино Уно

Примечание

5V, также подпаивается одна ножка резисторов 4,7 кОм.

Цифровой ввод, также подпаивается вторая ножка резистора 4,7 кОм.

Цифровой ввод, также подпаивается вторая ножка резистора 4,7 кОм.



Как видно из таблицы – ничего сложного нет, точно такая же шина, только на другой цифровой вод. Не стал паять на 9-й контакт только из соображений удобства и скорости пайки.
Скетч:


Вряд ли скетч нуждается в излишних комментариях.

Результат работы скетча выглядит так:



Рисунок 6. Работа одновременно двух линий датчиков.



А плата с подключенными двумя линиями выглядит так:



Рисунок 7. Плата с двумя шинами.



Из рисунка видно, что резистор 4,7кОм для повышения точности также выполнен составным.

Библиотеки, примененные для написания скетчей рассмотренных в статье находятся здесь:



Обзор подготовил Павел Сергеев

Датчик температуры в Arduino – один из самых распространенных видов сенсоров. Разработчику проектов с термометрами на Arduino доступно множество разных вариантов, отличающихся по принципу действия, точности, конструктивному исполнению. Цифровой датчик DS18B20 является одним из наиболее популярных температурных датчиков, часто он используется в водонепроницаемом корпусе для измерения температуры воды или других жидкостей. В этой статье вы найдете описание датчика ds18b20 на русском, мы вместе рассмотрим особенности подключения к ардуино, принцип работы датчика, описание библиотек и скетчей.

DS18B20 – это цифровой температурный датчик, обладающий множеством полезных функций. По сути, DS18B20 – это целый микроконтроллер, который может хранить значение измерений, сигнализировать о выходе температуры за установленные границы (сами границы мы можем устанавливать и менять), менять точность измерений, способ взаимодействия с контроллером и многое другое. Все это в очень небольшом корпусе, который, к тому же, доступен в водонепроницаемом исполнении.

Температурный датчик DS18B20 имеет разнообразные виды корпуса. Можно выбрать один из трех – 8-Pin SO (150 mils), 8-Pin µSOP, и 3-Pin TO-92. Последний является наиболее распространенным и изготавливается в специальном влагозащитном корпусе, так что его смело можно использовать под водой. У каждого датчика есть 3 контакта. Для корпуса TO-92 нужно смотреть на цвет проводов: черный – земля, красный – питание и белый/желтый/синий – сигнал. В интернет-магазинах можно купить готовый модуль DS18B20.

Где купить датчик

Естественно, что DS18B20 дешевле всего купить на Алиэкспрессе, хотя он продается и в любых специализированных российских интернет-магазинах с ардуино. Приведем несколько ссылок для примера:

Память датчика состоит из двух видов: оперативной и энергонезависимой – SRAM и EEPROM. В последнюю записываются регистры конфигурации и регистры TH, TL, которые могут использоваться как регистры общего назначения, если не используются для указания диапазона допустимых значений температуры.

Основной задачей DS18B20 является определение температуры и преобразование полученного результата в цифровой вид. Мы можем самостоятельно задать необходимое разрешение, установив количество бит точности – 9, 10, 11 и 12. В этих случаях разрешающие способности будут соответственно равны 0,5С, 0,25С, 0,125С и 0,0625С.

Полученные температурные измерения сохраняются в SRAM датчика. 1 и 2 байты сохраняют полученное значение температуры, 3 и 4 сохраняют пределы измерения, 5 и 6 зарезервированы, 7 и 8 используются для высокоточного определения температуры, последний 9 байт хранит устойчивый к помехам CRC код.

Подключение DS18B20 к Arduino

DS18B20 является цифровым датчиком. Цифровые датчики передают значение измеряемой температуры в виде определенного двоичного кода, который поступает на цифровые или аналоговые пины ардуино и затем декодируется. Коды могут быть самыми разными, ds18b20 работает по протоколу данных 1-Wire. Мы не будем вдаваться в подробности этого цифрового протокола, укажем лишь необходимый минимум для понимания принципов взаимодействия.

Обмен информацией в 1-Wire происходит благодаря следующим операциям:

  • Инициализация – определение последовательности сигналов, с которых начинается измерение и другие операции. Ведущее устройство подает импульс сброса, после этого датчик должен подать импульс присутствия, сообщающий о готовности к выполнению операции.
  • Запись данных – происходит передача байта данных в датчик.
  • Чтение данных – происходит прием байта из датчика.

Для работы с датчиком нам понадобится программное обеспечение:

  • Arduino IDE;
  • Библиотека OneWire, если используется несколько датчиков на шине, можно использовать библиотеку DallasTemperature. Она будет работать поверх OneWire.

Из оборудования понадобятся:

  • Один или несколько датчиков DS18B20;
  • Микроконтроллер Ардуино;
  • Коннекторы;
  • Резистор на 4,7 кОм (в случае подключения одного датчика пойдет резистор номиналом от 4 до 10K);
  • Монтажная плата;
  • USB-кабель для подключения к компьютеру.

К плате Ардуино UNO датчик подключается просто: GND с термодатчика присоединяется к GND Ардуино, Vdd подключается к 5V, Data – к любому цифровому пину.

Простейшая схема подключения цифрового датчика DS18B20 представлена на рисунке.

Алгоритм получения информации о температуре в скетче состоит из следующих этапов:

  • Определение адреса датчика, проверка его подключения.
  • На датчик подается команда с требованием прочитать температуру и выложить измеренное значение в регистр. Процедура происходит дольше остальных, на нее необходимо примерно 750 мс.
  • Подается команда на чтение информации из регистра и отправка полученного значения в «монитор порта»,
  • Если требуется, то производится конвертация в градусы Цельсия/Фаренгейта.

Пример простого скетча для DS18B20

Самый простой скетч для работы с цифровым датчиком выглядит следующим образом. (в скетче мы используем библиотеку OneWire, о которой поговорим подробнее чуть позже).

#include /* * Описание взаимодействия с цифровым датчиком ds18b20 * Подключение ds18b20 к ардуино через пин 8 */ OneWire ds(8); // Создаем объект OneWire для шины 1-Wire, с помощью которого будет осуществляться работа с датчиком void setup(){ Serial.begin(9600); } void loop(){ // Определяем температуру от датчика DS18b20 byte data; // Место для значения температуры ds.reset(); // Начинаем взаимодействие со сброса всех предыдущих команд и параметров ds.write(0xCC); // Даем датчику DS18b20 команду пропустить поиск по адресу. В нашем случае только одно устрйоство ds.write(0x44); // Даем датчику DS18b20 команду измерить температуру. Само значение температуры мы еще не получаем - датчик его положит во внутреннюю память delay(1000); // Микросхема измеряет температуру, а мы ждем. ds.reset(); // Теперь готовимся получить значение измеренной температуры ds.write(0xCC); ds.write(0xBE); // Просим передать нам значение регистров со значением температуры // Получаем и считываем ответ data = ds.read(); // Читаем младший байт значения температуры data = ds.read(); // А теперь старший // Формируем итоговое значение: // - сперва "склеиваем" значение, // - затем умножаем его на коэффициент, соответсвующий разрешающей способности (для 12 бит по умолчанию - это 0,0625) float temperature = ((data << 8) | data) * 0.0625; // Выводим полученное значение температуры в монитор порта Serial.println(temperature); }

Скетч для работы с датчиком ds18b20 без delay

Можно немного усложнить программу для ds18b20, чтобы избавиться от , тормозящей выполнение скетча.

#include OneWire ds(8); // Объект OneWire int temperature = 0; // Глобальная переменная для хранения значение температуры с датчика DS18B20 long lastUpdateTime = 0; // Переменная для хранения времени последнего считывания с датчика const int TEMP_UPDATE_TIME = 1000; // Определяем периодичность проверок void setup(){ Serial.begin(9600); } void loop(){ detectTemperature(); // Определяем температуру от датчика DS18b20 Serial.println(temperature); // Выводим полученное значение температуры // Т.к. переменная temperature имеет тип int, дробная часть будет просто отбрасываться } int detectTemperature(){ byte data; ds.reset(); ds.write(0xCC); ds.write(0x44); if (millis() - lastUpdateTime > TEMP_UPDATE_TIME) { lastUpdateTime = millis(); ds.reset(); ds.write(0xCC); ds.write(0xBE); data = ds.read(); data = ds.read(); // Формируем значение temperature = (data << 8) + data; temperature = temperature >> 4; } }

Библиотека DallasTemperature и DS18b20

В своих скетчах мы можем использовать библиотеку DallasTemperature, упрощающую некоторые аспекты работы с датчиком ds18b20 по 1-Wire. Пример скетча:

#include // Номер пина Arduino с подключенным датчиком #define PIN_DS18B20 8 // Создаем объект OneWire OneWire oneWire(PIN_DS18B20); // Создаем объект DallasTemperature для работы с сенсорами, передавая ему ссылку на объект для работы с 1-Wire. DallasTemperature dallasSensors(&oneWire); // Специальный объект для хранения адреса устройства DeviceAddress sensorAddress; void loop(void){ // Запрос на измерения датчиком температуры Serial.print("Измеряем температуру..."); dallasSensors.requestTemperatures(); // Просим ds18b20 собрать данные Serial.println("Выполнено"); // Запрос на получение сохраненного значения температуры printTemperature(sensorAddress); // Задержка для того, чтобы можно было что-то разобрать на экране delay(1000); } // Вспомогательная функция печати значения температуры для устрйоства void printTemperature(DeviceAddress deviceAddress){ float tempC = dallasSensors.getTempC(deviceAddress); Serial.print("Temp C: "); Serial.println(tempC); } // Вспомогательная функция для отображения адреса датчика ds18b20 void printAddress(DeviceAddress deviceAddress){ for (uint8_t i = 0; i < 8; i++) { if (deviceAddress[i] < 16) Serial.print("0"); Serial.print(deviceAddress[i], HEX); } }

Библиотека OneWire для работы с DS18B20

DS18B20 использует для обмена информацией с ардуино протокол 1-Wire, для которого уже написана отличная библиотека. Можно и нужно использовать ее, чтобы не реализовывать все функции вручную. . Для установки библиотеки скачайте архив, распакуйте в папку library вашего каталога Arduino. Подключается библиотека с помощью команды #include

Все датчики DS18B20 подключаются параллельно, для них всех достаточно одного резистора. При помощи библиотеки OneWire можно одновременно считать все данные со всех датчиков. Если количество подключаемых датчиков более 10, нужно подобрать резистор с сопротивлением не более 1,6 кОм. Также для более точного измерения температуры нужно поставить дополнительный резистор на 100…120 Ом между выходом data на плате Ардуино и data на каждом датчике. Узнать, с какого датчика получено то или иное значение, можно с помощью уникального серийного 64-битного кода, который будет выдан в результате выполнения программы.

Для подключения температурных датчиков в нормальном режиме нужно использовать схему, представленную на рисунке.

Выводы

Микросхема Dallas DS18B20 является очень интересным устройством. Датчики температуры и термометры, созданные на ее основе, обладают приемлемыми для большинства задач характеристиками, развитым функционалом, относительно не дороги. Особенную популярность датчик DS18B20 снискал как влагозащищенное устройство для измерения температуры жидкостей.

За дополнительные возможности приходится платить относительной сложностью работы с датчиком. Для подключения DS18B20 нам обязательно понадобится резистор с номиналом около 5К. Для работы с датчиком в скетчах ардуино нужно установить дополнительную библиотеку и получить определенные навыки для работы с ней – там все не совсем тривиально. Впрочем, можно купить уже готовый модуль, а для скетча в большинстве случаев хватит простых примеров, приведенных в этой статье.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то