Архитектура микропроцессоров: основные виды, развитие, достоинства и недостатки. Что такое архитектура процессора. В ближайших планах на расширение FAQ

Вопрос: Архитектура процессора - что это?
Ответ : Термин "архитектура процессора" в настоящее время не имеет однозначного толкования. С точки зрения программистов, под архитектурой процессора подразумевается его способность исполнять определенный набор машинных кодов. Большинство современных десктопных CPU относятся к семейству x86, или Intel-совместимых процессоров архитектуры IA32 (архитектура 32-битных процессоров Intel). Ее основа была заложена компанией Intel в процессоре i80386, однако в последующих поколениях процессоров она была дополнена и расширена как самой Intel (введены новые наборы команд MMX, SSE, SSE2 и SSE3), так и сторонними производителями (наборы команд EMMX, 3DNow! и Extended 3DNow!, разработанные компанией AMD). Однако разработчики компьютерного железа вкладывают в понятие "архитектура процессора" (иногда, чтобы окончательно не запутаться, используется термин "микроархитектура") несколько иной смысл. С их точки зрения, архитектура процессора отражает основные принципы внутренней организации конкретных семейств процессоров. Например, архитектура процессоров Intel Pentium обозначалась как Р5, процессоров Pentium II и Pentium III - Р6, а популярные в недавнем прошлом Pentium 4 относились к архитектуре NetBurst. После того, как компания Intel закрыла архитектуру Р5 для сторонних производителей, ее основной конкурент - компания AMD была вынуждена разработать собственную архитектуру - К7 для процессоров Athlon и Athlon XP, и К8 для Athlon 64.

Вопрос: Какие процессоры лучше, 64-битные или 32-битные? И почему?
Ответ : Достаточно удачное 64-битное расширение классической 32-битной архитектуры IA32 было предложено в 2002 году компанией AMD (первоначально называлось x86-64, сейчас - AMD64) в процессорах семейства К8. Спустя некоторое время компанией Intel было предложено собственное обозначение - EM64T (Extended Memory 64-bit Technology). Но, независимо от названия, суть новой архитектуры одна и та же: разрядность основных внутренних регистров 64-битных процессоров удвоилась (с 32 до 64 бит), а 32-битные команды x86-кода получили 64-битные аналоги. Кроме того, за счет расширения разрядности шины адресов объем адресуемой процессором памяти существенно увеличился.

И... все. Так что те, кто ожидает от 64-битных CPU сколь-нибудь существенного прироста производительности, будут разочарованы - их производительность в подавляющем большинстве современных приложений (которые в массе своей заточены под IA32 и вряд ли в обозримом будущем будут перекомпилированы под AMD64/EM64T) практически та же, что и у старых добрых 32-битных процессоров. Весь потенциал 64-битной архитектуры может раскрыться лишь в отдаленном будущем, когда в массовых количествах появятся (а может, и не появятся) приложения, оптимизированные под новую архитектуру. В любом случае, наиболее эффективен переход на 64-бита будет для программ, работающих с базами данных, программ класса CAD/CAE, а также программ для работы с цифровым контентом.

Вопрос: Что такое процессорное ядро?
Ответ : В рамках одной и той же архитектуры различные процессоры могут достаточно сильно отличаться друг от друга. И различия эти воплощаются в разнообразных процессорных ядрах, обладающих определенным набором строго обусловленных характеристик. Чаще всего эти отличия воплощаются в различных частотах системной шины (FSB), размерах кэша второго уровня, поддержке тех или иных новых систем команд или технологических процессах, по которым изготавливаются процессоры. Нередко смена ядра в одном и том же семействе процессоров влечет за собой замену процессорного разъема, из чего вытекают вопросы дальнейшей совместимости материнских плат. Однако в процессе совершенствования ядра, производителям приходится вносить в него незначительные изменения, которые не могут претендовать на "имя собственное". Такие изменения называются ревизиями ядра и, чаще всего, обозначаются цифробуквенными комбинациями. Однако в новых ревизиях одного и того же ядра могут встречаться достаточно заметные нововведения. Так, компания Intel ввела поддержку 64-битной архитектуры EM64T в отдельные процессоры семейства Pentium 4 именно в процессе изменения ревизии.

Вопрос: В чем заключается преимущество двухъядерных процессоров перед одноядерными?
Ответ : Самым значимым событием 2005 года стало появление двухъядерных процессоров. К этому времени классические одноядерные CPU практически полностью исчерпали резервы роста производительности за счет повышения рабочей частоты. Камнем преткновения стало не только слишком высокое тепловыделение процессоров, работающих на высоких частотах, но и проблемы с их стабильностью. Так что экстенсивный путь развития процессоров на ближайшие годы был заказан, и их производителям волей-неволей пришлось осваивать новый, интенсивный путь повышения производительности продукции. Самой расторопной на рынке десктопных CPU, как всегда, оказалась Intel, первой анонсировавшая двухъядерные процессоры Intel Pentium D и Intel Extreme Edition. Впрочем, AMD с Athlon64 X2 отстала от конкурента буквально на считанные дни. Несомненным достоинством двухъядерников первого поколения, к которым относятся вышеназванные процессоры, является их полная совместимость с существующими системными платами (естественно, достаточно современными, на которых придется только обновить BIOS). Второе поколение двухъядерных процессоров, в частности, Intel Core 2 Duo, "требует" специально разработанных для них чипсетов и со старыми материнскими платами не работает.

Не следует забывать, что, на сегодняшний день для работы с двухъядерными процессорами более или менее оптимизировано в основном только профессиональное ПО (включая работу c графикой, аудио- и видео данными), тогда как для офисного или домашнего пользователя второе процессорное ядро иногда приносит пользу, но гораздо чаще является мертвым грузом. Польза от двухъядерных процессоров в этом случае видна невооруженным взглядом только тогда, когда на компьютере запущены какие-либо фоновые задачи (проверка на вирусы, программный файервол и т.п.). Что касается прироста производительности в существующих играх, то он минимальный, хотя уже появились первые игры популярных жанров, полноценно использующие преимущества от использования второго ядра.

Впрочем, если сегодня стоит вопрос выбора процессора для игрового ПК среднего или верхнего ценового диапазона, то, в любом случае, лучше предпочесть двухъядерный, а то и 4-ядерный процессор чуть более высокочастотному одноядерному аналогу, так как рынок неуклонно движется в сторону мультиядерных систем и оптимизированных параллельных вычислений. Такая тенденция будет господствующей в ближайшие годы, так что доля ПО, оптимизированного под несколько ядер, будет неуклонно возрастать, и очень скоро может наступить момент, когда мультиядерность станет насущной необходимостью.

Вопрос: Что такое кэш?
Ответ : Во всех современных процессорах имеется кэш (по-английски - cache) - массив сверхскоростной оперативной памяти, являющейся буфером между контроллером сравнительно медленной системной памяти и процессором. В этом буфере хранятся блоки данных, с которыми CPU работает в текущий момент, благодаря чему существенно уменьшается количество обращений процессора к чрезвычайно медленной (по сравнению со скоростью работы процессора) системной памяти. Тем самым заметно увеличивается общая производительность процессора.

При этом в современных процессорах кэш давно не является единым массивом памяти, как раньше, а разделен на несколько уровней. Наиболее быстрый, но относительно небольшой по объему кэш первого уровня (обозначаемый как L1), с которым работает ядро процессора, чаще всего делится на две половины - кэш инструкций и кэш данных. С кэшем L1 взаимодействует кэш второго уровня - L2, который, как правило, гораздо больше по объему и является смешанным, без разделения на кэш команд и кэш данных. Некоторые десктопные процессоры, по примеру серверных процессоров, также порой обзаводятся кэшем третьего уровня L3. Кэш L3 обычно еще больше по размеру, хотя и несколько медленнее, чем L2 (за счет того, что шина между L2 и L3 более узкая, чем шина между L1 и L2), однако его скорость, в любом случае, несоизмеримо выше, чем скорость системной памяти.

Кэш бывает двух типов: эксклюзивный и не эксклюзивный кэш. В первом случае информация в кэшах всех уровней четко разграничена - в каждом из них содержится исключительно оригинальная, тогда как в случае не эксклюзивного кэша информация может дублироваться на всех уровнях кэширования. Сегодня трудно сказать, какая из этих двух схем более правильная - и в той, и в другой имеются как минусы, так и плюсы. Эксклюзивная схема кэширования используется в процессорах AMD, тогда как не эксклюзивная - в процессорах Intel.

Вопрос: Что такое процессорная шина?
Ответ : Процессорная (иначе - системная) шина, которую чаще всего называют FSB (Front Side Bus), представляет собой совокупность сигнальных линий, объединенных по своему назначению (данные, адреса, управление), которые имеют определенные электрические характеристики и протоколы передачи информации. Таким образом, FSB выступает в качестве магистрального канала между процессором (или процессорами) и всеми остальными устройствами в компьютере: памятью, видеокартой, жестким диском и так далее. Непосредственно к системной шине подключен только CPU, остальные устройства подсоединяются к ней через специальные контроллеры, сосредоточенные в основном в северном мосте набора системной логики (чипсета) материнской платы. Хотя могут быть и исключения - так, в процессорах AMD семейства К8 контроллер памяти интегрирован непосредственно в процессор, обеспечивая, тем самым, гораздо более эффективный интерфейс память-CPU, чем решения от Intel, сохраняющие верность классическим канонам организации внешнего интерфейса процессора. Основные параметры FSB некоторых процессоров приведены в табл

Процессор частота FSB, МГц Тип FSB Теоретическая пропускная способность FSB, Мб/с
Intel Pentium III 100/133 AGTL+ 800/1066
Intel Pentium 4 100/133/200 QPB 3200/4266/6400
Intel Pentium D 133/200 QPB 4266/6400
Intel Pentium 4 EE 200/266 QPB 6400/8533
Intel Core 133/166 QPB 4266/5333
Intel Core 2 200/266 QPB 6400/8533
AMD Athlon 100/133 EV6 1600/2133
AMD Athlon XP 133/166/200 EV6 2133/2666/3200
AMD Sempron 800 HyperTransport <6400
AMD Athlon 64 800/1000 HyperTransport 6400/8000

Процессоры компании Intel используют системную шину QPB (Quad Pumped Bus), передающую данные четыре раза за такт, тогда как системная шина EV6 процессоров AMD Athlon и Athlon XP передает данные два раза за такт (Double Data Rate). В архитектуре AMD64, используемой компанией AMD в процессорах линеек Athlon 64/FX/Opteron, применен новый подход к организации интерфейса CPU - здесь вместо процессорной шины FSB и для сообщения с другими процессорами используются: высокоскоростная последовательная (пакетная) шина HyperTransport, построенная по схеме Peer-to-Peer (точка-точка), обеспечивающая высокую скорость обмена данными при сравнительно низкой латентности.

RISC-архитектура — компьютер с уменьшенным набором инструкций. Является типом микропроцессорной архитектуры, которая использует небольшой оптимизированный набор инструкций в отличие от предшестувующих типов архитектур с расширенным набором алгоритмических данных. Термин RISC был придуман Дэвидом Паттерсоном из проекта Berkeley RISC.

Определение

Компьютер с ограниченным набором команд - это устройство, чья архитектура набора инструкций (ISA) имеет набор атрибутов, который позволяет ему иметь более низкие циклы на инструкцию (CPI), чем сложная команда, установленная на компьютер (CISC). Общая концепция RISC — это концепция компьютера, который содержит небольшой набор простых и общих алгоритмов, но не расширенный набор сложных и специализированных последовательностей. Другим распространенным признаком RISC является архитектура загрузки/хранения, где доступ к памяти осуществляется только с помощью определенных инструкций.

История и развитие

Первые проекты RISC пришли из IBM, Stanford и UC-Berkeley в 70-х и 80-х гг. ХХ века. IBM 801, Stanford MIPS и Berkeley RISC I и II были разработаны с аналогичной философией, которая стала известна как RISC. Некоторые особенности дизайна были характерны для большинства RISC-процессоров:


Хотя ряд компьютеров 1960-х и 70-х годов являлись предшествующими моделями RISC, современная концепция относится к 1980-м годам. В частности, два проекта в Стэнфорде и Калифорнийском университете масштабируют эту концептуальную идею. Стэнфордский MIPS станет коммерчески успешной моделью, в то время как университет в Беркли дал название всей концепции, коммерциализированной как SPARC. Другим успехом этой эпохи были усилия IBM, которые в конечном итоге привели к Power Architecture. По мере развития этих направлений в конце 1980-х гг., и особенно в начале 1990-х гг., процветало множество подобных проектов, представляющих собой основную силу на рынке рабочих станций Unix, а также встроенные процессоры в лазерных принтерах, маршрутизаторах и аналогичных продуктах.

Плюсы и минусы архитектуры RISC

Простейший способ изучить преимущества и уязвимости архитектуры RISC - это сопоставить ее с предшествующей архитектурой CISC. Основная цель архитектуры CISC — завершить задачу за меньшее количество линий сборки. Это достигается за счет создания процессорного оборудования, способного понимать и выполнять ряд операций. Для этой конкретной задачи процессор CISC выпускается с конкретной инструкцией (MULT). При выполнении эта команда загружает два значения в отдельные регистры, умножает операнды в исполнительном модуле и затем сохраняет продукт в соответствующем регистре. Таким образом, вся задача умножения двух чисел может быть завершена одной инструкцией: MULT 2: 3, 5: 2. CISC и RISC-архитектура — предшествующее и последующее архитектурное решение.

MULT - это то, что известно как «сложная инструкция». Команда работает непосредственно в банках памяти компьютера и не требует, чтобы программист явно вызывал любые функции загрузки или сохранения. Она очень похожа на команду на языке более высокого уровня. Например, если мы допустим, что a представляет значение 2:3, а b представляет значение 5:2, то эта команда идентична выражению C a = a * b.

Одно из основных преимуществ этой системы заключается в том, что компилятор должен выполнить минимум работы, чтобы перевести формулировку языка высокого уровня в сборку. Поскольку длина кода относительно короткая, для хранения инструкций требуется очень небольшое ОЗУ. При сравнительном анализе CISC и RISC-архитектуры процессоров акцент ставится на реализации сложных инструкций непосредственно в аппаратном обеспечении.

Подход RISC

Процессоры RISC используют только элементарные инструкции, которые выполняются за один такт. Таким образом, описанная выше команда MULT может быть разделена на три отдельные команды: LOAD, которая перемещает данные из банка памяти в регистр PROD, который находит произведение двух операндов, расположенных внутри регистров, и STORE, который перемещает данные из регистра в банки памяти. Чтобы выполнить точный ряд шагов, описанных в подходе CISC, программисту необходимо будет закодировать четыре строки сборки:

LOAD A, 2:3.
LOAD B, 5:2.
PROD A, B.
STORE 2:3, А.

Изначально это может показаться гораздо менее эффективным способом завершения операции, поскольку существует больше строк кода и для хранения инструкций уровня сборки требуется больше ОЗУ. Компилятор также должен выполнить больше работы, чтобы преобразовать формулировку языка высокого уровня в код этой формы.

Сравнение CISC и RISC

Ниже представлены сравнительные данные CISC и RISC-архитектуры:

  • Акцент на аппаратном обеспечении.
  • Включает многочасовые сложные инструкции.
  • Небольшие размеры кода, высокие циклы в секунду.
  • Транзисторы, используемые для хранения сложных инструкций.
  • Акцент на программном обеспечении.
  • Сокращенная инструкция, не требующая большого количества времени.
  • Низкие циклы в секунду, большие размеры кода.
  • Тратит больше транзисторов на регистрах памяти.

Стратегия RISC вносит некоторые очень важные преимущества. Поскольку каждая команда требует выполнения только одного такта, вся программа будет выполняться примерно в такое же количество времени, что и многоцилиндровая команда MULT. Эти «сокращенные инструкции» RISC требуют меньше транзисторов аппаратного пространства, чем сложные инструкции, оставляя больше места для общих регистров. Поскольку все инструкции выполняются в единое время (например, один такт), возможна конвейерная обработка.

Характеристика процесса

Разделение инструкций LOAD и STORE фактически уменьшает объем работы, которую должен выполнить компьютер. После выполнения команды MULT в стиле CISC процессор автоматически стирает регистры. Если один из операндов необходимо использовать для другого вычисления, процессор должен перезагрузить данные из банка памяти в регистр. В RISC операнд останется в регистре, пока на нем не будет загружено другое значение.

Подход CISC пытается минимизировать количество инструкций для каждой программы, жертвуя количеством циклов на инструкцию. RISC же, наоборот, уменьшает количество циклов за счет инструкций для каждой программы.

Сложности коммерцеской реализации

Несмотря на преимущества обработки на основе RISC, прошли десятилетия прежде, чем чипы RISK были коммерчески востребованы. Во многом это было связано с отсутствием поддержки программного обеспечения.

Хотя линейка Power Macintosh от Apple, в которой использовались чипы на основе RISC и Windows NT, совместима с RISC, Windows 3.1 и Windows 95 были разработаны с учетом процессоров CISC. Многие компании не желали рисковать появляющейся технологией RISC. Без коммерческого интереса разработчики процессоров не смогли изготовить чипы RISC в достаточно больших объемах, чтобы сделать их цену конкурентоспособной.

Еще одним серьезным препятствием стало присутствие Intel. Несмотря на то, что их чипы CISC стали все более громоздкими и сложными в разработке, Intel обладала ресурсами для разработки мощных процессоров. Хотя чипы RISC могли превзойти усилия Intel в определенных областях, различия не были достаточно велики, чтобы убедить покупателей менять технологии.

Общее преимущество RISC

Сегодня Intel x86 является единственным чипом, который сохраняет архитектуру CISC. Это связано прежде всего с продвижением в других областях компьютерной техники. Цена ОЗУ резко снизилась. В 1977 году 1 МБ DRAM стоил около 5000 долларов. К 1994 году такой же объем памяти стоит всего 6 долларов США (с учетом инфляции). Технология компилятора также стала более сложной, так что использование RISC RAM и акцент на программное обеспечение стали идеальными.

Философия набора инструкций

Ошибочным пониманием определения RISK является идея того, что процедуры устраняются, что приводит к сокращенному набору алгоритмов. На протяжении многих лет процедуры RISC увеличивались, и в настоящее время многие из них имеют более широкий набор функций, чем CPU CISC.

Под термином «уменьшенный набор процедур» подразумевается описание того факта, что объем работы, выполняемый каждой инструкцией, сокращается (не более одного цикла памяти) сравнительно с усложненными процедурами CISC, которые требуют десятки циклов для выполнения одной команды. RISC-архитектура обычно имеет отдельные алгоритмы ввода-вывода и работы с данными.

Формат инструкции

Большинство архитектур RISC имеют инструкции с фиксированной длиной (обычно 32 бита) и простое кодирование, что значительно упрощает выборку, декодирование и выдачу логики. Одним из недостатков 32-разрядных инструкций является снижение плотности кода, что является неблагоприятным фактором для встроенных вычислений на рабочих станциях и серверах. Архитектуры RISC изначально были предназначены для обслуживания. Для решения этой проблемы несколько архитектур, таких как ARM, Power ISA, MIPS, RISC-V и Adipteva Epiphany, имеют необязательный короткий сокращенный формат инструкции или функцию сжатия команд. SH5 также следует этой схеме, хотя и развился в обратном направлении, добавив более длинные мультимедийные инструкции к оригинальной 16-битной кодировке.

Использование оборудования

Для любого заданного уровня общей производительности микросхема RISC, как правило, имеет гораздо меньше транзисторов, предназначенных для основной логики, которая первоначально позволяла дизайнерам увеличивать размер регистров и внутренний параллелизм.

Другие функции, которые обычно встречаются в архитектурах RISC:

  • Средняя производительность процессора приближается к одной инструкции за цикл.
  • Единый формат инструкции — используется одно слово с кодом операции в одних и тех же позициях для более простого декодирования.
  • Все регистры общего назначения могут использоваться в качестве источника/назначения во всех инструкциях, упрощая разработку компилятора (регистры с плавающей запятой часто сохраняются отдельно).
  • Простые режимы со сложной адресацией, выполняемые последовательностями команд.
  • Несколько типов данных в аппаратном обеспечении (например, байтовая строка или BCD).

В RISC-конструкциях также представлена модель памяти Гарварда, где команды и данные концептуально разделены. Это означает, что изменение памяти, в которой хранится код, может не повлиять на инструкции, выполняемые процессором (поскольку ЦП имеет отдельный кэш команд и данных), до тех пор, пока не будет выдана специальная инструкция синхронизации. С другой стороны, это позволяет одновременно обращаться к кэшам, что часто повышает производительность.

Особенности RISC-архитектуры

На начальном этапе развития компьютерной индустрии программирование проводилось на или машинного кода, что поощряло использование мощных и простых в использовании инструкций. Поэтому разработчики ЦП пытались проектировать алгоритмы, способные выполнять как можно большую работу. С появлением языков более высокого уровня архитекторы начали создавать специальные инструкции для непосредственного внедрения определенных центральных механизмов. Вторая общая цель заключалась в том, чтобы обеспечить все возможные режимы адресации для каждого алгоритма, известного как ортогональность, для облегчения реализации компилятора.

Отношение к тому времени заключалось в том, что дизайн аппаратного обеспечения был более зрелым, чем дизайн компилятора, поэтому сам по себе также является причиной внедрения частей функциональности в аппаратном или микрокоде, а не только в ограниченном памятью компиляторе (или в его сгенерированном коде). После появления RISC этот подход стал известен как сложные вычисления набора команд, или CISC.

У процессоров также было относительно мало регистров по нескольким причинам:


Практическое применение

RISC-архитектура процессора теперь используются на большом спектре платформ: от смартфонов и планшетных ПК до некоторых из самых высокопродуктивных суперкомпьютеров, таких как компьютер K (лидер списка топ-500 в 2011 г.).

К началу XXI века большинство низкопрофильных и мобильных систем основывались на архитектуре RISC. Примеры:

  • доминирует на рынке для маломощных и недорогих встроенных систем (200-1800 МГц в 2014 году). Она применяется в ряде большинства Android-систем, Apple iPhone и iPad, Microsoft Windows Phone (бывшая Windows Mobile), устройства RIM (topic.risc.архитектура), Nintendo Game Boy Advance, DS/3DS и Switch.
  • Линия MIPS (в какой-то момент используется во многих компьютерах SGI), а теперь - в PlayStation, PlayStation 2, Nintendo 64 (ipb.risc.архитектура), игровых консолях PlayStation Portable и шлюзах для жилых помещений, таких как Linksys WRT54G .
  • Hitachi SuperH, использующийся в Sega Super 32X, Saturn и Dreamcast (viewtopic.php.risc.архитектура), теперь разработан и продан Renesas как SH4.
  • Atmel AVR используется в разных продуктовых линейках: от портативных контроллеров Xbox до автомобилей BMW .
  • RISC-V (vbulletin.risc.архитектура), пятый Berkeley RISC ISA с открытым исходным кодом, с 32-разрядным адресным пространством, небольшим ядром целочисленного набора команд, экспериментальной «сжатой» ISA для плотности кода и предназначенной для стандартных и специальных расширений.
  • Рабочие станции, серверы и суперкомпьютеры.
  • MIPS (powered.by.smf.risc.архитектура), Silicon Graphics (в 2006 году прекратила создание систем на основе MIPS).
  • SPARC, Oracle (ранее Sun Microsystems) и Fujitsu (phorum.risc.архитектура).
  • Архитектура IBM Power Architecture, применяемая в большинстве суперкомпьютеров IBM, серверах усредненного уровня и терминальных станциях.
  • PA-RISC Hewlett-Packard (phpbb.risc.архитектура), также именуемый как HP-PA (прекращен в конце 2008 года).
  • Alpha, используется в рабочих станциях, серверах и суперкомпьютерах от Digital Equipment Corporation, Compaq и HP (прекращено с 2007 года).
  • RISC-V (powered.by.phpbb.risc.архитектура), пятый Berkeley RISC ISA, с открытым исходным кодом, с 64 или 128-битными адресными пространствами и целым ядром, расширенным с плавающей точкой, атомизацией и векторной обработкой, и разработанный для расширения с инструкциями для сетей, ввода-вывода, обработки данных. 64-битный суперскалярный дизайн Rocket доступен для скачивания.

Сравнение с другими архитектурами

Некоторые процессоры были специально разработаны с очень небольшим набором инструкций, но эти конструкции значительно отличаются от традиционных RISC-архитектур, поэтому им были предоставлены другие данные, такие как минимальный набор команд (MISC) или транспортная инициированная архитектура (TTA).

Архитектуры RISC традиционно имели мало успехов на рынке настольных ПК и товарных серверов, где платформы на базе x86 остаются доминирующей архитектурой процессора. Однако это может измениться, поскольку процессоры на базе архитектуры ARM разрабатываются для систем с более высокой производительностью. Производители, включая Cavium, AMD и Qualcomm, выпустили на базе архитектуры ARM. ARM также сотрудничала с Cray в 2017 году, чтобы создать суперкомпьютер на базе архитектуры ARM. Компания-лидер компьютерной индустрии Microsoft объявила, что в рамках партнерства с Qualcomm в 2017 году планируется поддержка ПК-версии Windows 10 на устройствах на базе Qualcomm Snapdragon. Эти устройства будут поддерживать программное обеспечение Win32 на базе x86 с помощью эмулятора процессора x86.

Тем не менее помимо настольной арены архитектура ARM RISC широко используется в смартфонах, планшетах и ​​многих формах встроенного устройства. Также Intel Pentium Pro (P6) использует внутреннее RISC-процессорное ядро ​​для своих процессоров.

В то время как начальные разработки RISC-архитектуры процессора значительно отличались от инновационных проектов CISC, к 2000 году самые высокопроизводительные процессоры в линейке RISC почти не отличаются от самых высокопроизводительных процессоров в линии CISC.

Введение

3. Переход к двуядерным процессорам

4. Виртуализация

5. Кратко о некоторых других технологиях

6. Будущие технологии

Библиографический список


Введение

Процессор (или центральный процессор, ЦП) - это транзисторная микросхема, которая является главным вычислительным и управляющим элементом компьютера.

Английское название процессора - CPU (Central Processing Unit).

Процессор представляет собой специально выращенный полупроводниковый кристалл, на котором располагаются транзисторы, соединенные напыленными алюминиевыми проводниками. Кристалл помещается в керамический корпус с контактами.

В первом процессоре компании Intel - i4004, выпущенном в 1971 году, на одном кристалле было 2300 транзисторов, а в процессоре Intel Pentium 4, выпущенном 14 апреля 2003 года, их уже 55 миллионов.Современные процессоры изготавливаются по 0,13-микронной технологии, т.е. толщина кристалла процессора, составляет 0,13 микрон. Для сравнения - толщина кристалла первого процессора Intel была 10 микрон.

Рисунок 1 – принципиальная схема процессора

Управляющий блок - управляет работой всех блоков процессора.

Арифметико-логический блок - выполняет арифметические и логические вычисления.

Регистры - блок хранения данных и промежуточных результатов вычислений - внутренняя оперативная память процессора.

Блок декодировки - преобразует данные в двоичную систему.

Блок предварительной выборки - получает команду от устройства (клавиатура и т.д.) и запрашивает инструкции в системной памяти.

Кэш-память (или просто кэш) 1-го уровня - хранит часто использующиеся инструкции и данные.

Кэш-память 2-го уровня - хранит часто использующиеся данные.

Блок шины - служит для ввода и вывода информации.

Эта схема соответствует процессорам архитектуры P6. По этой архитектуре создавались процессоры с Pentium Pro до Pentium III. Процессоры Pentium 4 изготавливаются по новой архитектуре Intel® NetBurst.

В процессорах Pentium 4 кэш 1-го уровня поделен на две части - кэш данных и кэш команд.

Существует два типа тактовой частоты - внутренняя и внешняя.

Внутренняя тактовая частота - это тактовая частота, с которой происходит работа внутри процессора.

Внешняя тактовая частота или частота системной шины - это тактовая частота, с которой происходит обмен данными между процессором и оперативной памятью компьютера.

До 1992 года в процессорах внутренняя и внешняя частоты совпадали, а в 1992 году компания Intel представила процессор 80486DX2, в котором внутренняя и внешняя частоты были различны - внутренняя частота была в 2 раза больше внешней. Было выпущено два типа таких процессоров с частотами 25/50 МГц и 33/66 МГц, затем Intel выпустила процессор 80486DX4 с утроенной внутренней частотой (33/100 МГц).

С этого времени остальные компании-производители также стали выпускать процессоры с удвоенной внутренней частотой, а компания IBM стала выпускать процессоры с утроенной внутренней частотой (25/75 МГц, 33/100 МГц и 40/120 МГц).

В современных процессорах, например, при тактовой частоте процессора 3 ГГц, частота системной шины 800 МГц.

Для чего предназначены дополнительные наборы команд? В первую очередь - для увеличения быстродействия при выполнении некоторых операций. Одна команда из дополнительного набора, как правило, выполняет действие, для которого понадобилась бы небольшая программа, состоящая из команд основного набора. Опять-таки, как правило, одна команда выполняется процессором быстрее, чем заменяющая ее последовательность. Однако в 99% случаев, ничего такого, чего нельзя было бы сделать с помощью основных команд, с помощью команд из дополнительного набора сделать нельзя. Таким образом, упомянутая выше проверка программой поддержки дополнительных наборов команд процессором, должна выполнять очень простую функцию: если, например, процессор поддерживает SSE - значит, считать будем быстро и с помощью команд из набора SSE. Если нет - будем считать медленнее, с помощью команд из основного набора. Корректно написанная программа обязана действовать именно так. Впрочем, сейчас практически никто не проверяет у процессора наличие поддержки MMX, так как все CPU, вышедшие за последние 5 лет, этот набор поддерживают гарантированно. Для справки приведем таблицу, на которой обобщена информация о поддержке различных расширенных наборов команд различными десктопными (предназначенными для настольных ПК) процессорами.

Таблица 1

Сравнение основных наборов команд

Процессор MMX EMMX 3DNow! SSE E3DNow! SSE2 SSE3
Intel Pentium II + - - - - - -
Intel Celeron до 533 MHz + - - - - - -
Intel Pentium III + - - + - - -
Intel Celeron 533-1400 MHz + - - + - - -
Intel Pentium 4 + - - + - + +/-*
Intel Celeron от 1700 MHz + - - + - + -
Intel Celeron D + - - + - + +
Intel Pentium 4 eXtreme Edition + - - + - + +/-*
Intel Pentium eXtreme Edition + - - + - + +
Intel Pentium D + - - + - + +
AMD K6 + + - - - - -
AMD K6-2 + + + - - - -
AMD K6-III + + + - - - -
AMD Athlon + + + - + - -
AMD Duron до 900 MHz + + + - + - -
AMD Athlon XP + + + + + - -
AMD Duron от 1000 MHz + + + + + - -
AMD Athlon 64 / Athlon FX + + + + + + +/-*
AMD Sempron + + + + + +/-* +/-*
AMD Athlon 64 X2 + + + + + + +
VIA C3 + + +/-* +/- - - -

* в зависимости от модификации

В 1970г. доктор Маршиан Эдвард Хофф с командой инженеров из Intel сконструировал первый микропроцессор. Во всяком случае, так принято считать – хотя на самом деле еще в 1968 году инженеры Рэй Холт и Стив Геллер создали подобную универсальную микросхему SLF для бортового компьютера истребителя F-14. Первый процессор работал на частоте 750 кГц. Сегодняшние процессоры от Intel быстрее своего прародителя более чем в десять тысяч раз

Тактовая частота – это то количество элементарных операций (тактов), которые процессор может выполнить в течение секунды. Еще недавно этот показатель был для пользователей не то, что самым важным – единственным значимым! Многие пользователи пытались «разогнать» свой процессор при помощи специальных программ. Впрочем, частота процессоров и безо всякого разгона возрастала в геометрической прогрессии – в полном соответствии с так называемым «законом Мура» (в свое время Гордон Мур предсказал, что каждые полтора года частота микропроцессоров будет удваиваться вместе с числом транзисторов на кристалле). Этот принцип успешно работал вплоть до 2004 г. – пока на пути инженеров Intel не встали законы физики. Ведь размеры транзисторов «ужимать» до бесконечности нельзя. Уже сегодня процессоры производятся по 65-наномикронной технологии (технология 65 нанометров), а толщина «подложки» транзисторов не превышает 1 нм (всего 5 атомов). В ближайшие годы размеры транзисторов могут сократиться до 22 нм, что близко к физическому пределу. Одновременно с уменьшением размеров транзисторов резко возрастает количество тепла, которое выделяет работающий процессор – например у последних моделей Pentium тепловыделение составляет около 120 ватт (что соответствует двум бытовым электролампам)!


1. 8086: первый процессор для ПК

8086 стал первым процессором x86 - Intel к тому времени уже выпустила модели 4004, 8008, 8080 и 8085. Этот 16-битный процессор мог работать с 1 Мбайт памяти по внешней 20-битной адресной шине. Тактовая частота, выбранная IBM (4,77 МГц) была довольно низкой, и к концу своей карьеры процессор работал на 10 МГц. Первые ПК использовали производную процессора 8088, которая имела всего 8-битную внешнюю шину данных. Что интересно, системы управления в американских шаттлах используют процессоры 8086, и NASA пришлось в 2002 году покупать процессоры через eBay, поскольку Intel их больше не производила.

Таблица 2

Характеристики 8086

Intel 8086
Кодовое название Н/Д
Дата выпуска 1979
Тактовая частота 4,77-10 МГц

80286: 16 Мбайт памяти, но всё ещё 16 битов

Выпущенный в 1982 году, процессор 80286 был в 3,6 раза быстрее 8086 на той же тактовой частоте. Он мог работать с памятью объёмом до 16 Мбайт, но 286 всё ещё оставался 16-битным процессором. Он стал первым процессором x86, оснащённым диспетчером памяти (memory management unit, MMU), который позволял работать с виртуальной памятью. Подобно 8086, процессор не содержал блока работы с плавающей запятой (floating-point unit, FPU), но мог использовать чип-сопроцессор x87 (80287). Intel выпускала 80286 на максимальной тактовой частоте 12,5 МГц, хотя конкурентам удалось добиться 25 МГц.


Таблица 3

Характеристики 8026

Intel 80286
Кодовое название Н/Д
Дата выпуска 1982
Тактовая частота 6-12 МГц

386: 32-битный и с кэш-памятью

Intel 80836 стал первым процессором x86 с 32-битной архитектурой. Вышло несколько версий этого процессора. Две наиболее известные: 386 SX (Single-word eXternal), который использовал 16-битную шину данных, и 386 DX (Double-word eXternal) с 32-битной шиной данных. Можно отметить ещё две версии: SL, первый процессор x86 с поддержкой кэша (внешнего) и 386EX, который использовался в космической программе (например, телескоп "Хаббл" использует этот процессор).

Таблица 4

Характеристики 386

Intel 80386 DX
Кодовое название P3
Дата выпуска 1985
Тактовая частота 16-33 МГц

486: FPU и множители

Процессор 486 для многих стал знаковым, поскольку с него началось знакомство с компьютером целого поколения. На самом деле, знаменитый 486 DX2/66 долгое время считался минимальной конфигурацией для геймеров. Этот процессор, выпущенный в 1989 году, обладал рядом новых интересных функций, подобно встроенному на кристалл сопроцессору FPU, кэшу данных и впервые представил множитель. Сопроцессор x87 был встроен в линейку 486 DX (не SX). В процессор был интегрирован кэш первого уровня объёмом 8 кбайт (сначала со сквозной записью/write-through, затем с обратной записью/write-back с чуть более высокой производительностью). Существовала возможность добавления кэша L2 на материнскую плату (работал на частоте шины).

Второе поколение 486 процессоров обзавелось множителем CPU, поскольку процессор работал быстрее, чем FSB, появились версии DX2 (множитель 2x) и DX4 (множитель 3x). Ещё один анекдот: "487SX", продаваемый как FPU для 486SX, представлял собой, по сути, полноценный процессор 486DX, который отключал и заменял оригинальный CPU.

Таблица 5

Характеристики 486

Также о штуцерах каждого из узлов и соединительных шлангах. Водоблоки отбирают тепло от греющихся компонентов ПК, передавая их энергию жидкости в контуре СВО. Существуют модели, предназначенные для охлаждения процессоров, чипсетов, графических чипов (или же видеокарт в целом), модулей памяти, винчестеров. При выборе теплосъемника следует обратить внимание на металл основания (желательна медь), ...


Версия этого микропроцессора. Как и его предшественник, новый кристалл Alpha 21066A помимо интерфейса PCI содержит на кристалле интегрированный контроллер памяти и графический акселератор. Эти характеристики позволяют значительно снизить стоимость реализации систем, базирующихся на Alpha 21066A, и обеспечивают простой и дешевый доступ к внешней памяти и периферийным устройствам. Alpha 21066A ...

Intel 80486 DX
Кодовое название P4, P24, P24C
Дата выпуска 1989
Тактовая частота 16-100 МГц

В аспекте прикладной деятельности.

С точки зрения программиста - совместимость с определённым набором команд (например, процессоры, совместимые с командами Intel х86), их структуры (например, систем адресации или организации регистровой памяти) и способа исполнения (например, счетчик команд).

С точки зрения аппаратной составляющей вычислительной системы - это некий набор свойств и качеств, присущий целому семейству процессоров (иначе говоря - «внутренняя конструкция», «организация» этих процессоров). Имеются различные классификации архитектур процессоров, как по организации (например, по количеству и скорости выполнения команд: RISC , CISC), так и по назначению (например, специализированные графические).

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Архитектура процессора" в других словарях:

    Архитектура процессора - Базовый набор ключевых возможностей того или иного поколения процессоров. По названиям архитектур специалисты отличают тот или иной подвид чипов. Например, Pentium III и Pentium 4. Современные процессоры для мобильных ПК изготавливаются с… … Глоссарий терминов бытовой и компьютерной техники Samsung

    архитектура процессора с изменяемой вычислительной мощностью - Разработана в фирме Sun. [Е.С.Алексеев, А.А.Мячев. Англо русский толковый словарь по системотехнике ЭВМ. Москва 1993] Тематики информационные технологии в целом EN scalable processor architectureSPARC …

    архитектура контроллера Справочник технического переводчика

    архитектура контроллера - Архитектурой контроллера называют набор его основных компонентов и связей между ними. Типовой состав ПЛК включает центральный процессор, память, сетевые интерфейсы и устройства ввода вывода. Типовая… … Справочник технического переводчика

    Архитектура современного персонального компьютера это схема его чипсета, которую можно найти на сайтах производителей Intel и AMD.Чипсет это набор микросхем материнской платы для обеспечения работы процессора с памятью и внешними устройствами.… … Википедия

    Для улучшения этой статьи желательно?: Добавить иллюстрации. Викифицировать статью. Архитектура вычислительной машины (Архитектура … Википедия

    ARM процессор производства Conexant, ставится в основном в маршрутизаторах (ранее Advanced RISC Machine усовершенствованная ARM Limited. Эта архитектура широко используется в разработке встраиваемых систем. Это связанно с тем, что данные… … Википедия

    - … Википедия

    Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей. Архитектура персонального компьютера компоновка его основных частей, таких как процессор, ОЗУ, видеоподсистема, дисковая система, периферийные… … Википедия

    Эту страницу предлагается объединить с Система команд. Пояснение причин и обсуждение на странице Википедия:К объединению/6 ноября 2011. Обсуждение длится одну неделю (или дольш … Википедия

Книги

  • Цифровая схемотехника и архитектура компьютера , Харрис Д.М.. Это дополнительный тираж книги с добавленным Предметным указателем, напечатанный черным и синим цветом как оригинальное американское издание! Также в новом издании исправлены неточности,…
  • Архитектура ЭВМ и вычислительные системы. Учебник , В. В. Степина. Рассмотрены информационно-логические основы электронно-вычислительной техники, типовые логические элементы и устройства ЭВМ, структура и функционирование процессора, принципы организации и…

В данной статье мы расскажем о том, что такое центральный процессор и как он работает.

Центральный процессор или процессор – один из самых важных компонентов, который мы можем найти практически во всех современных высокотехнологичных устройствах.

Однако у большинства из нас есть довольно плохие представления о том, что они делают и как они это делают, о том, как они стали сложными технологическими чудесами, каковы основные современные типы.

Итак, сегодня мы попытаемся подробно рассказать о самых важных аспектах различных компонентов, которые дают жизнь всем тем устройствам, которые помогают нам наслаждаться более высоким качеством жизни.

Что такое центральный процессор?

Хотя нельзя сказать, что в компьютере есть одна самая важная часть, так как более одного из них абсолютно необходимы для его работы, центральный процессор или процессор можно считать краеугольным камнем этих машин. И именно этот компонент отвечает за вычисления, упорядочивание или обработку, концепции, которые определяют современные компьютеры и ноутбуки.

В настоящий момент они представляют собой сложные технологии, разработанные с использованием микроскопических архитектур, большинство из которых представлены в виде одного чипа, довольно небольшого, оттуда они назывались микропроцессорами несколько десятилетий назад.

Сегодня процессоры находятся практически в каждом объекте, который мы используем в наши дни: телевизоры, смартфоны, микроволновые печи, холодильники, автомобили, звуковое оборудование и, конечно же, персональные компьютеры. Тем не менее, это были не всегда чудеса технологий, которыми они являются сейчас.

История возникновения процессоров

Было время, когда процессоры состояли из огромных арматов, которые вполне могли заполнить комнату. Эти первые шаги компьютерной инженерии в основном состояли из пустых трубок, которые, хотя в то время были значительно более мощными для альтернатив, образованных электромеханическими реле, сегодня 4 МГц, которые, по большей мере, они достигали, казались нам смехом.

С появлением транзисторов в 50-х и 60-х годах началось создание процессоров, в дополнение к меньшим и более мощным, а также намного более надежным, поскольку машины, созданные вакуумными трубами, как правило, имели средний отказ каждые 8 ​​часов.

Однако, когда мы говорим о сокращении, мы не имеем в виду, что они вписываются в ладонь. И все еще большие процессоры состояли из десятков печатных плат, которые были связаны друг с другом, чтобы обеспечить жизнь одному процессору.

После этого появилось изобретение интегральной схемы, которая в основном связывала все в одной печатной плате или пластине, что стало первым шагом к достижению современного микропроцессора. Первые интегральные схемы были очень простыми, поскольку они могли группировать только несколько транзисторов, но на протяжении многих лет получилось добиться экспоненциального роста числа транзисторов, которые можно было бы добавить в интегральную схему, к середине шестидесятых годов. Мы уже имели первых сложные процессоры, которые состояли из одной пластины.

Первый микропроцессор как таковой будет представлен на рынке уже в 1971 году, это был Intel 4004, а с тех пор остальное – история. Благодаря быстрой эволюции этих небольших чипов и их большой гибкости они полностью монополизировали компьютерный рынок, поскольку, за исключением очень специфических приложений, требующих высокоспециализированного оборудования, они являются ядром практически всех современных компьютеров.

Как работает центральный процессор (ЦП)?

Упрощение до крайности и в дидактических терминах работа процессора дается четырьмя фазами. Эти фазы необязательно всегда раздельны, но обычно перекрываются и всегда происходят одновременно, но не обязательно для конкретной функции.

На первом этапе процессор отвечает за загрузку кода из памяти. Другими словами, прочитайте данные, которые необходимо обработать позже. В этой первой фазе существует общая проблема в архитектуре процессоров и заключается в том, что существует максимум данных, которые могут считываться по периоду времени и обычно уступают тем, которые могут быть обработаны.

Во второй фазе происходит первый этап обработки как таковой. Информация, прочитанная на первом этапе, анализируется в соответствии с набором инструкций. Таким образом, в пределах прочитанных данных будут описательные фракции для набора инструкций, которые укажут, что делать с остальной информацией. Чтобы привести практический пример, есть код, который указывает, что данные пакета должны быть добавлены вместе с данными другого пакета, причем каждый пакет представляет собой информацию, которая описывает число, посредством чего получается общая арифметическая операция.

Затем идет фаза, которая продолжается со свободной обработкой, и отвечает за выполнение команд, декодированных на второй фазе.

Наконец, процесс завершается фазой записи, где снова загружается информация, только на этот раз от процессора к памяти. В некоторых случаях информация может быть загружена в память процессора, которая будет повторно использована позже, но как только обработка конкретной работы будет завершена, данные всегда заканчиваются записью в основную память, где она может быть записана в блок хранения, в зависимости от приложения.

Основные современные архитектуры процессоров

Как мы уже говорили, функция процессора заключается в интерпретации информации. Данные загружаются из разных систем памяти в виде двоичного кода, и именно этот код должен быть преобразован процессором в полезные данные приложениями. Указанная интерпретация реализуется с помощью набора инструкций, что и определяет архитектуру процессора.

В настоящее время в основном используются две архитектуры RISC и CISC. RISC дает жизнь процессорам, разработанным британской фирмой ARM, которая с ростом мобильных устройств значительно выросла. Кроме того, PowerPC, архитектура, которая дала жизнь компьютерам Apple, серверам и консолям Xbox 360 и PlayStation 3, основана на RISC. CISC – это архитектура, используемая в процессорах AMD Intel и X86-64 X86.

Что касается архитектуры, которая лучше, то всегда говорилось, что быть более чистым и оптимизированным RISC будет будущее вычислений. Тем не менее, Intel и AMD никогда не поддавались на изгибе и сумели создать очень прочную экосистему вокруг своих процессоров, которые, хотя и сильно загрязнены устаревшими элементами обратной совместимости, всегда поддерживали своих конкурентов.

В целом, благодаря своей гибкости и относительной простоте производства, в течение нескольких лет больше процессоров останется центральным элементом современных вычислений. Но мы всегда должны помнить, что с течением лет развиваются параллельные технологии, которые помогают децентрализовать нагрузку, и сегодня более чем когда-либо графические процессоры, более мощные, но менее гибкие, начали приобретать почти такое же значение.

Видео: Что такое CPU [Центральный Процессор, ЦП] – Быстро и Понятно!

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то