Чему равен нанометр в метрах. Расстояние в навигации. Какой размер правильный

Наука о мерах и весах, метрология - вчерашний день. Сегодня принято измерять то, что никто не видит, то есть объекты наноразмеров. Этим занимается нанометрология. Степан Лисовский, аспирант МФТИ, сотрудник кафедры нанометрологии и наноматериалов, рассказывает об основных принципах нанометрологии и функциях различных микроскопов и объясняет, почему размер частицы зависит от способа его измерения.

Эталонное мышление

Для начала - о простой метрологии. Как дисциплина она могла бы возникнуть еще в древности, тогда о мере рассуждали многие - от Пифагора до Аристотеля, - но не возникла. Стать частью научной картины мира того времени метрологии не удалось из-за того же Аристотеля. Он на долгие века вперед утвердил приоритет качественного описания явлений над количественным. Все изменилось только во времена Ньютона. Смысл явлений «по Аристотелю» перестал удовлетворять ученых, и акцент сместился - с семантической части описания на синтаксическую. Проще говоря, решено было смотреть на меру и степень взаимодействий вещей, а не пытаться постигнуть саму их суть. И это оказалось куда плодотворнее. Тогда же и наступил звездный час метрологии.

Самая главная задача метрологии - обеспечить единство измерений. Основная цель - отвязать результат измерений от всех частностей: времени, места измерения, от того, кто измеряет и как он сегодня решит это сделать. В результате должно остаться только то, что всегда и везде, независимо ни от чего будет принадлежать вещи - ее объективная мера, принадлежащая ей в силу единой для всех реальности. Как подобраться к вещи? Через ее взаимодействие с измерительным прибором. Для этого должен быть унифицированный метод измерения, а также эталон, единый для всех.

Итак, мы научились измерять - осталось только, чтобы все остальные люди в мире измеряли так же, как мы. Для этого нужно, чтобы все они использовали тот же метод и пользовались такими же эталонами. Практическую пользу от введения единой для всех системы мер люди осознали быстро и согласились начать договариваться. Появилась метрическая система измерений, которая распространилась постепенно почти на весь мир. В России, кстати, заслуга введения метрологического обеспечения принадлежит Дмитрию Менделееву.

Результат измерения, помимо собственно значения величины, - это еще и подход, выраженный в единицах измерения. Так, измеренный метр никогда не станет ньютоном, а ом - тесла. То есть разные величины подразумевают разную природу измерения, но, разумеется, так происходит не всегда. Метр провода оказывается метром и с точки зрения его пространственных характеристик, и с точки зрения проводимости, и с точки зрения массы вещества в нем. Одна величина оказывается замешана в разных явлениях, и это существенно облегчает работу метролога. В известной мере эквивалентными оказались даже энергия и масса, поэтому массу сверхмассивных частиц измеряют в энергии, необходимой на ее создание.

Кроме значения величины и единицы ее измерения, есть еще несколько важных факторов, которые необходимо знать про каждое измерение. Все они содержатся в конкретной методике измерения, выбранной для нужного нам случая. В ней задается все: и стандартные образцы, и класс точности приборов, и даже квалификация исследователей. Умея все это обеспечить, на основе методики мы можем проводить корректные измерения. В конечном счете применение методики дает нам гарантированные размеры погрешности измерения, и весь результат измерения сводится к двум числам: величине и ее погрешности, с которыми обычно и работают ученые.

Измерить невидимое

Нанометрология работает почти по тем же законам. Но тут есть пара нюансов, которые нельзя не учитывать. Чтобы их понять, нужно разобраться в процессах наномира и понять, в чем, собственно, их особенность. Иначе говоря, что такого особенного в нанотехнологиях.

Начать, конечно, надо с размеров: один нанометр в метре - это примерно как один китаец в населении Китая. Такого масштаба размеры (меньше 100 нм) делают возможной целую серию новых эффектов. Здесь и эффекты квантовой физики, включая туннелирование, и взаимодействие с молекулярными системами, и биологическая активность и совместимость, и сверхразвитая поверхность, объем которой (точнее, приповерхностного слоя) сопоставим с суммарным объемом самого нанообъекта. Такие свойства - кладезь возможностей для нанотехнолога и в то же самое время - проклятие нанометролога. Почему?

Дело в том, что из-за наличия особых эффектов нанообъекты требуют к себе совершенно новых подходов. Их нельзя разглядеть оптически в классическом понимании из-за фундаментального ограничения на разрешение, которого можно добиться. Потому что оно строго привязано к длине волны видимого излучения (можно использовать интерференцию и прочее, но все это уже экзотика). Основных решений для этой проблемы придумано несколько.

Началось все с автоэлектронного проектора (1936 год), который позднее был модифицирован в автоионный (1951 год). Принцип его работы основан на прямолинейном движении электронов и ионов под действием электростатической силы, направленной от наноразмерного катода до анода-экрана уже нужных нам макроскопических размеров. Картина, которую мы наблюдаем на экране, образована на катоде или около него в силу тех или иных физико-химических процессов. Прежде всего это вытягивание автоэлектронов с атомарной структуры катода и поляризация атомов «изображающего» газа вблизи иглы катода. Образовавшись, картина в виде некоторого распределения ионов или электронов проецируется на экран, где проявляется силами флюоресценции. Таким элегантным способом можно посмотреть на наноструктуру острий, сделанных из некоторых металлов и полупроводников, но элегантность решения здесь завязана на слишком жестких ограничениях того, что мы можем посмотреть, поэтому такие проекторы не стали особо популярными.

Другим решением стало в буквальном смысле ощупывание поверхности, впервые реализованное в 1981 году в виде сканирующего зондового микроскопа, что в 1986 году было удостоено Нобелевской премии. Как можно догадаться по названию, исследуемая поверхность сканируется зондом, который представляет собой заостренную иглу.

Между иглой и структурой поверхности возникает взаимодействие, которое можно с высокой точностью определить хоть по силе, действующей на зонд, хоть по возникающему отклонению зонда, хоть по изменению частоты (фазы, амплитуды) колебаний зонда. Исходное взаимодействие, которое определяет возможность исследовать практически любой объект, то есть универсальность метода, основано на силе отталкивания, возникающей при контакте, и на дальнодействующих ван-дер-ваальсовых силах. Можно использовать и другие силы, и даже возникающий туннельный ток, картрируя поверхность не только с точки зрения пространственного расположения на поверхности нанообъектов, но и других их свойств. Важно, чтобы зонд сам был наноразмерным, иначе не зонд будет сканировать поверхность, а поверхность - зонд (в силу третьего закона Ньютона взаимодействие определяется обоими объектами и в некотором смысле симметрично). Но в целом этот метод оказался одновременно и универсальным, и обладающим широчайшим набором возможностей, так что стал одним из главных в изучении наноструктур. Его главный недостаток - он исключительно времязатратный, особенно в сравнении с электронными микроскопами.

Электронные микроскопы, кстати, также являются зондовыми, только зондом в них выступает сфокусированный пучок электронов. Использование системы линз делает его концептуально схожим с оптическим, хотя не без серьезных отличий. Первое и главное: электрон обладает меньшей длиной волны, нежели фотон, благодаря своей массивности. Разумеется, длины волн здесь не принадлежат собственно частицам электрону и фотону, а характеризуют поведение соответствующих им волн. Другое важное отличие: взаимодействие тел с фотонами и с электронами довольно сильно разнится, хотя и не лишено общих черт. В каких-то случаях информация, полученная от взаимодействия с электронами, даже содержательнее, нежели от взаимодействия со светом, - впрочем, нередка и обратная ситуация.

И последнее, на что следует обратить внимание, - это различие оптических систем: если для света линзами традиционно выступают вещественные тела, то для пучков электронов - это электромагнитные поля, что дает большую свободу манипулировать электронами. В этом и кроется «секрет» растровых электронных микроскопов, изображение на которых хоть и выглядит так, словно получено в обычный световой микроскоп, но сделано таким лишь для удобства оператора, а получается из компьютерного анализа характеристик взаимодействия электронного пучка с отдельным растром (пикселем) на образцах, которые последовательно сканируются. Взаимодействие электронов с телом позволяет картрировать поверхность с точки зрения рельефа, химического состава и даже люминесцентных свойств. Через тонкие образцы электронные пучки способны проходить насквозь, что позволяет видеть внутреннюю структуру таких объектов - вплоть до атомных слоев.

Это основные методы, позволяющие различать и исследовать геометрию объектов на наноразмерном уровне. Есть и другие, но они работают с целыми системами нанообъектов, высчитывая их параметры статистически. Здесь и рентгеновская дифрактометрия порошков, позволяющая узнать не только фазовый состав порошка, но и кое-что о распределении кристаллов по размерам; и эллипсометрия, которой характеризуют толщину тонких пленок (вещь, незаменимая в создании электроники, в которой архитектуру систем создают в основном послойно); и газосорбционные методы анализа удельной площади поверхности. На названиях некоторых методов язык можно сломать: динамическое светорассеяние, электроакустическая спектроскопия, ядерная магнитная резонансная релаксометрия (ее, впрочем, называют просто ЯМР-релаксометрией).

Но и это еще не все. Например, наночастице, движущейся в воздухе, можно передать заряд, после чего включить электростатическое поле и, смотря, как будет отклоняться частица, вычислить ее аэродинамический размер (от размера частицы зависит ее сила трения о воздух). Схожим, кстати, образом определяется размер наночастиц в уже упомянутом методе динамического светорассеяния, только анализируется скорость в броуновском движении, причем еще и косвенно, по флуктуациям рассеяния света. Получается гидродинамический диаметр частицы. И таких «ухищренных» методов не один.

У такого изобилия методов, измеряющих вроде бы одно и то же - размер, есть одна интересная деталь. Значение размера одного и того же нанообъекта часто различается, бывает даже, что в разы.

Какой размер правильный?

Здесь самое время вспомнить обыкновенную метрологию: результаты измерения, помимо собственно измеренной величины, задаются еще точностью измерений и методом, которым измерение проведено. Соответственно, различие в результатах может объясняться как разной точностью, так и разной природой измеряемых величин. Тезис о разной природе различающихся размеров одной и той же наночастицы может показаться диким, но так и есть. Размер наночастицы с точки зрения ее поведения в водной дисперсии не то же самое, что ее размер с точки зрения адсорбции газов на ее поверхности и не то же самое, что ее размер с точки зрения взаимодействия с электронным пучком в микроскопе. Не говоря уже о том, что для статистических методов и об определенном размере нельзя говорить, а можно лишь о величине, размер характеризующей. Но несмотря на это различия (или даже благодаря им) все эти результаты можно считать одинаково истинными, просто говорящими немножко о разном, смотрящими с разных сторон. Сравнивать же эти результаты можно лишь с точки зрения адекватности опоры на них в тех или иных ситуациях: для прогнозирования поведения наночастицы в жидкости адекватнее использовать значение гидродинамического диаметра и так далее.

Все сказанное верно и для обычной метрологии, и даже для любой фиксации фактов, но это часто упускается из виду. Можно сказать, что нет фактов более истинных и менее истинных, более соответствующих реальности и менее (исключая разве что подлог), а есть лишь факты более и факты менее адекватные для использования в той или иной ситуации, а также использующие в своей основе более и менее корректную для этого интерпретацию. Философы это со времен позитивизма хорошо усвоили: любой факт теоретически нагружен.

Не пропустите лекцию Степана:

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер паропроницаемости и скорости переноса пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 ньютон-метр [Н·м] = 0,1019716212978 килограмм-сила-метр [кгс·м]

Исходная величина

Преобразованная величина

ньютон-метр килоньютон-метр миллиньютон-метр микроньютон-метр тонна-сила (короткая)-метр тонна-сила (длинная)-метр тонна-сила (метрическая)-метр килограмм-сила-метр грамм-сила-сантиметр фунт-сила-фут паундаль-фут паундаль-дюйм

Подробнее о моменте силы и терминологии

Общие сведения

Момент силы - это физическая величина, характеризующая насколько сила, приложенная к телу, вызывает вращение тела вокруг оси. В английском и некоторых других языках это явление называют разными словами, в зависимости от контекста. Поскольку эта статья написана для сайта переводчиков, мы немного поговорим о терминологии в других языках. Величина момента силы равна векторному произведению силы, приложенной к телу на вычисленное по перпендикуляру расстояние между осью вращения и точкой приложения силы, которая вызывает вращение. В английском языке для момента силы используют два термина, момент силы (moment of force ) и отдельный термин, torque . Английский термин torque используют для обозначения физической величины, которую измеряют так же, как и момент силы (в английском), но только в контексте, в котором сила, ответственная за это свойство, обязательно вызывает вращение тела. Эту величину также измеряют, умножив силу на расстояние между осью вращения и точкой приложения силы. В русском языке термину «torque» соответствуют термины «вращающий момент» и «вращательный момент», которые являются синонимами. Русский термин «крутящий момент» относится к внутренним усилиям, возникающим в объектах под действием приложенных к ним нагрузок. Этому термину соответствуют английские термины «torsional movement», «torque effect», «torsional shear» и некоторые другие.

Как уже упоминалось выше, в этой статье мы уделяем много внимания контексту, в котором используется тот или иной английский термин. Наша задача - объяснить разницу, чтобы помочь читателю, если он в будущем столкнется с этими терминами в английском тексте. Самое главное, что следует помнить - оба термина, момент силы и torque, используют для одной и той же физической величины, но в разных контекстах. Во многих языках, как и в русском, используют только один термин. Ниже рассмотрим в каком же контексте используют каждый из этих терминов.

Терминология в английском языке

Как мы уже упоминали выше, английские термины «момент силы» и «torque» используют для одного и того же понятия, но в разных контекстах. В этом разделе обсудим, когда в английском наиболее часто используют термин «момент силы» и почти не используют «torque». Часто о понятии «torque» говорят в контексте, когда сила, действующая на тело вызывает изменение углового ускорения тела. С другой стороны, когда в английском языке говорят о моменте силы, то сила, действующая на тело не обязательно вызывает такое ускорение. То есть, «torque» - это частный пример момента силы, но не наоборот. Можно также сказать, что «torque» - это момент силы, но момент силы - не «torque».

Ниже рассмотрим несколько примеров. Стоит еще раз напомнить, что разница в использовании этих двух терминов зависит от контекста, но используют их для одного и того же физического явления. Нередко оба эти термина используют попеременно.

Чтобы понять, что такое момент силы, рассмотрим вначале, что такое момент в общем. Момент - это интенсивность, с которой сила действует на тело на определенном расстоянии относительно тела. Величина момента силы зависит от величины силы, которая действует на тело, и от расстояния от точки приложения силы до точки на теле. Как мы увидели из определения выше, эта точка часто находится на оси вращения.

Момент силы пропорционален силе и радиусу. Это значит, что если сила приложена к телу на определенном расстоянии от оси вращения, то вращательное действие этой силы умножается на радиус, то есть чем дальше от оси вращения приложена сила, тем более вращающее действие она оказывает на тело. Это принцип используется в системах рычагов, шестерней и блоков, чтобы получить выигрыш в силе. В этом контексте чаще всего говорят о моменте силы и о его использовании в различных системах, например в системах рычагов. Примеры работы рычагов показаны в . Стоит заметить, что в этой статье мы в основном обсуждаем вращающий момент, что соответствует английскому термину «torque».

Иногда понятия момент силы и вращающий момент различают с помощью понятия «пары сил». Пара сил - это две силы одинаковой величины, действующие в противоположном направлении. Эти силы вызывают вращение тела, и их векторная сумма равна нулю. То есть, термин «момент силы» используют в более общем контексте, чем вращающий момент.

В некоторых случаях термин «вращающий момент» используют, когда тело вращается, в то время как термин «момент силы» используют, когда тело не вращается, например, если речь идет об опорных балках и других конструктивных элементах зданий в строительстве. В таких системах концы балки либо жестко закреплены (жесткая заделка), либо крепление позволяет балке вращаться. Во втором случае говорят, что эта балка закреплена на шарнирной опоре. Если на эту балку действует сила, например, перпендикулярно ее поверхности, то в результате образуется момент силы. Если балка не фиксирована, а прикреплена на шарнирной опоре, то она свободно движется в ответ на действующие на нее силы. Если же балка фиксирована, то в противодействие моменту силы образуется другой момент, известный как изгибающий момент . Как видно из этого примера, термины момент силы и вращающий момент различаются тем, что момент силы не обязательно изменяет угловое ускорение. В этом примере угловое ускорение не изменяется потому, что силам извне, действующим на балку, противодействуют внутренние силы.

Примеры момента силы

Хороший пример момента силы в быту - это действие на тело одновременно момента силы и изгибающего момента, о котором мы говорили выше. Момент силы часто используют в строительстве и в проектировании строительных конструкций, так как, зная момент силы, можно определить нагрузку, которую должна выдержать эта конструкция. Нагрузка включает нагрузку от собственного веса, нагрузку, вызванную внешними воздействиями (ветром, снегом, дождем, и так далее), нагрузку от мебели и нагрузку, вызванную посетителями и обитателями здания (их вес). Нагрузка, вызванная людьми и интерьером, называется в строительстве полезной нагрузкой , а нагрузка, вызванная весом самого здания и окружающей средой называется статической или постоянной нагрузкой .

При постройке в 1900 году моста Александры через реку Оттава использовано много двутавровых балок

Если на балку или другой конструктивный элемент действует сила, то в ответ на эту силу возникает изгибающий момент, под действием которого некоторые части этой балки сжимаются, в то время как другие, наоборот, растягиваются. Представим, к примеру, балку, на которую действует сила, направленная вниз и приложенная по центру. Под воздействием этой силы балка принимает вогнутую форму. Верхняя часть балки, на которую действует сила, сжимается под воздействием этой силы, в то время как нижняя, наоборот, растягивается. Если нагрузка больше, чем этот материал может выдержать, то балка разрушается.

Наибольшая нагрузка - на самый верхний и самый нижний слои балки, поэтому в строительстве и при проектировании сооружений эти слои часто укрепляют. Хороший пример - использование двутавровых конструкций . Двутавр - конструктивный элемент с поперечным сечением в форме буквы Н или латинской буквыI ” с верхней и нижней засечками (поэтому английском языке используют термин I -beam, Такая форма очень экономична, так как она позволяет упрочнить самые слабые части балки, используя при этом наименьшее количество материала. Чаще всего двутавровые балки сделаны из стали, но для прочной балки двутавровой конструкции вполне можно использовать и другие материалы. На YouTube можно найти видеосюжеты испытания двутавровых балок, сделанных из материалов, менее прочных, чем сталь, например из пенопласта и фанеры (нужно искать plywood beam test). Двутавровые балки из фанеры и древесностружечных плит появились на российском рынке стройматериалов относительно недавно, хотя они давно и очень широко применяются при строительстве каркасных домов в Северной Америке.

Если на конструкцию действует изгибающий момент, то двутавровые балки - решение проблем, связанных с прочностью. Двутавровые балки также используют в конструкциях, которые подвергаются напряжению сдвига . Края двутавровой балки противодействуют изгибающему моменту, в то время как центральная опора противостоит напряжению сдвига. Несмотря на ее достоинства, двутавровая балка не может противостоять . Чтобы уменьшить эту нагрузку на поверхность конструкции, ее делают круглой и полируют поверхность, чтобы предотвратить скопление нагрузки в точках с неровной поверхностью. Увеличение диаметра и изготовление такой конструкции полой внутри может помочь уменьшить ее вес.

Заключение

В это статье мы рассмотрели, чем отличаются термины «момент силы» и «вращающий момент», а также английские термины «moment of force» и «torque», и увидели несколько примеров момента силы. В основном мы говорили о случаях, когда момент силы создает проблемы в строительстве, но часто бывает наоборот и момент силы приносит пользу. Примеры использования момента силы на практике - в . Стоит также упомянуть, что разница в терминологии в английском языке чаще всего значительна в американском и британском машиностроении и строительстве, в то время как в физике эти термины часто взаимозаменяемы.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Современный двигатель: мощность или крутящий момент?

Уже более века двигатели внутреннего сгорания используются практически во всех областях транспорта. Они являются "сердцем" автомобиля, трактора, тепловоза, корабля, самолёта и за последние тридцать лет стали представлять собой своеобразный сплав последних достижений науки и техники. Для нас уже привычными стали такие термины, как МОЩНОСТЬ и КРУТЯЩИЙ МОМЕНТ и являются необходимым критерием оценки силовых возможностей двигателя. Но на сколько правильно Вы можете оценить потенциал двигателя, имея перед глазами лишь скупые цифры с техническими данными автомобиля? Надеюсь, Вы не станете целиком полагаться на заверения продавца автосалона, что мотор приобретаемого Вами авто достаточно мощный и полностью Вас удовлетворит? Для того, чтобы потом не пожалеть о не выгодном приобретении прошу ознакомиться с нижеизложенным.
С давних времён для строительства, перемещения грузов, а так же транспортировки людей человечество использовало всевозможные механизмы и устройства. С изобретением более чем 10 тыс. лет назад ЕГО ВЕЛИЧЕСТВА КОЛЕСА, теория механики претерпела серьёзные изменения. Изначально, роль колеса сводилась только к банальному уменьшению сопротивления (силы трения) и переводу силы трения в качение. Конечно, катить круглое гораздо приятней, чем тащить квадратное! Но качественное изменение способа применения колеса произошло намного позднее благодаря появлению другого гениального изобретения ― ДВИГАТЕЛЯ! Отцом парового локомотива, чаще называют Джорджа Стивенсона, который построил в 1829 году свой знаменитый паровоз "Ракета". Но ещё в 1808 году англичанин Ричард Тревитик демонстрирует одно из самых революционных изобретений в истории первый паровоз. Но к нашей всеобщей радости Тревитик сначала построил паровой автомобиль для уличного движения, а затем уж только пришел к мысли o паровозе. Таким образом, автомобиль является в некотором роде прародителем паровоза. К сожалению судьба первооткрывателя Ричард Тревитика, как впрочем, многих инженеров, но не коммерсантов сложилась печально. Он разорился, долго жил на чужбине, и умер в нищете. Но не будем о грустном…
Наша задача ― понять, что такое крутящий момент и мощность двигателя, и она значительно упростится, если вспомнить устройство паровоза. Кроме пассивного преобразователя трения из одного вида в другой, колесо стало выполнять еще одну задачу - создавать движущую (тяговую) силу, то есть, отталкиваясь от дороги, приводить в движение экипаж. Давление пара действует на поршень, тот, в свою очередь, давит на шатун, последний проворачивает колесо, создавая КРУТЯЩИЙ МОМЕНТ. Вращение колеса под действием крутящего момента вызывает появление пары сил. Одна из них - сила трения между рельсом и колесом - как бы отталкивается от рельса назад, а вторая - та самая искомая нами СИЛА ТЯГИ через ось колеса передается на детали рамы паровоза. На примере паровоза заметно, что чем больше давление пара, действующее на поршень, а через него - на шатун, тем большая сила тяги будет толкать его вперед. Очевидно, изменяя давление пара, диаметр колеса и положение точки крепления шатуна относительно центра колеса, можно менять силу и скорость паровоза. То же самое происходит в автомобиле.

Разница в том, что все преобразования сил осуществляются непосредственно в самом двигателе. На выходе из него мы имеем просто вращающийся вал, то есть, вместо силы, толкающей паровоз вперёд, здесь мы получаем круговое движение вала с определенным усилием ― КРУТЯЩИМ МОМЕНТОМ. А МОЩНОСТЬ, развиваемая двигателем, ― это его способность вращаться как можно быстрее, одновременно создавая при этом на валу крутящий момент. Затем вступает в действие силовая передача автомобиля (трансмиссия), которая этот крутящий момент изменяет так, как нам нужно, и подводит к ведущим колесам. И только в контакте между колесом и дорожным покрытием крутящий момент снова "выпрямляется" и становится тяговой силой.
Очевидно, что тяговую силу предпочтительно иметь наибольшую. Это обеспечит нужную интенсивность разгона, способность преодолевать подъемы и перевозить больше людей и груза.

В технической характеристике автомобиля есть такие параметры, как число оборотов двигателя при максимальной мощности и максимальном крутящем моменте и величина этой мощности и момента. Как правило, они измеряются соответственно в оборотах в минуту (мин־№), киловаттах (кВт) и ньютонометрах (Нм). Необходимо уметь правильно понимать внешнюю скоростную характеристику двигателя.

Это графическое изображение зависимости мощности и крутящего момента от оборотов коленчатого вала. Наиболее показательной является форма кривой крутящего момента, а не его величина. Чем раньше достигается максимум и чем более полого кривая падает по мере увеличения оборотов (то есть мотор имеет неизменную тягу), тем правильнее спроектирован и работает двигатель. Однако получить двигатель, обладающий достаточным запасом мощности, высокими оборотами да еще и стабильным КРУТЯЩИМ МОМЕНТОМ в широком диапазоне оборотов, непросто. Именно на это направлены применение наддува различных систем, электронного регулирования впрыска топлива, переменные фазы газораспределения, настройка выпускной системы и ряд других мероприятий.
Давайте рассмотрим пример. Вам предстоит преодолеть подъем, а увеличить скорость движения (разогнать автомобиль перед подъемом) нельзя из-за дорожной обстановки. Для сохранения темпа движения потребуется увеличить силу тяги. Тут часто возникает ситуация, которая выглядит так, добавление газа не даёт прироста силы тяги. Это вызывает снижение скорости, а значит, и оборотов двигателя, сопровождающееся дальнейшим уменьшением силы тяги на ведущих колесах.
Так что же делать? Как поддержать большую тяговую силу при малой скорости движения, если двигатель "не тянет", то есть, не обеспечивает достаточный КРУТЯЩИЙ МОМЕНТ? Вступает в действие трансмиссия. Вы вручную, или автоматическая коробка передач самостоятельно, измените передаточное число так, чтобы сила тяги и скорость движения находились в оптимальном соотношении. Но это дополнительные неудобства в управлении автомобилем. Напрашивается вывод: было бы лучше, если бы двигатель сам приспосабливался к работе в таких ситуациях. Например, вы въезжаете на подъем. Сила сопротивления движению автомобиля возрастает, скорость падает, но силу тяги можно добавить, просто сильнее нажав на педаль газа. Автомобильные конструктора для оценки этого параметра используют термин "ЭЛАСТИЧНОСТЬ ДВИГАТЕЛЯ".
Это соотношение между числами оборотов максимальной мощности и оборотов максимального крутящего момента (об/мин Pmax/об/мин Mmax). Оно должно быть таковым, чтобы по отношению к оборотам максимальной мощности обороты максимального крутящего момента были как можно ниже. Это позволит снижать и увеличивать скорость только за счет работы педалью газа, не прибегая к переключению передач, а также ехать на повышенных передачах с малой скоростью. Практически оценить эластичность мотора можно путем проверки способности автомобиля разгоняться от 60 до 100 км/ч на четвёртой передаче. Чем меньше времени займет этот разгон, тем эластичнее двигатель.
В подтверждение вышеизложенного, обратимся к результатам тестов автомобилей Audi, BMW и Mercedes, проведенных в Европе и опубликованных российским издательством немецкого журнала Auto Motor und Sport в ноябрьском номере за 2005 год. Главным образом, рассмотрим характеристики Audi и BMW. Из приведённой таблицы видно, что двигатель Audi, гораздо меньшего объёма и почти такой же мощности, практически не уступает баварцу в разгоне с места, но зато в замерах на эластичность и экономичность кладёт конкурента на обе лопатки. Почему это происходит? Потому что коэффициент эластичности мотора Audi 2,39 (4300/1800) против 1,66 (5800/3500) у BMW, а поскольку вес автомобилей приблизительно равный, жеребец из Мюнхена позволяет дать завидную фору своему соотечественнику. Причём эти впечатляющие результаты достигаются на топливе АИ-95.
Итак, подведём итог!
Из двух двигателей одинакового объема и мощности, предпочтителен тот, у которого выше эластичность. При прочих равных условиях такой мотор будет меньше изнашиваться, работать с меньшим шумом и меньше расходовать топливо, а также упростит манипуляции рычагом коробки передач. Под все эти условия попадают современные бензиновые и дизельные двигатели с наддувом. Эксплуатируя автомобиль с таким мотором, Вы получите массу приятных впечатлений!

Так вот, «микро» – это столько. На этих страницах размещены конвертеры единиц измерения, позволяющие быстро и точно перевести значения из одних единиц в другие, а также из одной системы единиц в другую. Как я к этому отношусь? Что такое метр, я уже знаю. Сантиметр и миллиметр – на линейке нашёл. А «микро» и «нано» – это сколько?


Одна миллиардная метра. В Гарвардском университете (США) созданы самые тонкие проволоки их диаметр менее десяти нанометров (тысячных долей микрона). Определение этих единиц никак не связано ни с какими историческими человеческими построениями, только с фундаментальными законами природы.

Нанометр. Конвертер величин.

С тех пор и все остальные меры тоже были переопределены в терминах метрических единиц. А в 1996г была запущена первая версия сайта с мгновенными вычислениями. В системе СИ длина измеряется в метрах. Производные величины, такие как километр (1000 метров) и сантиметр (1/100 метра), также широко используются в метрической системе. В судоходстве используют морские мили. Одна морская миля равна 1852 метрам. Это облегчало вычисления широты, так как 60 морских миль равнялись одному градусу широты.

В астрономии измеряют большие расстояния, поэтому для облегчения вычислений приняты специальные величины. Астрономическая единица (а. е., au) равна 149 597 870 700 метрам. Это расстояние, которое проходит свет в вакууме за один Юлианский год. Эта величина используется в научно-популярной литературе чаще, чем в физике и астрономии. Один парсек - это расстояние от Солнца до другого астрономического объекта, например планеты, звезды, луны, или астероида, с углом в одну угловую секунду.

Расстояние в астрономии

Это расстояние, которое человек проходит за час. Морская лига - три морских мили, примерно 5,6 километра. Локоть - старинная величина, равная расстоянию от кончика среднего пальца до локтя. Эта величина была широко распространена в античном мире, в средневековье, и до нового времени. Позднее метр приравнивали к длине волны оранжевой линии электромагнитного спектра атома криптона ⁸⁶Kr в вакууме, умноженной на 1 650 763,73.

Расстояние в физике и биологии

В физике длина - всегда положительная скалярная величина. При известной частоте оборота колеса или его радиуса можно вычислить расстояние, пройденное этим колесом. Такие вычисления полезны, например, в велоспорте. Расчеты для перевода единиц в конвертере «Длина и расстояние» выполняются с помощью функций unitconversion.org.

Конвертер футов и дюймов в метры и обратно

Выберите единицу, в которую выполняется преобразование, из правого списка единиц измерения. По сравнению с 22 нм, в 14-нм технологии уменьшено расстояние между диэлектрическими ребрами, увеличена высота барьеров и сокращено их количество. Таким образом, Intel Core в своей мобильной ипостаси все более и более приближается к конструктиву SoC, и не приходится сомневаться, что вскоре приблизится совсем.

Использование конвертера «Длина и расстояние»

Возможно, это такой способ переманить людей на новые железки, так как андроид с каждой новой версией наоборот ускоряется на том же железе. А может, программирование и не должно быть такой простой профессией, доступной тем, кто не хочет вылизывать. Пора уже перенести распределение труда на новый уровень, как это сделано в кино: у книги должен быть продюсер, режиссёр, сценарист, художники по костюмам, мастера спецэффектов и т.п.

Такая проволока состоит из всего 20 рядов атомов. Международная морская миля была определена в 1929г на Международной Внеочередной Гидрографической конференции. В физике естественные единицы измерения базируются только на фундаментальных физических константах.

Сейчас из неметрических мер длины официально разрешено использовать только мили, ярды и футы для дорожных знаков. Круизный теплоход Celebrity Reflection в порту в Майами. Первоначально она измерялась как дуга в одну минуту по меридиану, то есть 1/(60×180) меридиана. Величина одной астрономической единицы - константа, то есть, постоянная величина. Земля находится от Солнца на расстоянии одной астрономической единицы.

Для этого принята специальная величина, микроме́тр. Результат сразу появится в поле «Результат» и в поле «Преобразованная величина». Нанометр - (нм, nm) единица измерения длины в метрической системе, равная одной миллиардной части метра (т. е. 10−9 метра).

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер паропроницаемости и скорости переноса пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 нанометр [нм] = 1E-09 метр [м]

Исходная величина

Преобразованная величина

метр эксаметр петаметр тераметр гигаметр мегаметр километр гектометр декаметр дециметр сантиметр миллиметр микрометр микрон нанометр пикометр фемтометр аттометр мегапарсек килопарсек парсек световой год астрономическая единица лига морская лига (брит.) морская лига (международная) лига (статутная) миля морская миля (брит.) морская миля (международная) миля (статутная) миля (США, геодезическая) миля (римская) 1000 ярдов фарлонг фарлонг (США, геодезический) чейн чейн (США, геодезический) rope (англ. rope) род род (США, геодезический) перч поль (англ. pole) морская сажень, фатом сажень (США, геодезическая) локоть ярд фут фут (США, геодезический) линк линк (США, геодезический) локоть (брит.) хенд пядь фингер нейль дюйм дюйм (США, геодезический) ячменное зерно (англ. barleycorn) тысячная микродюйм ангстрем атомная единица длины икс-единица ферми арпан пайка типографский пункт твип локоть (шведский) морская сажень (шведская) калибр сантидюйм кен аршин actus (Др. Рим.) vara de tarea vara conuquera vara castellana локоть (греческий) long reed reed длинный локоть ладонь «палец» планковская длина классический радиус электрона боровский радиус экваториальный радиус Земли полярный радиус Земли расстояние от Земли до Солнца радиус Солнца световая наносекунда световая микросекунда световая миллисекунда световая секунда световой час световые сутки световая неделя Миллиард световых лет Расстояние от Земли до Луны кабельтов (международный) кабельтов (британский) кабельтов (США) морская миля (США) световая минута стоечный юнит горизонтальный шаг цицеро пиксель линия дюйм (русский) вершок пядь фут сажень косая сажень верста межевая верста

Конвертер футов и дюймов в метры и обратно

фут дюйм

м

Подробнее о длине и расстоянии

Общие сведения

Длина - это наибольшее измерение тела. В трехмерном пространстве длина обычно измеряется горизонтально.

Расстояние - это величина, определяющая насколько два тела удалены друг от друга.

Измерение расстояния и длины

Единицы расстояния и длины

В системе СИ длина измеряется в метрах. Производные величины, такие как километр (1000 метров) и сантиметр (1/100 метра), также широко используются в метрической системе. В странах, где не пользуются метрической системой, например в США и Великобритании, используют такие единицы как дюймы, футы и мили.

Расстояние в физике и биологии

В биологии и физике часто измеряют длину намного менее одного миллиметра. Для этого принята специальная величина, микроме́тр. Один микроме́тр равен 1×10⁻⁶ метра. В биологии в микрометрах измеряют величину микроорганизмов и клеток, а в физике - длину инфракрасного электромагнитного излучения. Микроме́тр также называют микроном и иногда, особенно в англоязычной литературе, обозначают греческой буквой µ. Широко используются и другие производные метра: нанометры (1×10⁻⁹ метра), пикометры (1×10⁻¹² метра), фемтометры (1×10⁻¹⁵ метра и аттометры (1×10⁻¹⁸ метра).

Расстояние в навигации

В судоходстве используют морские мили. Одна морская миля равна 1852 метрам. Первоначально она измерялась как дуга в одну минуту по меридиану, то есть 1/(60×180) меридиана. Это облегчало вычисления широты, так как 60 морских миль равнялись одному градусу широты. Когда расстояние измеряется в морских милях, скорость часто измеряют в морских узлах. Один морской узел равен скорости движения в одну морскую милю в час.

Расстояние в астрономии

В астрономии измеряют большие расстояния, поэтому для облегчения вычислений приняты специальные величины.

Астрономическая единица (а. е., au) равна 149 597 870 700 метрам. Величина одной астрономической единицы - константа, то есть, постоянная величина. Принято считать, что Земля находится от Солнца на расстоянии одной астрономической единицы.

Световой год равен 10 000 000 000 000 или 10¹³ километрам. Это расстояние, которое проходит свет в вакууме за один Юлианский год. Эта величина используется в научно-популярной литературе чаще, чем в физике и астрономии.

Парсек приблизительно равен 30 856 775 814 671 900 метрам или примерно 3,09 × 10¹³ километрам. Один парсек - это расстояние от Солнца до другого астрономического объекта, например планеты, звезды, луны, или астероида, с углом в одну угловую секунду. Одна угловая секунда - 1/3600 градуса, или примерно 4,8481368 мкрад в радианах. Парсек можно вычислить используя параллакс - эффект видимого изменения положения тела, в зависимости от точки наблюдения. При измерениях прокладывают отрезок E1A2 (на иллюстрации) от Земли (точка E1) до звезды или другого астрономического объекта (точка A2). Шесть месяцев спустя, когда Солнце находится на другой стороне Земли, прокладывают новый отрезок E2A1 от нового положения Земли (точка E2) до нового положения в пространстве того же самого астрономического объекта (точка A1). При этом Солнце будет находиться на пересечении этих двух отрезков, в точке S. Длина каждого из отрезков E1S и E2S равна одной астрономической единице. Если отложить отрезок через точку S, перпендикулярный E1E2, он пройдет через точку пересечения отрезков E1A2 и E2A1, I. Расстояние от Солнца до точки I - отрезок SI, он равен одному парсеку, когда угол между отрезками A1I и A2I - две угловые секунды.

На рисунке:

  • A1, A2: видимое положение звезды
  • E1, E2: положение Земли
  • S: положение Солнца
  • I: точка пересечения
  • IS = 1 парсек
  • ∠P or ∠XIA2: угол параллакса
  • ∠P = 1 угловая секунда

Другие единицы

Лига - устаревшая единица длины, использовавшаяся раньше во многих странах. В некоторых местах ее до сих пор применяют, например, на полуострове Юкатан и в сельских районах Мексики. Это расстояние, которое человек проходит за час. Морская лига - три морских мили, примерно 5,6 километра. Лье - единица примерно равная лиге. В английском языке и лье, и лиги называются одинаково, league. В литературе лье иногда встречается в названии книг, как например «20 000 лье под водой» - известный роман Жюля Верна.

Локоть - старинная величина, равная расстоянию от кончика среднего пальца до локтя. Эта величина была широко распространена в античном мире, в средневековье, и до нового времени.

Ярд используется в британской имперской системе мер и равен трем футам или 0,9144 метра. В некоторых странах, например в Канаде, где принята метрическая система, ярды используют для измерения ткани и длины бассейнов и спортивных полей и площадок, например, полей для гольфа и футбола.

Определение метра

Определение метра несколько раз менялось. Изначально метр определяли как 1/10 000 000 расстояния от Северного полюса до экватора. Позже метр равнялся длине платиноиридиевого эталона. Позднее метр приравнивали к длине волны оранжевой линии электромагнитного спектра атома криптона ⁸⁶Kr в вакууме, умноженной на 1 650 763,73. Сегодня метр определяют как расстояние, пройденное светом в вакууме за 1/299 792 458 секунды.

Вычисления

В геометрии расстояние между двумя точками, А и В, с координатами A(x₁, y₁) и B(x₂, y₂) вычисляют по формуле:

и в течение нескольких минут вы получите ответ.

Расчеты для перевода единиц в конвертере «Конвертер длины и расстояния » выполняются с помощью функций unitconversion.org .

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то