Из чего делают литий ионные аккумуляторы. Литий-полимерный аккумулятор: отличие от ионного, срок службы, устройство. Li-pol или Li-ion: какой лучше. Недостатки литий-ионных аккумуляторов

Эксплуатация, зарядка, плюсы и минусы литиевых аккумуляторов

Очень многие сегодня используют электронные устройства в своей повседневной жизни. Сотовые телефоны, планшеты, ноутбуки… Все знают, что это такое. Но немногие знают, что ключевым элементом этих устройств является литиевый аккумулятор. Этим типом аккумуляторных батарей комплектуется практически каждое мобильное устройство. Сегодня мы поговорим о литиевых аккумуляторах. Эти АКБ и технология их производства постоянно развиваются. Существенное обновление технологии происходит раз в 1─2 года. Мы рассмотрим общий принцип работы литиевых батарей, а разновидностям будут посвящены отдельные материалы. Ниже будет рассмотрена история возникновения, эксплуатация, хранение, преимущества и недостатки литиевых аккумуляторов.

Исследования в этом направлении проводились ещё в начале 20 века. «Первые ласточки» в семействе литиевых аккумуляторов появились в начале семидесятых годов прошлого столетия. Анод этих батарей был выполнен из лития. Они быстро стали востребованы благодаря тому, что обладали высокой удельной энергией. Благодаря наличию лития, очень активного восстановителя, разработчикам удалось сильно нарастить номинальное напряжение и удельную энергию элемента. Разработка, последующие испытания и доводки технологии «до ума» заняли около двух десятков лет.


За это время решались в основном вопросы с безопасность использования литиевых аккумуляторов, подбором материалов и т. п. Вторичные литиевые элементы с апротонными электролитами и разновидность с твёрдым катодом похожи по электрохимическим процессам, протекающих в них. В частности, на минусовом электроде идёт анодное растворение лития. В кристаллическую решётку плюсового электрода идёт внедрение лития. Когда аккумуляторный элемент заряжается, то процессы на электродах идут в обратном направлении.

Материалы для плюсового электрода разработали достаточно быстро. Основное требование к ним было в том, чтобы на них проходило обратимые процессы.

Речь идёт об анодной экстракции и катодном внедрении. Эти процессы ещё называют анодным деинтеркалированием и катодным интеркалированием. Исследователи испытывали различные материалы в качестве катода.

Требование было в том, чтобы отсутствовали изменения при циклировании. В частности, изучались такие материалы, как:

  • TiS2 (дисульфид титана);
  • Nb(Se)n (селенид ниобия);
  • сульфиды и диселениды ванадия;
  • сульфиды меди и железа.

Все перечисленные материалы имеют слоистую структуру. Проводились исследования и с материалами более сложных составов. Для этого использовались добавки некоторых металлов в небольших количествах. Это были элементы имеющее катионы большего радиуса, чем у Li.

Высокие удельные характеристики катода были получены на оксидах металлов. Пробовались разные оксиды на предмет обратимой работы, которая зависит от степени искажения кристаллической решётки материала оксида, когда туда внедряются катионы лития. В расчёт принималась и электронная проводимость катода. Задача заключалась в том, чтобы обеспечить изменения объёма катода не более 20 процентов. Согласно исследованиям, наилучшие результаты показали оксиды ванадия и молибдена.



С анодом возникли главные сложности при создании литиевых аккумуляторов. Точнее в процессе зарядки, когда происходит катодное осаждение Li. При этом образуется поверхность с очень высокой активностью. Литий осаждается на поверхности катода в виде дендритов и в результате образуется пассивная плёнка.

Получается так, что эта плёнка обволакивает частицы лития и препятствует их контакту с основой. Этот процесс называется инкапсулированием и приводит к тому, что после зарядки аккумулятора определённая часть лития исключается из электрохимических процессов.

В итоге после определённого количества циклов, электроды изнашивались и нарушалась температурная стабильность процессов внутри литиевого аккумулятора.

В какой-то момент элемента разогревался до точки плавления Li и реакция переходила в неконтролируемую фазу. Так, в начале 90-х годов на предприятия компаний, занимавшихся их выпуском, возвратили много литиевых АКБ. Это были одни из первых аккумуляторов, которые стали применяться в мобильных телефонах. В момент разговора (ток достигает максимального значения) по телефону из этих батарей происходил выброс пламени. Было немало случаев, когда пользователю обжигало лицо. Образование дендритов при осаждении лития, помимо опасности пожара и взрыва, может приводить к короткому замыканию.

Поэтому исследователи потратили много времени и сил на разработку методом обработки поверхности катода. Разрабатывались способы введения в электролит добавок, препятствующих образованию дендритов. В этом направлении учёные достигли успехов, но полностью проблема не решена до сих пор. Эти проблемы с использованием металлического лития пытались решить и другим методом.

Так, отрицательный электрод стали изготавливать из литиевых сплавов, а не из чистого Li. Самым успешным оказался сплав лития и алюминия. Когда идёт процесс разряда, то в электроде из такого сплава вытравливается литий, а при заряде, наоборот. То есть, в процессе цикла заряд-разряд изменяется концентрация Li в сплаве. Конечно, произошла некоторая потеря активности лития в сплаве по сравнению с металлическим Li.

Потенциал электрода из сплава снизился где-то на 0,2─0,4 вольта. Рабочее напряжение литиевой батареи снизилось и одновременно уменьшилось взаимодействие электролита и сплава. Это стало положительным фактором, поскольку уменьшился саморазряд. Но сплав лития и алюминия не получил широкого распространения. Проблема здесь заключалась в том, что при циклировании сильно изменялся удельный объем этого сплава. Когда происходил глубокий разряд, то электрод охрупчивался и осыпался. Из-за снижения удельных характеристик сплава исследования в этом направлении были прекращены. Изучались и другие сплавы.


Как показали исследования, лучше всего подходят сплав Li с тяжёлыми металлами. Примером может служить сплав Вуда. Они хорошо показали себя в плане сохранения удельного объёма, но удельные характеристики оказались недостаточными для использования в литиевых аккумуляторах.

В результате из-за того, что металлический литий нестабилен, исследования стали вести в другом направлении. Было решено исключить из компонентов батареи литий в чистом виде, а использовать его ионы. Так появились литий─ионные (Li-Ion) аккумуляторы.

Энергетическая плотность литий─ионных АКБ меньше, чем у литиевых. Но безопасность и удобство эксплуатации у них значительно выше. Можете прочитать подробнее про по указанной ссылке.

Эксплуатация и срок службы

Эксплуатация

Правила эксплуатации будут рассмотрены на примере распространённых литиевых аккумуляторов, которые применяются в мобильных устройствах (телефонах, планшетах, ноутбуках). В большинстве случаев от «дурака» такие аккумуляторы защищает встроенный контроллер. Но пользователю полезно знать базовые вещи об устройстве, параметрах и эксплуатации литиевых АКБ.

Для начала следует запомнить, что литиевый аккумулятор должен иметь напряжением от 2,7 до 4,2 вольта. Нижнее значение здесь говорит о минимальном уровне заряда, верхнее – о максимальном. В современных Li батареях электроды выполняются из графита и в их случае нижняя граница напряжения составляет 3 вольта (2,7 – это значение для электродов из кокса). Электрическая энергия, которую отдаёт аккумулятор при падении напряжения от верхней границы к нижней, называется его ёмкостью.

Чтобы продлить срок службы литиевых аккумуляторов производители несколько сужают диапазон напряжения. Часто это 3,3─4,1 вольта. Как показывает практика, максимальный срок службы литиевых батарей достигается при уровне заряда 45 процентов. Если аккумулятор передерживать на зарядке или сильно разряжать, то срок эксплуатации сокращается. Обычно рекомендуется ставить литиевый аккумулятор заряжаться при 15─20% заряда. А прекращать зарядку надо сразу после достижения 100% ёмкости.

Но, как уже говорилось, от перезарядки и глубокого разряда аккумулятор спасает его контроллер. Эта управляющая плата с микросхемой имеется практически на всех литиевых аккумуляторных батареях. В различной потребительской электронике (планшет, смартфон, ноутбук) работу контроллера, интегрированного в АКБ, ещё дополняет микросхема, которая распаяна на плате самого устройства.

В общем, правильная эксплуатация литиевых аккумуляторов обеспечивается их контроллером. От пользователя в основном требуется не встревать в этот процесс и не заниматься самодеятельностью.

Срок службы

Срок службы литиевых аккумуляторных батарей составляет около 500 циклов заряд-разряд. Это значение справедливо для большинства современных литий─ионных и литий─полимерных аккумуляторов. По времени срок службы может быть разный. Это зависит от интенсивности использования мобильного устройства. При постоянном использовании, нагрузкой ресурсоёмкими приложениями (видео, игры) аккумулятор может исчерпать свой лимит за год. Но в среднем срок службы литиевых аккумуляторов составляет 3─4 года.

Процесс зарядки

Сразу стоит отметить, что для нормальной эксплуатации батареи, нужно использовать штатное зарядное устройство, которое поставляется в комплекте с гаджетом. В большинстве случаев это источник постоянного тока с напряжением 5 вольт. Штатные зарядки для телефона или планшета обычно отдают ток около 0,5─1 * С (С – номинальная ёмкость батареи).
Стандартным режимом зарядки литиевого аккумулятора считается следующий. Этот режим используется в контроллерах компании Sony и обеспечивает максимальную полноту зарядки. На рисунке ниже этот процесс представлен в графическом виде.



Процесс состоит из трёх этапов:

  • продолжительность первого этапа около одного часа. При этом ток зарядки держится на постоянном уровне до тех пор, пока напряжение АКБ не достигнет значения 4,2 вольта. По окончании степень заряженности равна 70%;
  • второй этап также идёт около часа. В это время контроллер поддерживает постоянное напряжение 4,2 вольта, а ток зарядки при этом снижается. Когда сила тока падает примерно до 0,2*C, запускается заключительный этап. По окончании степень заряженности равна 90%;
  • на третьем этапе ток постоянно снижается при напряжении 4,2 вольта. В принципе, эта стадия повторяет второй этап, но имеет строгое ограничение по времени в 1 час. После этого контроллер отключает батарею от зарядного устройства. По окончании степень заряженности равна 100%.

Контроллеры, которые способны обеспечить такую стадийность, стоят довольно дорого. Это отражается на стоимости аккумулятора. В целях удешевления многие производители устанавливают в аккумуляторы контроллеры с упрощённой системой заряда. Часто это бывает только первый этап. Зарядка прерывается при достижении напряжения 4,2 вольта. Но в этом случае литиевая батарея заряжается лишь на 70% от ёмкости. Если литиевый аккумулятор вашего устройства заряжается 3 часа и меньше, то, скорее всего, он имеет упрощённый контроллер.

Стоит отметить ещё ряд моментов. Периодически (раз в 2─3 месяца) делайте полный разряд АКБ (чтобы телефон отключился). Затем проводится полная зарядка до 100%. После этого вынимаете батарею на 1─2 минуты, вставляете и включаете телефон. Уровень заряда будет меньше 100%. Заряжаете полностью и так делаете несколько раз, пока при вставке батареи не будет показан полный заряд.


Помните, что через разъём USB ноутбука, десктопа, переходника от прикуривателя в машине зарядка идёт значительно медленнее, чем от штатного ЗУ. Это объясняется ограничением интерфейса USB по току в 500 мА.

Также помните о том, что на холоде и при низком атмосферном давлении литиевые аккумуляторы теряют часть своей ёмкости. При отрицательных температурах этот тип батарей становится неработоспособным.

Потребительский рынок литий-ионных (Li-ion) аккумуляторов огромен – около $10 млрд, при этом он довольно устойчив, темп роста составляет всего 2% в год. А как же электромобили, спросите вы? Действительно, в ближайшие годы, в связи развитием электромобилей, прогнозируется темп ежегодного роста литий-ионных аккумуляторов в 10%. На удивление, самой большой областью роста рынка Li-ion батарей по-прежнему остается «все остальное», начиная от мобильных телефонов и заканчивая вилочными погрузчиками.

«Другие» приложения для литий-ионных аккумуляторов, как правило, имеют одну общую черту – это устройства, которые получают питание от запечатанных свинцово-кислотных батарей (англ. sealed lead acid (SLA)). За последние почти 200 лет свинцово-кислотные батареи заняли лидирующую позицию на рынке электроники, но они вот уже несколько лет вытесняются с рынка литий-ионными аккумуляторами. Поскольку во многих случаях литий-ионные батареи стали заменять свинцово-кислотные батареи (аккумуляторы), стоит сравнить эти два вида накопителей энергии, подчеркнув основные технические особенности и экономическую целесообразность применения Li-ion вместо традиционных SLA устройств.

История применения аккумуляторных батарей

Свинцово-кислотная батарея – первая перезаряжаемая батарея, разработанная для коммерческого использования в 1850-х годах. Несмотря на довольно приличный возраст в более чем 150 лет, они по-прежнему активно применяются в современных устройствах. Более того, они активно применяются в приложениях, где, казалось бы, вполне возможно обойтись современными технологиями. Некоторые распространенные устройства вполне активно применяют СКБ, такие как источники бесперебойного питания (ИБП), гольфкары или вилочные погрузчики. Удивительно, но рынок свинцово-кислотных аккумуляторов по-прежнему растет для определенных ниш и проектов.

Первое, довольно ощутимое нововведение в свинцово-кислотную технологию пришло в 1970-е годы, когда были изобретены герметичные СКБ или необслуживаемые СКБ. Данная модернизация состояла в появлении специальных клапанов для стравливания газов при зарядке/разрядке аккумуляторов. Кроме того, применение увлажнённого сепаратора сделало возможным эксплуатировать аккумулятор в наклонном положении без протеканий электролита.

СКБ, или англ. SLA, часто классифицируют по типу или применению. В настоящее время наиболее распространенными являются два типа: гель, известный также как свинцово-кислотная батарея с регулируемым клапаном (valve-regulated lead acid (VRLA)) и абсорбирующий стеклянный мат (absorbent glass mat AGM). Аккумуляторы AGM используются для небольших ИБП, аварийного освещения и инвалидных колясок, в то время как VRLA предназначается для приложений более крупного формата, таких как резервное питание для сотовых ретрансляционных мачт, интернет-центров и вилочных погрузчиков. Свинцово-кислотные аккумуляторы также можно классифицировать по следующим признакам: автомобильные (стартер или SLI — запуск, освещение, зажигание); тяговые (тяга или глубокий цикл); стационарные (источники бесперебойного питания). Основным недостатком SLA во всех этих приложениях является жизненный цикл — если они многократно разряжаются, они сильно повреждаются.

Удивительно, но свинцово-кислотные аккумуляторы были бесспорными лидерами рынка аккумуляторных батарей в течении многих десятилетий, вплоть до появления литий-ионных батарей в 1980-х годах. Литий-ионная батарея представляет собой перезаряжаемую ячейку, в которой ионы лития движутся от отрицательного электрода к положительному во время разряда, и наоборот во время заряда. Литий-ионные аккумуляторы используют интеркалированные литиевые соединения, но не содержат металлического лития, который используется в одноразовых батареях.

Литий-ионный аккумулятор впервые был изобретен в 1970-х годах. В 1980-х на рынок была выпущена первая коммерческая версия батареи с катодом на основе оксида кобальта. Данный тип устройств имел значительно большие возможности по весу и емкости, по сравнению с системами на никелевой основе. Новые литий-ионные аккумуляторы способствовали огромному росту рынка мобильных телефонов и ноутбуков. Первоначально, из-за соображений безопасности, вводились более безопасные варианты, которые включали добавки на основе никеля и марганца в кобальт-оксидный материал катода, в дополнение к инновациям в строительстве клеток.

Первые литий-ионные элементы, представленные на рынке, были в жестких алюминиевых или стальных банках, и, как правило, имели только несколько форм-факторов цилиндрической или призматической (форма кирпича) формы. Однако, с расширением спектра применения литий-ионной технологии начали изменяться и их габаритные размеры.

Например, менее дорогие версии более старой технологии применяются в ноутбуках и сотовых телефонах. Современные тонкие литий-полимерные элементы используются в смартфонах, планшетах и носимых устройствах. В настоящее время литий-ионные аккумуляторы используются в электроинструментах, электрических велосипедах и других устройствах. Такая вариация предвещает полную замену свинцово-кислотных устройств во все новых и новых приложениях, направленных на улучшение габаритных и силовых показателей.

Химические особенности

Фундаментальные основы химических процессов в ячейках придают свинцово-кислотным и литий-ионным устройствам определенные свойства и различные степени функциональных возможностей. Ниже приведены некоторые преимущества свинцово-кислотных аккумуляторов, которые сделали его основным в течении десятилетий и недостатки, которые теперь приводят к его замене, а также подобные аспекты для литий-ионных устройств.

Свинцово-кислотная батарея

  • СКБ проста, надежна и недорога. Ее можно использовать в широком диапазоне температур.
  • Батареи должны хранится в постоянно заряженном состоянии (SoC) и они не поддаются быстрой зарядке.
  • СКБ имеют большой вес. Их гравиметрическая плотность энергии очень мала.
  • Жизненный цикл обычно составляет от 200 до 300 разрядов/зарядов, что очень мало.
  • Кривая заряда/разряда позволяет измерять SOC с простым контролем напряжения.

Литий-ионная батарея

  • Имеют максимальную плотность энергии по размеру и весу.
  • Жизненный цикл обычно составляет от 300 до 500, но может измеряться и тысячами для литий-фосфатных ячеек;
  • Очень мал диапазон рабочих температур;
  • Доступны различные размеры ячеек, формы и другие возможности;
  • Нет необходимости в техническом обслуживании. Уровень саморазряда очень мал.
  • Требуется реализация схем по безопасности эксплуатации. Сложный алгоритм зарядки.
  • Измерения SoC требует непростых решений из-за нелинейности кривой напряжения.

Электроника

Важно понимать различие между батарейным блоком и аккумулятором. Ячейка – основной составной элемент пакета. Помимо этого, в пакет еще входит электроника, разъемы и корпус. На рисунке выше показаны примеры данных устройств. Литий-ионная аккумуляторная батарея должна иметь, как минимум, реализованные схемы защиты и управления ячейкой, а зарядное устройство и система измерения напряжения гораздо сложнее, чем в свинцово-кислотных устройствах.

При использовании литий-ионных и свинцово-кислотных аккумуляторов, основные отличия в электронике будут заключаться в следующем:

Зарядка

Зарядка свинцово-кислотного аккумулятора довольно проста при соблюдении определенных порогов напряжений. В литий-ионных батареях используют более сложный алгоритм, за исключением пакетов на основе фосфата железа. Стандартный метод заряда для таких устройств – метод постоянного тока / постоянного напряжения (CC / CV). Он включает в себя двухэтапный процесс зарядки. На первом этапе происходит заряд с постоянным током. Длится это до тех пор, пока напряжение на ячейке не достигнет определенного порога, после чего напряжение остается постоянным, а ток снижается по экспоненциальному закону, пока не достигнет значения отсечки.

Подсчет заряда и связь

Как упоминалось ранее, заряд СКБ можно измерять простыми средствами измерения напряжения. При использовании литий-ионных аккумуляторов необходим контроль уровня заряда ячеек, для чего необходима реализация сложных алгоритмов и циклов обучения.

I 2 C является наиболее распространенным и экономичным протоколом связи, используемым в литий-ионных аккумуляторах, но он имеет ограничения в отношении помехоустойчивости, целостности сигнала на расстоянии и общей полосы пропускания. SMBus (шина управления системой), производная от I 2 C, очень распространена в батареях меньшего размера, но в настоящее время не имеет какой-либо эффективной поддержки для мощных или более крупных пакетов. CAN прекрасно подходит для сред с высоким уровнем шума или там, где требуются длительные прогоны, например во многих СКБ-приложениях, но это стоит довольно дорого.

Прямые замены

Следует подчеркнуть, что ныне существует несколько стандартных форматов свинцово-кислотных батарей. Например - U1, стандартный форм-фактор, используемый в приложениях резервного питания медицинского оборудования. Литий-железо-фосфатный аккумулятор оказался вполне достойной заменой свинцово-кислотным. Фосфат железа обладает замечательным жизненным циклом, хорошей проводимостью зарядов, улучшенной безопасностью и низким импедансом. Напряжения литий-железо-фосфатных аккумуляторов также хорошо согласуются с напряжениями свинцово-кислотных (12 В и 24 В), что позволяет использовать одни и те же зарядные устройства. Программные пакеты для обслуживания и контроля батарей включают в себя интеллектуальные функции, такие как отслеживание заряда, счетчик циклов заряда/разряда и другие.

Литий-железо-фосфатные батареи сохраняют 100% емкости при хранении, в отличие от СКБ батарей, которые теряют емкость в течение нескольких месяцев хранения. На рисунке выше сравниваются два продукта и типы достижений, достигнутых при переходе от СКБ к Li-ion.

Выводы

Очень мало существует батарей, которые способны хранить столько же энергии, как свинцово-кислотные, что делает данный вид аккумуляторов экономически выгодным для многих мощных устройств. Литий-ионная технология постоянно снижается в цене, а также постоянные совершенствование их химических структур и систем безопасности делает их достойным конкурентом свинцово-кислотной технологии. Устройства для их применения могут быть самые различные, начиная от устройств бесперебойного питания, до электромобилей и беспилотников.

Читая "советы по эксплуатации" аккумуляторов на форумах невольно задумываешься - то ли люди физику с химией в школе прогуливали, то ли думают что правила эксплуатации свинцовых и ионных аккумуляторов одинаковые.
Начнем пожалуй с принципов работы Li-Ion аккумулятора. На пальцах все предельно просто - есть отрицательный электрод (сделаный обычно из меди), есть положительный (из алюминий), между ними находится пористое вещество (сепаратор), пропитанный электролитом (он предотвращает "самовольный" переход ионов лития между электродами):

Принцип работы основан на возможности ионов лития встраиваться в кристаллическую решетку различных материалов - обычно графита или оксида кремния - с образованием химических связей: соответственно при зарядке ионы встраиваются в кристаллическую решетку, тем самым накапливая заряд на одном электроде, при разрядке соответственно переходят обратно к другому элетроду, отдавая нужный нам электрон (кому интересно более точное объяснение происходящих процессов - гуглим интеркаляцию). В качестве электролита используются водосодержащие растворы, не содержащие свободного протона и устойчивые в широком диапазоне напряжений. Как видно в современных аккумуляторах все сделано достаточно безопасно - металлического лития нет, взрываться нечему, по сепаратору бегают только ионы.
Теперь, когда с принципом работы все стало более-менее понятно, перейдем к самым распростаренным мифам о Li-Ion аккумуляторах:

  1. Миф первый. Li-Ion аккумулятор в устройстве нельзя разряжать до нуля процентов.
    На деле все звучит правильно и согласуется с физикой - при разрядке до ~2.5 В Li-Ion аккумулятор начинает очень быстро деградировать, и даже одна такая разрядка может существенно (до 10%!) уменьшить его емкость. К тому же при разряде до такого напряжение штатным зарядником зарядить его уже не получится - при падении напряжения ячейки аккумулятора ниже ~3 В "умный" контроллер отключит ее как поврежденную, а если такие ячейки все - аккумулятор можно нести на помойку.
    Но тут есть одно очень важное но, о котором все забывают: в телефонах, планшетах и других мобильных устройствах рабочий диапазон напряжений на аккумуляторе это 3.5-4.2 В. При опускании напряжения ниже 3.5 В индикатор показывает ноль процентов заряда и аппарат выключается, но до "критических" 2.5 В еще очень далеко. Это подтверждается тем что если подсоединить к такому "разряженному" аккумулятору светодиод то он может гореть еще долгое время (может кто-то помнит что раньше продавались телефоны с фонариками, которые включались кнопкой независимо от системы. Так вот там лампочка продолжала гореть и после разрядки и выключения телефона). То есть как видно при штатном использовании разрядки до 2.5 В не происходит, а значит разряжать акум до нуля процентов вполне можно.
  2. Миф второй. При повреждении Li-Ion аккумуляторы взрываются.
    Все мы помним "взрывной" Samsung Galaxy Note 7. Однако это скорее исключение из правил - да, литий очень активный металл, и взорвать его в воздухе нетрудно (а в воде он и сам очень ярко горит). Однако в современных аккумуляторах используется не литий, а его ионы, которые куда менее активны. Так что чтобы произошел взрыв нужно сильно постараться - или повредить заряжающийся аккумулятор физически (устроить короткое замыкание), или заряжать очень высоким напряжением (тогда он сам повредится, однако скорее всего контроллер банально сгорит сам и не даст заряжать аккумулятор). Поэтому если у вас вдруг в руках оказался поврежденный или дымящийся аккумулятор - не стоит бросать его на стол и убегать из комнаты с криками "мы все умрем" - просто положите его в металлическую тару и вынесите на балкон (чтобы не дышать химией) - аккумулятор будет тлеть какое-то время и потом потухнет. Главное - не заливать водой, ионы конечно менее активные чем литий, но все же какое-то количество водорода при реакции с водой так же выделится (а он любит взрываться).
  3. Миф третий. При достижении на Li-Ion аккумуляторе 300(500/700/1000/100500) циклов он становится небезопасен и его нужно срочно менять.
    Миф, к счастью все меньше и меньше гуляющий по форумам и не имеющий под собой вообще никакого физического или химического объяснения. Да, во время эксплуатации электроды окисляются и коррозируют, что уменьшает емкость аккумулятора, но ничем кроме меньшего времени автономной работы и нестабильного поведения на 10-20% заряда это вам не грозит.
  4. Миф четвертый. С Li-Ion аккумуляторами нельзя работать на морозе.
    Это скорее рекомендация, чем запрет. Многие производители запрещают использовать телефоны при отрицательное температуре, да и многие сталкивались с быстрым разрядом и вообще отключением телефонов на холоде. Объяснение этому очень простое: электролит - это водосодержащий гель, а что происходит с водой при отрицательных температурах все знают (да, она замерзает если что), тем самым выводя некоторую область аккумулятора из работы. Это приводит к падениею напряжения, а контроллер начинает считать это разрядкой. Аккумулятору это не полезно, но и не смертельно (после нагрева емкость вернется), так что если вам позарез нужно пользоваться телефоном в мороз (именно пользоваться - достать из теплого кармана, посмотреть время и спрятать назад не считается) то лучше зарядите его на 100% и включите любой процесс, нагружающий процессор - так охлаждение будет происходить медленнее.
  5. Миф пятый. Вздувшийся Li-Ion аккумулятор опасен, его нужно срочно выкинуть.
    Это не совсем миф, скорее предосторожность - вздувшийся аккумулятор может банально лопнуть. С химической точки зрения все просто: при процессе интеркаляции происходит разложение электродов и электролита, в результате чего выделяется газ(так же он может выделяться и при перезарядке, но об этом чуть ниже). Но его выделяется крайне мало, и чтобы аккумулятор казался вздутым должно пройти несколько тсотен (если не тысяч) циклов перезарядки (если конечно он не бракованный). Проблем избавиться от газа нет - достаточно проткнуть клапан (в некоторых аккумуляторах он сам открывается при избыточном давлении) и стравить его (дышать им не рекомендую), после чего можно замазать дырку эпоксидной смолой. Конечно былую емкость это аккумулятору не вернет, но хотя бы теперь он точно не лопнет.
  6. Миф шестой. Li-Ion аккумуляторам вреден перезаряд.
    А вот это уже не миф, а суровая реальность - при перезарядке велик шанс что аккумулятор вздуется, лопнет и загорится - поверьте, мало удовольствия быть забрызганным кипящим электролитом. Поэтому во всех аккумуляторах стоят контроллеры, банально не дающие зарядить аккумулятор выше определенного напряжения. Но тут надо быть крайне осторожным в выборе аккумулятора - контроллеры китайских поделок зачастую могут сбоить, а фейерверк из телефона в 3 часа ночи думаю вас не обрадует. Разумеется, такая же проблема есть и в брендовых аккумуляторах, но во-первых там такое случается гораздо реже, а во-вторых вам по гарантии поменяют весь телефон. Обычно этот миф порождает следующий:
  7. Миф седьмой. При достижении 100% нужно снимать телефон с зарядки.
    Из шестого мифа это кажется разумным, но на деле нет смысла вставать посреди ночи и снимать устройство с зарядки: во-первых сбои контроллера крайне редки, а во-вторых даже при достижении 100% на индикаторе аккумулятор еще некоторое время дозаряжается до самого-самого максимума низкими токами, что добавляет еще 1-3% емкости. Так что на деле не стоит так сильно перестраховываться.
  8. Миф восемь. Заряжать устройство можно только оригинальным зарядником.
    Миф имеет место быть по причине некачественности китайских зарядников - при нормальном напряжении в 5 +- 5% вольт они могут выдавать и 6, и 7 - контроллер, конечно, какое-то время будет сглаживать такое напряжение, однако в будущем оно в лучшем случае приведет к сгоранию контроллера, в худшем - к взрыву и (или) выходу из строя материнской платы. Бывает и обратное - под нагрузкой китайский зарядник выдает 3-4 вольта: это приведет к тому что аккумулятор не сможет зарядиться полностью.
Как видно из целой кучи заблуждений далеко не все имеют под собой научное объяснение, и еще меньше реально ухудшают характеристики аккумуляторов. Но это не значит что после прочтения моей статьи нужно бежать сломя голову и покупать дешевые китайские аккумуляторы за пару баксов - все-же для долговечности лучше взять или оригинальные, или качественные копии оригинальных.

Задаетесь вопросом: «Что выбрать: Li-Ion или Li-Po аккумулятор?» Мы подробно расскажем в чем отличие этих двух типов аккумуляторов.

Как всем нам известно, мощность портативного зарядного устройства в большей степени зависит от качества аккумуляторов внутри устройства. На современном рынке существует два вида аккумуляторов, которые используются для производства портативных зарядных устройств: Li-Ion и Li-Po элементы аккумулятора.

Li-Ion или Li-Po: В Чем Различие и Что Выбрать

К сведению пользователей, один из частозадаваемых вопросов касательно портативных зарядных устройств – это: какая разница между аккумуляторами Li-Ion и Li-Po, а также, какой из них лучше. Давайте будем разбираться.

Что же такое Li-Ion и Li-Po?

Li-Ion – это сокращение от литий-ионный, а Li-Po – от литий-полимерный. Окончание «ионный» и «полимерный» — это указание на катод. Литий-полимерный аккумулятор состоит из полимерного катода и твердого электролита, а литий-ионный аккумулятор – из углерода и жидкого электролита. Оба аккумулятора перезаряжаемые, и потом, в том или ином смысле, они оба выполняют одну и ту же функцию. В целом, литий-ионные аккумуляторы старше, чем литий-полимерные, но они по-прежнему широко распространены из-за низкой цены и неприхотливости в техническом обслуживании. Литий-полимерные аккумуляторы считаются более совершенными, с улучшенными характеристиками, обеспечивающими более высокий уровень безопасности, следовательно, такие аккумуляторы стоят дороже, чем литий-ионные.

Существует много конфигураций аккумуляторов Li-Ion. Самые распространенные литий-ионные аккумуляторы для портативных зарядных устройств – это аккумуляторы с типоразмером 18650, диаметром 18мм и длиной 65мм, в которых 0 означает цилиндрическую конфигурацию. Больше 60% портативных зарядок изготовлены из элементов аккумулятора с типоразмером 18650. Размер и вес таких элементов легко позволяет применять их во многих электронных устройствах. Технологии изготовления также не стоят на месте.

Поскольку среди покупателей все больше и больше возрастает спрос на более легкие и компактные портативные зарядки, все более очевидными становятся ограничения, которые влекут за собой литий-ионные аккумуляторы. Поэтому производители переходят на изготовление более легких, более плоских модульных литий-полимерных аккумуляторов для новых портативных зарядных устройств. Более того, литий-полимерные аккумуляторы не так подвержены риску взрыва, а поэтому в портативные зарядки больше не нужно встраивать защитный слой, в то время как большинство литий-ионных 18650 аккумуляторов должны быть установлены только вместе с защитой.

Давайте подытожим информацию про различия между литий-ионом и литий-полимером в виде таблицы.

Ключевые особенности Li-Ion Li-Po
Энергетическая плотность Высокая Низкая, с меньшим количеством циклов в сравнении с Li-Ion
Универсальность Низкая Высокая, производители не привязаны к стандартному формату ячеек
Вес Немного более тяжелые Легкие
Ёмкость Ниже Одинаковый объем Li-Po аккумулятора, превосходит по ёмксоти Li-Ion почти в два раза
Жизненный цикл Большой Большой
Взрывоопасность Более высокая Более продуманная безопасность снижает риск перезаряда, а также утечку электролита
Время заряда Немного более длинное более короткое
Изнашиваемость Теряет менее чем 0,1% своей эффективности каждый месяц Более медленней, чем Li-Ion аккумуляторы
Стоимость Более дешевый Более дорогой

После изучения всех преимуществ, недостатков и характеристик двух типов аккумуляторов, вы можете убедиться, что между ними нет сильной конкуренции. Хотя литий-ионный аккумулятор тоньше и изящнее, литий-ионные аккумуляторы отличаются большей удельной энергоемкостью, и потом, они гораздо дешевле в производстве.

Поэтому, не стоит обращать особого внимания на тип аккумулятора, просто выбирайте брендовое портативное зарядное устройство, которое соответствует вашим требованиям. В конце концов, в эти аккумуляторы добавляется множество химикатов, поэтому, еще неизвестно, какие из них прослужат дольше.

Литиевые аккумуляторы

Литиевые или литий-ионные (Li-ion) аккумуляторы в основном присутствуют в сотовых телефонах, ноутбуках, видеокамерах. Изделия дорогие, аккумуляторы тоже, поэтому и обращаться с ними нужно еще грамотнее, чем с любыми другими аккумуляторами. Так в чем же сила Литий-Йона? Здесь, наверное, еще больше слухов и мифов. Во-первых, она начинает появляться сама собой хотя бы потому, что продавцы техники с Li-ion аккумуляторами особых напутствий не дают, говоря, что батарея “умная” и сама все сделает как надо. А вот и не сама. Ведь сколько есть случаев, когда владельцы новых ноутбуков за месяц батарею приводили в негодность и потом платили хорошие за новую батарею. Конечно, литиевые батареи потому и дорогие, что напичканы электроникой, но она, к сожалению, не спасает от дурака.

Переразряд

Как и в случае никелевых аккумуляторов, литиевые также сильно боятся перезаряда и переразряда. Но, поскольку эти батареи используются в интеллектуальных устройствах и комплектуются собственными зарядными устройствами, их электроника не допускает перезаряда – т.о. его можно не бояться. А вот переразряд сложнее контролировать, поэтому он и является самой типичной причиной досрочного выхода аккумулятора из строя. Конечно, в дорогих и сложных устройствах, например, в ноутбуках, отключение происходит до падения напряжения до критического значения. Но прецеденты указывают на то, что это аварийное отключение лучше рассматривать как экстренную меру, до которой, по возможности, лучше не доводить. Это самое главное правило – избегать полной разрядки, поскольку низкое напряжение может отключить цепь аварийной защиты. Бывает, что люди «убивают» батареи, увлекшись тренировкой. Тренировка - вещь хорошая, но для литиевых батарей достаточно 2-3 полных цикла.

Для литиевых батарей нет эффекта памяти, поэтому их можно заряжать когда угодно, так что после тренировки лучше не разряжать батареи до конца. Рекомендуемый нижний порог – 5-10 %. Критический нижний порог – 3 %.

Много неполных циклов или один полный

У литиевых батарей срок службы – примерно 300 циклов. Полным циклом считается цикл полного заряда и полного (т.е. примерно до 3 % емкости) разряда, или наоборот. Если разрядить батарею до 50 %, а потом зарядить, то это будет 1/2 цикла, если до 75 % и зарядить – 1/4 цикла и т.д. Так вот, для телефонов и ноутбуков разница в пользе между полными и неполными циклами различна. В Интернете упорно утверждается, что куча народа заряжала телефоны при неполном разряде (т.е. каждый день дозаряжали телефон) и в итоге угробила их . В то же время, для ноутбуков достоверно известно, что полные циклы быстрее изнашивают батарею, чем неполные . Ситуация проясняется при детальном рассмотрении устройства Li-ion аккумуляторов (см. доп. материалы). Оказывается, многое зависит от контроллера. Именно он контролирует ток заряда, следит за состоянием батареи и т.д. Так вот, в ноутбуках контроллер расположен в самой батарее и корректируется системными утилитами, например калибровкой. В сотовых телефонах контроллер расположен в самом телефоне и так просто не корректируется. Хоть в литиевых батареях и нет эффекта памяти, но есть так называемый эффект “цифровой памяти” . Дело в том, что электроника управления зарядом-разрядом, размещенная в самой батарее, работает независимо от устройства, батарею использующего. Внутренняя электроника следит за уровнем напряжения элемента, прерывает заряд по достижении установленной максимальной величины (с учетом изменения напряжения, обусловленного током зарядки и температуры батареи), прерывает разряд при достижении критической величины и сообщает об этом “наверх” (для этих целей производится большая номенклатура специализированных микросхем). Система же мониторинга батареи “наверху” вычисляет уровень заряда, основываясь на информации о моментах выключения заряда и разряда от батареи и показаниях системы измерения тока. Но если условия работы таковы, что полной разрядки до аппаратного отключения или полной зарядки не происходит, эти вычисления после нескольких циклов могут стать не вполне корректными – емкость батареи со временем падает, да и показания измерителя тока не всегда могут соответствовать реальности. Обычно отклонения не превышают одного процента на каждый цикл, если только в процессе эксплуатации не произошло серьезных изменений, связанных, к примеру, с выходом из строя одного из элементов батареи. Система мониторинга имеет возможность “обучаться”, то есть пересчитывать значение полной емкости батареи, но для этого нужно выполнить как минимум один полный цикл заряд-разряд до срабатывания аппаратных схем самой батареи. Вот и выходит, что при очень частых циклах контроллер сбивается, а, следовательно, неправильно вычисляет заряд батареи и осуществляет неправильную зарядку, в результате чего батарея портится. В отличие от ноутбука, телефон перекалибровать нельзя. Все, что остается в данном случае, это сделать пару полных циклов, чтобы привести контроллер в порядок. Я рекомендую, в идеале, совмещать полные и неполные циклы, придерживаясь принципа “золотой середины”. Лично я со своим сотовым так и делал – в результате, после 2-х лет эксплуатации падение емкости составило не более 40 %, что является нормой. Отчасти, время тоже не щадит литиевые аккумуляторы – они изнашиваются со временем независимо от эксплуатации; век их недолог и разумно менять аккумуляторы раз в 2-3 года.

Хранение

Если аккумулятор не используется, рекомендуется хранить его при 40 % емкости в прохладном месте. Нижний предел температуры для хранения и эксплуатации – 00 С. Вообще литиевые аккумуляторы любят быть заряженными, т.е. их лучше и хранить и держать в заряженном состоянии, в отличие от никелевых. Но при длительном хранении максимальный заряд все же сильнее изнашивает батарею, поэтому оптимальным состоянием считается 40 % заряда .

Реанимация батареи

Вообще, если батарея сдохла, лучше купить новую, это самый логичный вариант, хотя и дорогой. Достоверных рецептов реанимации батарей я не встречал. Тут ходят настоящие легенды, особенно про ноутбуки, что люди реанимировали свой угробленный аккумулятор ноутбука и все у них замечательно. Одна из них звучит так: “Нужно полностью разрядить аккумулятор, оставить ноутбук на неделю; затем полностью зарядить аккумулятор и тоже оставить на неделю; через два месяца емкость должна восстановиться” .

Для сотовых телефонов: совмещать полные и неполные циклы (в пропорции “ХЗ”).
Для ноутбуков: как можно меньше полных циклов (после тренировки).
Для всех: рекомендуется делать 80%-ные циклы; не допускать полного разряда (ниже 3 %).

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то