Разработка и исследование системы управления статическим компенсатором реактивной мощности типа статком для электроэнергетических систем. Статический тиристорный компенсатор реактивной мощности

накладывается переменный поток сетевой обмотки, то результирующий поток смещается в область насыщения стержней магнитопровода. В свою очередь, насыщение стержней приводит к появлению тока в сетевой обмотке. При вводе или выводе энергии из контура управления возникает переходный процесс увеличения или уменьшения сетевого тока и соответственно потребляемой реактором реактивной мощности.

Рисунок 3.8. Схема УШР с подмагничиванием

Регулирование тока сетевой обмотки реактора производится по пропорциональному закону, в котором угол управления тиристорами источника выпрямленного тока изменяется по линейному закону в зависимости от рассогласования между заданным напряжением уставки и напряжением в точке подключения реактора.

Рисунок 3.9. Регулирование тока сетевой обмотки

Существует четыре основных вида подмагничивания реакторов:

1. Реакторы с продольным подмагничиванием – управляющий постоянный магнитный поток совпадает по направлению с переменным рабочим потоком, такие реакторы имеют резко нелинейные вольт-амперные характеристики, причем степень нелинейности возрастает с уменьшением подмагничивания.

2. Реакторы с поперечным подмагничиванием – управляющий магнитный поток направлен перпендикулярно переменному рабочему потоку. При этом характеристики намагничивания по продольной оси симметричны относительно начала координат. Реакторы такого типа имеют практически линейные вольт-амперные характеристики, наклон которых определяется током управления. Кроме того отсутствие прямой электромагнитной связи между ОУ и СО облегчает получение высокого быстродействия. Поэтому поперечное подмагничивание имеет ряд преимуществ перед продольными, однако уступает в эффективности намагничивания (приращение реактивной мощности на единицу напряжения управляющего поля).

3. Реакторы с продольно-поперечным подмагничиванием – имеют участки как с продольным, так и с поперечным подмагничванием, что позволяет получить оптимальную функциональность по отношению к реакторам с только продольным или только поперечным подмагничиванием.

4. Реакторы с кольцевым подмагничиванием – по конструктиву близки к электрической машине с заторможенным ротором. Регулировочные характеристики реактора аналогичны характеристикам реактора с продольным подмагничиванием и имеют существенную нелинейность. К недостаткам таких реакторов относится: невозможность пофазного управления и сложность изготовления.

Области работы магнитной системы УШРП на кривой намагничивания электротехнической стали определяются степенью намагничивания постоянным током (рисунок 3.10).

Диаграммы, поясняющие принцип действия и основные режимы работы УШРП приведены на рисунке 3.11. При отсутствии тока подмагничивания реактора формируемый магнитный поток близок к синусоидальному, поскольку магнитная система работает на начальном участке кривой намагничивания. В результате в сетевой обмотке реактора наводится противодействующая ЭДС и мощность потребляемая реактором из сети не превышает 3–5% от номинального значения.

По мере намагничивания магнитной цепи реактора происходит смещение по кривой намагничивания в область насыщения, в результате чего уменьшается амплитуда изменения потока, а следовательно и противодействующая ЭДС в сетевой обмотке и реактор загружается по реактивной мощности.

В режиме полного насыщения (максимальный постоянный ток в обмотке управления) магнитная система УШРП работает на участке насыщения и создаваемая противоэдс минимальна.

Ток фазы I

Ток управления I

Магнитные потоки Ф, Ф2

Рисунок 3.11. Осциллограммы физических величин УШРП с изменением степени намагничивания во времени

Рисунок 3.12. УТРТ

Схема УТРТ близка к схеме УШРТ, отличается тем, что ректоры LR совмещены с индуктивностью рассеяния согласующего трансформатора T. Таким образом, трансформатор имеет индуктивность рассеяния равную 100 %. Ток

трансреактора регулируется изменением углов управления одной равнозначной по мощности тиристорной группой.

В другой модификации УТРТ используется многоступенчатый принцип изменения реактивной мощности, однако, реакторы основанные на данной схеме в настоящее время не выпускаются.

УШРВ представляет собой упрощенную модификацию УШРТ, тиристорные вентили которого заменены на более дешевые вакуумные выключатели.

Рисунок 3.13. УШРВ.

Принцип действия УШРВ следующий. При изменении напряжения на шинах ПС автоматический регулятор АР с помощью распределителя управляющих воздействий РУВС подключает или отключает тем ступенями необходимое количество реакторных секций, воздействуя тем самым на потребляемую реактивную мощность и обеспечивая поддержание напряжения в заданных уставкой пределах.

Регулятор имеет два канала:

Медленно действующий – обеспечивающий минимальное число коммутаций и отрабатывающий только два максимума суточного графика нагрузки.

Быстродействующй – реагирующий на существенное увеличение напряжения или на команду внешней автоматики, например при гашении дуги в паузе ОАПВ.

LRo – дополнительный реактор в нейтрали трансформатора, для гашения дуги подпитки, при этом включаются все реакторы Q2 и размыкается треугольник Q3 (КБ отсутствует).

Второй вариант гашения аналогичен УШРТ отключаютя выключатели Q2 неповрежденных фаз и отключением выключателя Q3 в треугольник вводится КБ.

Лекция 4 Поперечный компенсатор второго поколения FACTS устройств

Статический синхронный компенсатор (СТАТКОМ) или static synchronous compensator (STATCOM) – это устройство на базе статического преобразователя, работающее в качестве статического компенсатора реактивной мощности, чей емкостный или индуктивный выходной ток может изменяться независимо от переменного напряжения сети.

СТАТКОМ является одним из основных устройств FACTS, на его основе могут быть реализованы вставки постоянного тока и различные комбинированные устройства продольно-поперечной и продольно-продольной компенсации . При этом, СТАТКОМ может быть реализован и на основе источника напряжения (предпочтительно), и на основе источника тока.

Рисунок 4.1. СТАТКОМ на базе источника напряжения и источника тока

Устройство СТАТКОМ в общем случае содержит (см. рисунок 4.2):

- статический преобразователь, способный работать в различных режимах потребления и генерации активной и реактивной мощности и обычно располагающийся в закрытом помещении (красный);

- согласующий трансформатор для подключения к шинам высокого напряжения (желтый);

- звено постоянного тока (выпрямленного напряжения), обеспечивающее стабильность тока (напряжения) для реализации модуляции синусоидальных токов (напряжений) (голубой);

- пассивные фильтры (зеленый).

Рисунок 4.2. Вставка постоянного тока на базе двух СТАТКОМ

Существуют различные схемы реализации СТАТКОМ. Один из возможных вариантов СТАТКОМ с преобразователем напряжения представлен на рисунке 4.3.

Рисунок 4.3. Упрощенная принципиальная схема СТАТКОМ

Для определения функциональных возможностей СТАТКОМ необходимо рассмотрение принципа работы силового оборудования. Рассматривая принципиальную схему, стоит отметить следующее:

- имеющиеся в составе СТАТКОМ фильтры не оказывают существенного влияния на его характеристики с точки зрения описания процессов протекающих в СТАТКОМ, и их роль будет рассмотрена позднее;

- статический преобразователь формирует напряжение близкое к гармоническому в довольно широком спектре частот (вплоть до частоты коммутации вентилей) и может быть замещено источником ЭДС при условии пренебрежения потерями;

- реактор и трансформатор без учета потерь могут быть представлены индуктивным сопротивлением – сопротивлением связи между шинами подстанции и статическим преобразователем.

Таким образом, схема замещения СТАТКОМ (рисунок 4.4) аналогична схеме замещения синхронной электрической машины. А поскольку сходными также являются и характеристики этих устройств, то становится понятна и причина названия данного статического устройства – статический синхронный компенсатор.

Рисунок 4.4. Схема замещения СТАТКОМ

Полная мощность устройства определяется по выражению

S = 3 С sin α − j3С cos α −С ,

а поскольку напряжение статического преобразователя может быть управляемо как по модулю, так и по фазе, и при этом независимо по трем фазам, то потребляемая активная и реактивная мощности могут быть изменены независимо друг от друга. Таким образом, СТАТКОМ может работать в четырех квадрантах, но лишь кратковременно, поскольку потребление или генерация активной энергии ведет к ее накоплению или отбору из конденсаторных батарей на стороне выпрямленного напряжения,

то есть изменению напряжения и выход его за допустимые пределы. Векторные диаграммы напряжений и токов, поясняющие принцип действия СТАТКОМ приведены на рисунке 4.5.

I SjX LS

I SjX LS

I SjX LS

I SjX LS

Рисунок 4.5. Векторные диаграммы напряжений и токов СТАТКОМ

1 – генерация реактивной мощности;

2 – потребление активной мощности;

3 – генерация активной мощности;

4 – потребление реактивной мощности.

Длительное потребление или генерация активной мощности СТАТКОМ возможна только в случаях, если он является составляющей комбинированного устройства компенсации или вставки постоянного тока, либо в случае, когда на стороне выпрямленного напряжения установлен накопитель энергии, например аккумуляторная батарея.

С учетом вышесказанного диаграмма мощности, определяющая области допустимой работы СТАТКОМ – степень участия СТАТКОМ в управлении режимами, приведена на рисунке 4.6.

Область допустимой длительной работы СТАТКОМ ограничена номинальным значением тока и напряжения на стороне выпрямленного напряжения статического преобразователя. В кратковременных режимах допускается превышение тока выше номинального вплоть до двукратного, что положительно сказывается на влиянии СТАТКОМ на режим энергосистемы в аварийных и послеаварийных режимах их работы.

На многих промышленных предприятиях для улучшения гармонического состава сети устанавливаются Они не только улучшают гармонический состав сети, но и компенсируют реактивную энергию, улучшая тем самым коэффициент мощности сети cosφ.

На предприятиях с резко-переменной нагрузкой при отключении какого-либо из потребителей могут возникать проблемы с тем, что cosφ может становиться больше единицы. Для того чтобы не отдавать реактивную мощность обратно в сеть необходимо отключить фильтр от цепи, как делается при секционном регулировании в . Но если отключить фильтр от цепи, он перестанет сглаживать гармоники, то есть теряется смысл его установки. Разбивать ФКУ на секции и вводить посекционно — дорого, требует огромных площадей и большого числа коммутационной аппаратуры. Для решения этой задачи был создан статический компенсатор реактивной мощности или декомпенсатор.

Он состоит из тиристорного регулятора напряжения (ТРН) и реактора, подключенного через вентильный ключ к цепи. Мощности реактора и ФКУ равны. При изменении cosφ>1 тиристорный регулятор увеличивает ток реактора, чем увеличивает реактивную составляющую потребляемую этими реакторами, тем самым выравнивая баланс мощности в заданном диапазоне. На рис.1 приведена схема этого устройства

Рис.1 Схема включения статического компенсатора

Главным достоинством статического компенсатора является быстрое и плавное изменение реактивной составляющей цепи. При его применении можно регулировать cosφ в заданных пределах в автоматическом режиме.

Статический тиристорный компенсатор со шкафом управления не может быть расположен на улице, они всегда располагаются в помещении. ФКУ может быть расположено как в помещении, так и снаружи. Фильтры и реакторы могут соединяться шинами или кабелями в зависимости от токов и напряжений установок. На рис.2 показан пример размещения оборудования


Как видно из рис.2 в помещении находится система управления статическим компенсатором и вентильный ключ. Через шины он соединяется с реакторами и фильтрами высших гармоник, которые находятся на улице.

Система охлаждения тиристорного регулятора, как правило воздушная. Она дешевле жидкостной, легче в эксплуатации, не требует дополнительных узлов электроники, механики, вращающихся компонентов. Также, воздух, проходящий через вентиляционные шахты, преобразователя охлаждает не только силовые модули, но и R-C цепи (служащие для защиты тиристоров от перенапряжений) и другие элементы. Если токи слишком большие, а размеры аппаратуры ограничены, применяют жидкостное охлаждение.

Статические тиристорные компенсаторы реактивной мощности автоматизированы. Управление осуществляется как в автоматическом режиме, так и в ручном с панели оператора. Данные о работе устройства могут записываться в память статического тиристорного компенсатора и таким образом вести учет компенсируемой энергии за промежуток времени, а также хранится данные о всех неисправностях, методах их устранения. Это очень удобно для анализа потребляемой энергии, статистических данных по электроснабжению, а также проводить качественный анализ сети в различных режимах работы.

Вывод: статический тиристорный компенсатор очень удобен для предприятий с наличием высших гармоник и резко-переменной нагрузкой. Он позволяет плавно регулировать реактивную энергию в цепи, а также фильтровать высшие гармоники, улучшая тем самым качество сети.

При наличии быстрых и резкопеременных нагрузок становится перспективным применение статических компенсаторов реактивной мощности, обеспечивающих возможность безынерционного регулирования реактивной мощности. При этом улучшаются условия статической устойчивости энергосистемы в целом, что обеспечивает дополнительную экономию за счет повышения технико-экономических показателей работы электроустановок.

Статические компенсаторы реактивной мощности (СКРМ) являются перспективным средством рациональной компенсации реактивной мощности в силу присущих им положительных свойств, таких, как быстродействующее регулирование, подавление колебаний напряжения, симметрирование нагрузок, отсутствие вращающихся частей, плавность регулирования реактивной мощности, выдаваемой в сеть. Кроме того, эти устройства могут осуществлять плавное и оптимальное распределение напряжений, обеспечивая тем самым снижение их потерь в распределительных электросетях.

На рисунке 11 приведены основные варианты статических компенсирующих устройств. Они содержат фильтры высших гармоник и регулируемый дроссель в различных исполнениях.

Рисунок 11 - Схемы статических компенсирующих устройств

В настоящее время известно большое количество вариантов схем, которые разделяют на три группы:

  • 1) мостовые источники реактивной мощности с индуктивным накопителем на стороне постоянного тока (рис. 11,а);
  • 2) реакторы насыщения с нелинейной вольт-амперной характеристикой (рис.11,б);
  • 3) реакторы с линейной вольт-амперной характеристикой и последовательно включенными встречно-параллельными управляемыми вентилями (рис. 11,в).

СКРМ обеспечивают одновременно компенсацию реактивной мощности основной частоты, фильтрацию высших гармонических, компенсацию изменений напряжения, а также симметрирование напряжения сети. Они состоят из управляемой части, обеспечивающей регулирование реактивной мощности, и энергетических фильтров, обеспечивающих фильтрацию высших гармоник тока нелинейной нагрузки.

Статические компенсирующие устройства обладают следующими преимуществами:

  • 1) высокое быстродействие изменения реактивной мощности;
  • 2) достаточный диапазон регулирования реактивной мощности;
  • 3) возможность регулирования и потребления реактивной мощности;
  • 4) минимальные искажения питающего напряжения.

Основными элементами статических компенсирующих устройств являются конденсатор и дроссель - накопители электромагнитной энергии - и вентили (тиристоры), обеспечивающие ее быстрое преобразование.

Принцип работы статических источников реактивной мощности состоит в том, что выпрямленным током преобразователя индуктивность (реактор или дроссель с железом) заряжается магнитной энергией, которая инвертируется в сеть переменного тока с опережающим коэффициентом мощности.

В СКРМ при полном открывании вентилей реактивная мощность установки определяется разностью между мощностью, генерируемой фильтрами, и мощностью, потребляемой реакторами. По мере закрытия вентилей мощность, потребляемая реакторами, уменьшается, и при их полном закрытии мощность, генерируемая ИРМ, становится равной мощности фильтров.

Рисунок 12 - Принципиальная схема присоединения СКРМ к системе электроснабжения (а) и расчетная схема замещения (б)

В ряде случаев помимо резонансных цепей фильтров, настраиваемых на частоты доминирующих высших гармоник тока нагрузки, в состав ТКРМ вводят параллельно присоединяемые конденсаторные батареи для фильтрации гармоник, порядок которых выше частоты настройки резонансных фильтров.

Быстрое развитие мирового производства статических тиристорных компенсаторов (СТК) определяется их преимуществами по отношению к традиционным средствам компенсации реактивной мощности в решении ряда актуальных задач электроэнергетики. К числу таких задач относится необходимость компенсации реактивной мощности в местах потребления электроэнергии и на промежуточных подстанциях длинных линий с целью повышения стабильности напряжения у потребителей, снижения потерь в линиях электропередач и сетях электроснабжения потребителей, повышения пропускной способности электропередач.

Рост протяженности, мощности и класса напряжения дальних электропередач выдвигает в число важнейших задач обеспечение средствами компенсации ограничения внутренних перенапряжений, статической и динамической устойчивости, эффективности автоматических повторных включений (АВК).

В отечественной практике для уменьшения колебаний напряжения применяются быстродействующие синхронные компенсаторы типа СК-10000-8 мощностью 7,7 Мвар на напряжение 10 кВ и мощностью 10 Мвар на напряжение 6 кВ. Максимальная скорость изменения реактивной мощности, выдаваемой в сеть, по данным завода составляет 130 Мвар/с, возможна кратковременная работа с 2-кратной перегрузкой. Компенсаторы успешно работают на некоторых металлургических заводах, в частности в системе электроснабжения станов горячего проката.

Установленная мощность синхронного компенсатора при одном и том же графике реактивной нагрузки будет меньше, чем установленная мощность статического компенсирующего устройства. Синхронные компенсаторы обладают всеми недостатками вращающихся машин и имеют меньшее быстродействие по сравнению со статическими компенсаторами. Кроме того, в статических компенсирующих устройствах возможно пофазное управление.

На зарубежных металлургических заводах для снижения влияния на питающую сеть резкопеременных нагрузок применяются синхронные компенсаторы с высокой кратностью форсировки напряжения возбуждения и быстродействующей системой регулирования.

Фирма Simens (ФРГ) выпускает синхронные компенсаторы мощностью 10MBА с ударной мощностью 30 MBА. Обмотка возбуждения компенсатора питается от нереверсивного тиристорного преобразователя с кратностью форсировки возбуждения по напряжению 13,2.

Фирма Fuji Electric Co совместно с Nisshin Electric Co (Япония) выпускает синхронные компенсаторы мощностью 8 MBА с ударной мощностью 16 MBА. Компенсатор имеет бесщеточную систему возбуждения с кратностью форсировки по напряжению, равной 2.

Фирма ASEA (Швеция) выпускает синхронные компенсаторы номинальной мощностью 7,5 Мвар с ударной мощностью 30 Мвар.

Статические компенсирующие устройства обладают рядом преимуществ по сравнению с быстродействующими синхронными компенсаторами. Основным преимуществом является их большее быстродействие. Существенна и возможность осуществления пофазного управления, что необходимо в сетях с быстроизменяющейся несимметричной нагрузкой.

В настоящее время разработано много типов статических компенсирующих устройств на базе управляемых реакторов и конденсаторов в основном с применением управляемых вентилей (тиристоров). Наибольшее распространение в зарубежной и отечественной практике получили устройства прямой и косвенной компенсации.

Статические компенсирующие устройства прямой компенсации осуществляют ступенчатое регулирование реактивной мощности с помощью включения и отключения батарей конденсаторов или фильтров высших гармоник при изменении реактивной мощности электроприемников (рис. 13 и 14).

Рисунок 13 - Принципиальная схема компенсирующего устройства прямой компенсации: На рисунке: 1 - тиристорные ключи; 2 - реактор; 3 - конденсаторная батарея; 4 - устройство для управления тиристорными ключами, 5 - нагрузка (тиристорный преобразователь).

Для обеспечения быстродействия в качестве контакторов или выключателей на каждой ступени применяются тиристорные ключи. Для исключения переходных процессов при включении, которые будут приводить только к увеличению колебаний напряжения, включение конденсаторов тиристорными ключами осуществляется в тот момент, когда напряжение сети и конденсаторов равны как по величине, так и по полярности.

Рисунок 14 - Компенсация реактивной мощности устройством прямой компенсации: а - схема устройства прямой компенсации; б - принцип работы статического компенсирующего устройства прямой компенсации; 1-5 - ступени компенсации

Быстродействие устройства прямой компенсации в основном определяется запаздыванием включения или отключения секций батарей конденсаторов на период питающего напряжения (0,02 с) при условии непрерывного изменения реактивной мощности. Одним из преимуществ устройств прямой компенсации является то, что они не генерируют в сеть высшие гармоники.

Схемы прямой компенсации разработаны в СССР в 50-х годах. За рубежом такие устройства изготовляются в Швеции и в Японии.

Фирма ASEA (Швеция) выпускает конденсаторные установки с тиристорным управлением для компенсации реактивной мощности в системах электроснабжения с вентильными преобразователями и дуговыми печами. Система регулирования обеспечивает выбор момента подачи управляющего импульса на каждый тиристор, причем импульс управления подается с упреждением перед моментом прохождения емкостного тока через нуль. Когда конденсаторы не присоединены к сети, они остаются заряженными до амплитуды положительного или отрицательного напряжения сети. На рисунке 15 показано, что коммутация осуществляется в момент, когда напряжение сети соответствует по значению и полярности напряжению на конденсаторе. Тиристор прекращает пропускать ток при переходе его через нуль после снятия импульса с управляющего электрода. Конденсатор остается заряженным до амплитудного значения напряжения и готов к следующей коммутации.

Рисунок 15 - Диаграмма работы статического компенсирующего устройства прямой компенсации: U - напряжение сети, U с - напряжение на конденсаторе, I c - ток конденсатора; t 0 - импульсы для подзарядки конденсаторов; t 1 - подключение к сети; t 2 - отключение от сети; t 3 -t 4 - интервал перезарядки

Статические компенсирующие устройства косвенной компенсации (рис. 16) состоят из двух частей: плавно регулирующего индуктивного элемента (реактора) для компенсации колебаний напряжения и нерегулируемой части - батарей конденсаторов или фильтров высших гармоник.

Принцип косвенной компенсации для уменьшения колебаний напряжения заключается в том, что управляемый реактор потребляет реактивную мощность тогда, когда ее не потребляет резкопеременная нагрузка, и наоборот (рис. 17).

Рисунок 16 - Принципиальная схема статического компенсирующего устройства косвенной компенсации: На рисунке 16: 1 - нагрузка; 2 - управляемые реакторы; 3 - тиристорные ключи; 4 - фильтры высших гармоник токов; 5 - батареи конденсаторов; 6, 7 - трансформаторы тока и напряжения; 8 - система фазоимпульсного управления тиристорами

Регуляторы реактивной мощности должны обеспечивать такое регулирование, чтобы осуществлялось слежение за фронтом наброса и сброса реактивной мощности. Следовательно, от устройства компенсации требуется большое быстродействие, соответствующее фронту наброса и сброса реактивной мощности наиболее характерных резкопеременных нагрузок.

Регулирование тока в реакторе может осуществляться различными способами. Например, некоторые зарубежные фирмы применяют управляемый насыщающийся реактор. Однако быстродействие таких устройств можно оценить временем задержки более 0,06 с (три периода питающего напряжения), что недостаточно для эффективной работы компенсатора. Поэтому в настоящее время применяется регулирование тока в реакторе с помощью встречно-параллельно включенных тиристоров. Такая схема обеспечивает плавное регулирование реактивной мощности с временем задержки 0,01 с.

Рисунок 17 - Компенсация реактивной мощности устройством косвенной компенсации: а - схема статического компенсирующего устройства; б - принцип действия устройства косвенной компенсации

На рисунке 18 приведена схема компенсирующего устройства с управляемыми реакторами с помощью встречно-параллельных тиристоров и нерегулируемой емкости фильтров высших гармоник, используемого для компенсации реактивной мощности при работе дуговых печей (Япония).

В настоящее время в распределительных сетях 6-10 кВ промышленных предприятий с резкопеременной нагрузкой широко применяются ТКРМ.

В ТКРМ к шинам 6-10 кВ нагрузки параллельно подключены компенсирующие реакторы и силовые фильтры высших гармоник.

Рисунок 18 - Принципиальная схема статического компенсирующего устройства косвенной компенсации в сети с дуговыми сталеплавильными печами: На этом рисунке обозначено: 1, 2 - трансформаторы; 3 - тиристорные ключи; 4 - управляемые реакторы; 5, 6 - фильтры высших гармоник; 7, 8 - трансформаторы напряжения и тока; 9 - устройство управления тиристорными ключами; 10 - дуговые сталеплавильные печи.

Компенсирующие реакторы соединяются в треугольник вместе со встречно-параллельно включенными тиристорами и образуют регулирующий, стабилизирующий и симметрирующий элементы. Источником реактивной мощности является конденсаторная установка силовых фильтров высших гармоник.

Тиристорные компенсаторы стабилизируют потребляемую из сети реактивную мощность с погрешностью не более 2 % номинальной мощности как в сетях с симметричными нагрузками, так и при наличии несимметричных нагрузок, обеспечивая несимметрию потребляемых из фаз сети токов не более 10%, при этом быстродействие регулирования - не более 20 мс. В состав ТКРМ, представляющих собой комплекс оборудования, компонуемого свободно и электрически соединяемого на месте монтажа, входят полупроводниковый стабилизатор мощности (ПСМ), компенсирующие реакторы, фильтры, содержащие фильтровый реактор и конденсаторную установку. Компенсирующие реакторы имеют однофазное исполнение, магнитопровод с воздушным зазором и масляное охлаждение.

Фильтровые реакторы имеют однофазную и трехфазные конструкции. Они выполняются в виде цилиндрических катушек с воздушным охлаждением и вертикальной установкой трех фаз, за исключением фильтровых реакторов третьей и пятой гармоник, предназначенных для горизонтальной установки фаз в линию или установки по вершинам равностороннего треугольника. Фильтровые реакторы имеют регулировочные отпайки для изменения номинальной индуктивности.

Конденсаторные установки выполнены трехфазными, соединенными по схеме "две звезды", нейтрали которых соединяются через трансформатор тока, являющийся датчиком сигнала при разбалансе емкостей в лучах звезды.

Конструктивно конденсаторные установки силовых фильтров выполнены в виде двухъярусных стеллажей с вертикальной установкой силовых конденсаторов типа КЭКФ напряжением 4,4; 6,6; 7,3 кВ, соединенных параллельно и защищенных предохранителями типа ПКК-411.

Управляющие сигналы в систему регулирования ПСМ поступают с трансформаторов тока ПСМ, трансформаторов тока и напряжения питающей сети. Регулирование реактивной мощности, генерируемой в сеть, производится за счет изменения угла управления тиристоров. При этом изменяется величина и длительность протекания тока через компенсирующие реакторы, т.е. потребление компенсирующими реакторами реактивной мощности при постоянстве реактивной мощности, генерируемой конденсаторными установками фильтров.

Развитие СТК идет в нескольких направлениях, определяемых их функциональными особенностями. Функции СТК зависят от места и роли в общей системе передачи и распределения электроэнергии.

Системообразующие линии электропередачи напряжением до 1150 кВ передают энергию от генерирующих станций к межрайонным и районным подстанциям. На линиях устанавливаются компенсаторы типа СТК1.

Электрические сети межрайонного значения имеют напряжение 220-500кВ. На районных подстанциях используются СТК типа II. В сетях электроснабжения потребителей, обычно выполняемых на напряжение от 6 до 110 кВ, применяются СТК третьего и четвертого типов.

Пофазное управление СТК выполняется по алгоритму, при котором компенсация колебаний реактивной мощности нагрузки типа дуговой сталеплавильной печи (ДСП) и симметрирование нагрузки выполняется одновременно. Этим обеспечивается ослабление вызванных флуктуирующей дугой ДСП колебаний напряжения в каждой фазе и в совокупности по всем трем фазам сети. Анализ требований к быстродействию автоматического управления СТК показал, что эквивалентное запаздывание в пофазных контурах компенсации колебаний реактивной мощности не должно превышать 5 мс.

Симметрирование линии электропередачи особенно актуально для длинных одноцепных линий. Оно улучшает режим электропередачи при повреждении одного из участков линий, при котором поврежденный участок работает в двухфазном режиме. Дополнительный симметрирующий эффект создается включением в треугольник обмотки трансформатора СТК.

Ограничение перенапряжений с помощью СТК (функция 5) особенно актуально в передачах сверхвысокого напряжения (1 МВ и более). В этих передачах более опасны внутренние перенапряжения, и именно они определяют уровень изоляции.

Быстродействующее регулирование СТК в режиме стабилизации напряжения само по себе является эффективным средством ограничения квазиустановившихся перенапряжений.

Для ограничения импульсных перенапряжений используются специальные элементы, обеспечивающие включение вентилей с запаздыванием порядка 10-20мкс. Эти элементы входят как в состав тиристорных ячеек высоковольтных тиристорных вентилей, так и в состав электронной системы управления СТК.

В момент включения вентиля напряжение прикладывается к реактору СТК, чем и достигается снижение перенапряжений. Однако при этом, как правило, возникает неравенство положительных и отрицательных полуволн тока через реактор, иными словами, в токе появляется квазипостоянная составляющая. Для ее устранения в состав системы управления СТК должно входить специальное устройство быстрого симметрирования полуволн тока фазы.

Реакторы и вентили СТК должны быть рассчитаны на вызванные перенапряжениями перегрузки. Реакторы со сталью должны быть рассчитаны на большие перегрузки, значения которых определяются нелинейностью вольт-амперной характеристики реакторов при напряжении выше номинального. Соответствующие токовые перегрузки должны выдерживать и тиристорные вентили СТК.

Свойство СТК ограничивать внутренние перенапряжения реализуется в полной мере при условии их подключения непосредственно к линии, минуя подстанционные трансформаторы.

Функция 6 должна быть рассмотрена применительно к двум видам АПВ - трехфазному и однофазному (ОАПВ).

Для освоения электропередач переменного тока класса 750 кВ и выше решающее значение имеет проблема обеспечения успешного АПВ. Напряжение в месте к.з. во время бестоковой паузы АПВ возрастает пропорционально номинальному напряжению линии и ее длине. Поэтому на линиях класса 1150кВ, компенсируемых обычными шунтирующими реакторами, восстановление электрической прочности канала дуги за ограниченное время бестоковой паузы может не произойти.

Увеличение бестоковой паузы АПВ для тяжелонагруженных электропередач может привести к нарушению устойчивости параллельной работы. Поэтому трехфазное АПВ должно быть быстродействующим (БАПВ) с паузой до 0,4 с. Однако при длинах участков линии 1150 кВ порядка 400-500 км вследствие относительно малых потерь в линии и шунтирующих реакторах в паузе АПВ будут возникать слабозатухающие колебательные процессы в контурах "емкость линии -- шунтирующие реакторы". Вследствие колебательных процессов в паузе АПВ возможны повторные возникновения дуги в месте к.з. В результате БАПВ будет неуспешным.

Подключение СТК к поврежденному участку линии усиливает затухание колебаний благодаря действию обмоток трансформатора СТК, включенных в треугольник. Обмотки образуют короткозамкнутый контур для синфазных волн напряжения. Специальное управление моментами включения вентилей в паузу АПВ также будет способствовать затуханию колебаний и, следовательно, сокращению времени паузы БАПВ.

Еще более важную роль должен выполнять СТК в обеспечении успешного протекания однофазного АПВ.

Уровень перенапряжений в момент ОАПВ ниже, чем при трехфазном АПВ. Учитывая, что из всех видов к.з. на ультравысоковольтных линиях однофазные к.з. составляют 80-85 %, можно сделать вывод, что обеспечение успешного протекания ОАПВ имеет исключительное значение для надежности этих линий.

Однако с ростом класса напряжений линий проблема ОАПВ усложняется в еще большей степени, чем проблема БАПВ. Причиной этого является ток подпитки дуги в паузу ОАПВ, который при длинах линии 300-500 км может достигать 150-200 А. Быстрое погасание дуги возможно при условии, что ее ток не превышает 10-20 А.

Компенсация тока подпитки дуги при ОАПВ обеспечивается тиристорно-реакторной группой (ТРГ), подключенной к обмоткам трансформатора, соединенным в звезду. Задавая нужный режим ТРГ (углы управления вентилей), можно полностью скомпенсировать емкостную составляющую тока подпитки.

Если линия в момент ОАПВ передает энергию по неповрежденным фазам, возникает дополнительная составляющая тока подпитки дуги за счет взаимоиндуктивностей поврежденной и здоровых фаз. Анализ, проведенный применительно к параметрам линии 1150 кВ длиной до 500 км, показывает, что указанная ТРГ при надлежащем управлении углами включения вентилей может скомпенсировать и эту составляющую тока дуги.

Таким образом, использование СТК для гашения дуги в паузу ОАПВ позволяет снизить ток подпитки дуги до малых значений, при которых дуга гаснет за 0,1-0,3 с, что дает возможность уменьшить время цикла ОАПВ до 0,3-0,4 с и тем самым практически исключить опасность нарушения устойчивости электропередачи при однофазных к.з. на линии.

Стабилизация напряжения в условиях быстрого изменения потока энергии по линии (функция 7) обеспечивает устойчивость длинных линий электропередачи. Для поддержания устойчивости регулятор напряжения должен иметь высокое быстродействие, требуемая величина которого зависит от параметров электропередачи и длины линии.

Фильтрация гармоник тока нагрузки (функция 8) достаточно проста, если спектр тока линейчатый и быстрозатухающий с ростом частоты. Такой спектр имеют токи тиристорных преобразователей с нагрузкой на стороне постоянного тока, выпрямители и инверторы передач постоянного тока, мощные выпрямители электролизных установок и др. Амплитуды гармоник тока шестипульсного тиристорного преобразователя даны на рисунке 19 (точки ТП).

Рисунок 19 - Спектры тока различных потребителей

Тиристорно-реакторная группа СТК имеет аналогичный спектр, но значения гармоник значительно меньше (рис. 20, точки ТРГ). Для фильтрации токов с линейчатым спектром используются цепочки узкополосных фильтров, настроенные на частоты наибольших гармоник.

Значительно сложнее обеспечить эффективную фильтрацию несинусоидальной составляющей тока нагрузки типа дуговых сталеплавильных печей (функция 9), т.к. спектр тока ДСП - сплошной (рис. 20).

Таким образом, функции СТК всех четырех типов далеко не исчерпываются компенсацией реактивной мощности. Поэтому можно сказать, что принятое для СТК название "Статические компенсаторы реактивной мощности" в неполной мере соответствует действительности и может неправильно ориентировать специалистов по энергосистемам и электрическим сетям.

В одном из первых применений вентильного преобразователя для быстродействующего управления реактивной мощностью выпрямитель и инвертор включены последовательно с общим реактором и используются как регулируемый потребитель реактивной мощности в качестве единой, выпрямительно-инверторной подстанции (ВИП). Более перспективной оказалась схема с тиристорно управляемыми реакторами на переменном токе (ТУР) в сочетании с фильтрокомпенсирующими цепями (ФКЦ). В разработках фирмы АСЕА используется СТК по схеме тиристорно переключаемых секций конденсаторов (ТПК) или сочетание схем ТПК и ТУР. В последние годы ведутся разработки СТК на базе многофазных инверторов с принудительной коммутацией или тиристорных преобразователей частоты (КТПЧ).

При оценке показателя 1 мощность тиристорной части учитывалась исходя из равенства диапазонов бесконтактного (тиристорного) регулирования сравниваемых схем. Потери (показатель 2) также были отнесены к диапазону бесконтактного регулирования. Величины потерь взяты с учетом данных зарубежных и отечественных СТК.

Оценка допустимых перенапряжений (показатель 3) призведена с учетом того, что в схеме ТУР вентили полностью открываются при напряжениях выше заданного уровня, что не только защищает их от повреждений, но и снижает уровень перенапряжений в питающей сети. Остальные схемы критичны к перенапряжениям, проектируются в расчете на заданную (максимально допустимую) кратность повышения напряжения и по этой причине должны снабжаться специальными сильноточными ограничителями перенапряжений (ОПН). При вынужденном включении от перенапряжений вентили этих схем оказываются в аварийном режиме.

Наличие импульсного управления в схемах СТК позволяет рассматривать их при малых возмущениях стационарного режима как импульсные системы, интервал съема (показатель 4) при этом определяется так называемой пульсностью преобразователя

где Т - интервал съема импульсной системы; Т с - период частоты сети; m - число вентилей, поочередно коммутируемых за период.

На основании приведенной оценки характеристик различных схем СТК можно сделать вывод о том, что по совокупности показателей (мощность тиристорной части, удельные потери, быстродействие, устойчивость к перенапряжениям) схема с тиристорно управляемым реактором превосходит другие схемы. Поэтому для всех вышеуказанных четырех типов СТК при современном уровне силовой преобразовательной техники целесообразно использовать схему ТУР в сочетании с ФКЦ.

Тиристорные преобразователи с нагрузкой на стороне постоянного тока имеют линейчатый спектр несинусоидальности тока (рис. 21, точки ТП). В составе СТК необходимо иметь ФКЦ с частотами n = 5,7 и широкополосную ФКЦ с частотой n = 11.

Приведенные выше схемы СТК легли в основу разработки серий СТК на напряжение 6; 10; 35 и 110 кВ, выполненной институтами и заводами электротехнической промышленности.

На основании проведенного исследования можно сделать вывод, что статические тиристорные компенсаторы открывают новые возможности по повышению надежности и качества электрических систем, обеспечивая помимо компенсации реактивной мощности ограничение коммутационных перенапряжений и соответствующее облегчение координации изоляции оборудования ультравысоковольтных передач, повышение вероятности успешных БАПВ и ОАПВ, повышение предела мощности по длинным линиям, симметрирование режима, снижение потерь в линиях, компенсацию влияния резкопеременной нагрузки, фильтрацию высших гармоник.

При современном уровне развития высоковольтной преобразовательной техники предпочтительной схемой СТК является шести- или двенадцатипульсная тиристорно-реакторная схема с необходимым набором фильтрокомпенсирующих цепей.

Регулирование индуктивности осуществляется тиристорными группами VS, управляющие электроды которых подсоединены к схеме управления.

Реактивная мощность Q, выдаваемая такой установкой в сеть, регулируется переменной реактивной мощностью индуктивности Q L , т. е.

где Q C - мощность БК.

В настоящее время промышленностью выпускаются тиристорные компенсаторы реактивной мощности для сети 0,4 кВ, на номинальный ток 190 А, мощностью 125 квар типа ТК-125-380. Диапазон регулирования мощности 25-125 квар, скорость изменения реактивной мощности 500 квар/с.

Силовая часть такого компенсатора представляет собой два параллельно включенных трехфазных управляемых моста, нагрузками которых являются изолированные обмотки дросселя, размещенные на крайних стержнях Ш-образного сердечника.

При эксплуатации СКРМ типа ТК-125-380 выявилось их главное преимущество - плавное автоматическое регулирование ими реактивной мощности и стабилизация напряжения сети системой управления тиристорами. Тиристорный компенсатор может работать в режимах регулирования соsj или регулирования напряжения.

Несмотря на то, что данный компенсатор требует некоторой доработки, целесообразность его применения в распределительных электросетях 380 В, особенно с резкопеременным потреблением реактивной мощности, не вызывает сомнения.

Управляющее устройство генерирует в соответствующие моменты токовые импульсы, которые, проходя через БК, изменяют напряжение на ее зажимах. Таким образом, бросков тока при коммутации вентилей в цепи этой БК не возникает. Длительность протекания тока в течение каждого полупериода может регулироваться моментом подачи импульса тока от управляющего устройства.

Устройство состоит из двух симметричных блоков. В каждом блоке трехфазные группы соединяются в треугольник. Последовательно с конденсаторами включаются два встречно-параллельно соединенных вентиля 3 и 4. Батареи конденсаторов БК 1 и 2 и вентили включаются в сеть через трехфазный трансформатор. Обмотки трансформаторов 5 и 6 соединяются таким образом, чтобы суммарный ток блоков не содержал гармоник, кратных трем, которые, как показывают теоретические и экспериментальные исследования, являются самыми значительными в токе ИРМ. Это можно получить, если для одного трансформатора предусмотреть схему соединения обмоток "звезда-звезда", а другого - "звезда-треугольник". При соединении конденсаторов в треугольник компенсируются третья и кратная ей гармоники тока.

Для практически возможных случаев рассматриваемая схема имеет следующие параметры: постоянная времени 0,02 - 0,03 с; диапазон регулирования мощности (в долях от номинальной) 0,3 - 1; диапазон изменения угла управления вентилями - около 50°.

Данные его эксплуатации показали, что фильтр снизил содержание тока 5-й гармоники в 5 раз. В фильтре использован реактор, допускающий регулировку индуктивности в диапазоне от +25 до -20% номинального значения. При наличии фильтров возможно подключение БК к тем же шинам без защитных реакторов.

Опыт разработки и промышленная эксплуатация фильтров высших гармоник имеется за рубежом (США, Япония, Германия и др.). Обычно это простые режекторные фильтры, состоящие из последовательно включенных нерегулируемых конденсаторов и реакторов. Реакторы фильтров зарубежных фирм, как правило, изготовляют без железного сердечника. Это обеспечивает лучшую добротность, но приводит к увеличению габаритов.

Измерительные трансформаторы тока и напряжения передают показания мгновенных значений токов I A , I B , I C и напряжений U A , U B , U C , а также реактивной Q A , Q B , Q C и активной P A , P B , P C мощности в систему регулирования. Тиристорно-реакторная группа, содержащая тиристорные ключи VD1, VD2, VD3 и реакторы LR, управляется системами автоматического регулирования САР-1, 2, 3. Фильтрокомпенсирующие устройства ФКУ-1 и ФКУ-2 представляют собой комбинированные многополюсные трехфазные фильтры 3, 5 и 7-й гармоник, включающие реакторы и батареи конденсаторов с вакуумными выключателями QW1 и QW2. Система управления регулирует величину реактивной мощности отдельно в каждой фазе компенсатора путем изменения углов открытия вентилей VD1-VD3, причем регулируется не емкость, а индуктивность. Фильтрокомпенсирующие устройства настроены на определенную постоянную мощность, а регулируемые реакторы снижают эту постоянную емкостную мощность до того уровня, который необходим для регулирования заданного напряжения.

В настоящее время фирма Nokian Capacitors Ltd. (Финляндия) производит и устанавливает статические компенсаторы возмущений для линий передачи электроэнергии и промышленных предприятий.

Возмущения при обычной работе линий передачи электроэнергии и промышленных распределительных систем могут быть вызваны подключением линий, авариями на линиях, нелинейными компонентами, такими как тиристорные регуляторы, и быстро изменяющимися активными или реактивными нагрузками.

Проблемы, которые при этом возникают, включают в себя: наличие гармоник; потребность в дополнительной реактивной мощности; флуктуации напряжения; фликкер-эффект (мерцание); несбалансированные нагрузки; быстрые изменения в реактивной мощности. Эти проблемы можно решить с помощью быстродействующего статического компенсатора (БСК).

Устройства БСК проектируются индивидуально, используя стандартные компоненты, для решения конкретных проблем каждого заказчика. Несколько из приведенных выше проблем могут возникать одновременно. Оптимальное решение диктуется техническими и экономическими соображениями.

Возмущения, вызванные наличием гармоник, могут быть устранены с помощью фильтров. Реактивная мощность может быть обеспечена применением конденсаторов, которые, если их использовать как фильтры, могут обеспечить как коррекцию коэффициента мощности, так и снизить уровень гармоник.

Флуктуации напряжения могут быть устранены путем использования индуктивных стабилизаторов с конденсаторами, подключаемых через тиристорную схему управления.

От фликкер-эффекта, вызванного быстроменяющейся нагрузкой, можно избавиться с помощью индуктивных стабилизаторов, подключаемых через тиристорную схему управления.

Несбалансированные нагрузки могут быть уравновешены путем селективного подключения, через тиристорную управляющую схему, индуктивных стабилизаторов и конденсаторов.

Быстрые флуктуации в реактивных нагрузках, таких как искровые плавильные печи, могут быть скомпенсированы аналогичным способом.

При использовании системы БСК на сталелитейном заводе было достигнуто улучшение следующих показателей:

  • - флуктуации напряжения были снижены на 80%;
  • - уровень напряжения повысился;
  • - при повышении уровня напряжения увеличилась производительность за счет уменьшения времени плавки в искровых печах;
  • - удалось избежать штрафов компании-поставщика электроэнергии за низкий коэффициент мощности;
  • - мощность, выделяемая в искре плавильных печей, была стабилизирована, что привело к снижению износа графитовых электродов;
  • - уровень гармоник в сети подачи электроэнергии, благодаря использованию фильтров, снизился до приемлемого значения.

Статические компенсаторы проектируются индивидуально, таким образом, чтобы каждый компенсатор соответствовал своему конкретному назначению и приносил положительный экономический эффект.

Для проектирования необходима следующая информация: принципиальная схема той системы, к которой компенсатор будет подсоединен; номинальное напряжение и частота сети; мощность, выделяемая при коротком замыкании в точке общего подсоединения, и диапазон любых возможных изменений; информация относительно изменений реактивной мощности и/или информация о связанной с этим нагрузке; данные по имеющемуся уровню и характеру гармоник или данные о нагрузке, вызывающей наличие гармоник; конструкторские требования, например, допустимое изменение напряжения и содержания гармоник, требования по реактивной составляющей мощности и быстродействие системы компенсации; любые дополнительные или особые требования, которые предъявляются к компенсатору; окружающие условия.

Статические синхронные компенсаторы (СТАТКОМы/Статические генераторы реактивной мощности) - это представители новейшей технологии в области компенсации реактивной мощности. Они подключаются параллельно к электрическим сетям через реакторы и работают в качестве источника реактивного тока. Реактивный ток свободно регулируется для компенсации реактивной мощности.

Основная конфигурация СТАТКОМа – это мостовая 2-фазная или 3-фазная схема выпрямителя, состоящая из полностью контролируемых силовых электронных устройств, таких как IGBT и IGCT. Данный контур подключен к сети параллельно через реакторы. Путем регулирования амплитуды и фазы выходного напряжения или непосредственного контроля тока стороны схемы переменного тока, статический генератор реактивной мощности способен поглощать или генерировать реактивную мощность для обеспечения компенсации динамической реактивной мощности.

Примечание: US –напряжение сети; UI – выходное напряжение статического генератора реактивной мощности; IL – выходной ток статического генератора реактивной мощности.

При использовании для контроля за напряжением, СТАТКОМ обладает подавляющим преимуществом над регулируемым статическим компенсатором реактивной мощности (SVC). Чем ниже напряжение в системе, тем больше динамической реактивной мощности необходимо для поддержания напряжения. Реактивный ток на выходе СТАТКОМа не имеет ничего общего с системой напряжения, поэтому устройство компенсации реактивной мощности можно рассматривать как управляемый источник постоянного тока. Однако чем ниже напряжение в системе, тем слабее мощность реактивного тока, выводимого регулируемыми статическими компенсаторами типа TCR/ MCR.

Диаграмма теории регулирования СТАТКОМа

А. СТАТКОМ подключен параллельно к энергосистеме через реакторы для реализации компенсации емкостной и индуктивной мощности. Он осуществляет компенсацию реактивной мощности и подавление гармоник путем регулирования амплитуды и фазы напряжения переменного тока, или непосредственно регулируя переменный ток в Н-мостовой схеме для поглощения или генерирования реактивного тока.


B. Статический синхронный компенсатор осуществляет обмен электроэнергией с энергосистемой путем регулирования амплитуды и фазы выходного напряжения инвертора цепочного типа.


C. Топология СТАТКОМа показана ниже; фазоинвертор состоит из цепочки узлов.


Выше представленное изображение показывает многоуровневый каскадный инвертор, используемый в системе статических синхронных компенсаторов. Как показано, каждый блок преобразователя на базе Н-моста использует отдельный источник постоянного тока, так что требуемая емкость постоянного тока немного выше, чем ASVC. При этом данные конденсаторы постоянного тока намного меньше и более эффективны по сравнению с громоздкими трансформаторами ASVC.

D. Инвертор на БТИЗ использует оптимизированную фазовую модуляцию.

С появлением мощных высоковольтных полностью управляемых приборов типа IGCT и IGBT началось внедрение нового типа устройств, называемых СТАТКОМ (статический синхронный компенсатор), задачей которых является улучшение качества электроэнергии и повышение эффективности систем ее передачи и распределения за счет компенсации реактивной мощности, регулирования напряжения и повышения устойчивости работы энергосистем.

По сравнению с СТК и другими традиционными устройствами компенсации реактивной мощности СТАТКОМ имеет ряд преимуществ:

  • Лучшие динамические характеристики;
  • Возможность поддержания номинального емкостного выходного тока при низком напряжении системы, что, в свою очередь, обеспечивает более высокую динамическую устойчивость передачи по сравнению с СТК;
  • Благодаря высокой частоте переключения приборов, СТАТКОМ может осуществлять активную фильтрацию гармонических токов нагрузки;
  • Требует меньше места для установки (приблизительно в два раза по сравнению с СТК);
  • Меньший уровень активных потерь.

Теория СТАТКОМа

СТАТКОМ представляет собой управляемый источник напряжения (УИН) с внутренним сопротивлением, практически равным нулю. Его подключение к сети производится через линейный реактор, обеспечивающий преобразование разности напряжений сети и УИН в выходной ток СТАТКОМа, т.е. превращения источника напряжения в источник тока (рис.1).

Рис. 1. Однолинейная схема подключения СТАТКОМа к сети

Векторная диаграмма напряжений, иллюстрирующая режимы работы СТАТКОМа, показана на рисунке 2. В режиме потребления реактивной мощности выходное напряжение преобразователя меньше напряжения линии и находится с ним в фазе. В режиме генерации - выходное напряжение преобразователя больше напряжения на линии и так же в фазе с ним.

Рис. 2. Векторная диаграмма напряжений в различных режимах работы СТАТКОМа

1. Одноуровневый СТАТКОМ

Одноуровневый СТАТКОМ с подключением к шинам 6-10 кВ через понижающий трансформатор. Такие устройства используются в распределительных сетях промышленных предприятий и энергосистем для решения локальных задач улучшения показателей качества электроэнергии, симметрирования нагрузки и компенсации реактивной мощности.

Пример однолинейной схемы одноуровневого СТАТКОМа представлен на рис 3. Схема включает в себя трехфазный инвертор напряжения с номинальным напряжением 550 - 600 В, понижающий трансформатор, сетевой фильтр и коммутационную аппаратуру.

Рис.3. Однолинейная схема СТАТКОМа

Перечень основного оборудования, комплекта поставки СТАТКОМ

Наименование Кол-во Стандарт
Трехфазный инвертор напряжения на основе полностью управляемых вентилей с использованием широтно-импульсной модуляции с жидкостным охлаждением для
быстрого контроля реактивной мощности
1 IEC 146-2
IEC61800-3
EN 50178
Трехфазный реактор со стальным сердечником 1 IEC289
Трехфазный сетевой фильтр 1 EN60831
Трехфазный разъединитель между трансформатором и инвертором 1 EN62271
Система управления и защиты для симметрирования напряжения, защиты, контроля и т.д. 1 EN 60439-1
EN60529
Шкаф для размещения оборудования позиций 1.1-1.5 с двухсторонним доступом, освещением и цепями питания (4000х1000х2300мм, общий вес поз.1.1-1.6: 5500 кг) 1 IEC 439-1
Шкаф системы жидкостного охлаждения с двумя насосами и теплообменным агрегатом типа «вода-вода» (2100х950х1800 мм, вес 1200 кг) 1 --
Трехфазный силовой трансформатор сухой с естественным воздушным охлаждением внутренней установки 1 IEC 76

В комплект поставки оборудования СТАТКОМ также входят

  • комплектующие и материалы для монтажа внутренних соединений преобразователя;
  • запасные части на время проведения пуско-наладочных работ;
  • комплект эксплуатационной документации на оборудование СТАТКОМ

Система управления СТАТКОМа

Система управления СТАТКОМа осуществляет непрерывный контроль сетевого напряжения и тока нагрузки, осуществляет симметрирование активной мощности, компенсацию реактивной мощности нагрузки и стабилизацию напряжения на шинах среднего напряжения, а также мониторинг состояния оборудования СТАТКОМа и его защиту в аварийных ситуациях.
Система управления поставляется в шкафном исполнении.
Класс защиты шкафа от попадания твердых предметов и воды - IP 31 по ГОСТ 14254-96.
Цвет шкафа - RAL 7035.

  • Ширина 1200 мм
  • Глубина 1000 мм
  • Высота 2300 мм
  • Вес 500 кг

Система водяного охлаждения

Система водяного охлаждения СТАТКОМ оборудована двумя насосами, один из которых является резервным, фильтрами грубой и тонкой механической очистки деионизированной воды, а также средствами измерения и контроля основных параметров теплоносителя.

Основными параметрами, контролируемыми автоматикой системы охлаждения, являются:

  • температура теплоносителя,
  • проводимость теплоносителя
  • расход теплоносителя
  • давление в контуре охлаждения тиристорного преобразователя (инвертора)
  • Класс защиты шкафа системы охлаждения от попадания твердых предметов и воды - IP 31 по ГОСТ 14254-96

Предварительные габаритные размеры шкафа:

  • Ширина 950 мм
  • Глубина 2100 мм
  • Высота 1793 мм
  • Вес, не более 1000 кг

Условия эксплуатации:

2. Многоуровневый СТАТКОМ

Многоуровневые СТАТКОМы подключаемые непосредственно на шины среднего напряжения от 6 до 35 кВ. Многоуровневые СТАТКОМы применяются для снижения вредного воздействия на сеть мощных быстропеременных нагрузок типа дуговых сталеплавильных печей и повышения динамической устойчивости в сетях высокого напряжения.

В случае прямого (бестрансформаторного) подключения СТАТКОМа к сетям среднего класса напряжения применяются многоуровневые преобразователи. Одним из таких преобразователей является преобразователь на основе Н-мостов. Важнейшим достоинством данной конфигурации является её модульность, что позволяет легко производить масштабирование СТАТКОМа при переходе к различным уровням напряжения и облегчает условия эксплуатации и обслуживания электроустановки.

На рисунке 4 в качестве примера показана фаза 7-ми уровневого преобразователя на базе Н-моста и форма его выходного напряжения в режиме генерации реактивной мощности. Для каскадного многоуровневого инвертора полное выходное напряжение является суммой выходных напряжений отдельных модулей H-мостов. Каждое отдельное выходное напряжение получается с использованием ШИМ модуляции со сдвигом фазы коммутации для каждого моста. Особенностью данной конфигурации преобразователя является то, что при увеличении класса напряжения, а, следовательно, и числа последовательно включенных Н-мостов, форма выходного напряжения все более приближается к идеальной синусоиде.

Рис. 4. Фаза 7-ми уровневого преобразователя на базе Н-моста и форма выходного напряжения в режиме генерации реактивной мощности.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то