Ядерный магнитный резонанс - ямр. Электрическая схема резонансного усилителя мощности тока промышленной частоты. По Громову. Исследования резонанса и добротности RLC-контура

Инструкция для желающих потрогать феррорезонанс «руками».

Для успешных испытаний нужен трансформатор с быстро разбираемым железом марки ОСД или ему подобные мощностью 100…300Вт. Подходят от старых ламповых телевизоров. Удобны в работе трансы стержневого типа (две обмотки на разных стержнях). Разобранный транс мощностью 150Вт такого типа удобен в быстрой смене катушек на новые или перемотке старых. Но и трансы броневого типа дадут такой же результат. Для приведенного описания взят транс 150Вт сердечник стержневого типа, на котором по обе стороны две катушки. Левая половина сетевой обмотки 130В (сопротивлением 7.7 Ома, диаметр провода 0.5 мм сечение 0.2 мм.кв индуктивность 0.2Гн) такая же обмотка с правой стороны использовалась для подключения нагрузки лампы накаливания 220В на 100Вт. Замеряем величину индуктивности резонансной катушки. Прибор любого производителя. Если не известно напряжение обмоток а их много вбирают ту у которой наибольшая индуктивность(будет меньше емкость а значит дешевле). По замеренной индуктивности и рабочей частоте найдем реактивное сопротивление обмотки, а по сопротивлению емкость резонансного конденсатора. Индуктивность 0.2Гн частота 50Гц:

Рис. 1

Можно ставить расчетную емкость, но чтобы попасть в насыщение сердечника емкость увеличивают на 15…20%.(поясню ниже). Теперь мы готовы к сборке схемы:

Рис. 2

Смотрите рис. 2 съем мощности с дросселя. Включаем ЛАТР и, плавно увеличивая напряжение, смотрим на лампу. При входе схемы в резонанс яркость лампы увеличивается скачком. Это контур вошел в резонанс и начал черпать из гравитационного поля земли или по Мельниченко из магнитопровода. Но нам строителям вечняка сейчас по барабану, где он ее черпает. Главное побольше. Теперь можно крутить ЛАТР в сторону уменьшения и лампа будет гореть с постоянным свечением до определенного момента, а потом скачком погаснет. Схема вышла из резонанса. Не спешите искать халяву, поработайте на разных режимах измерьте токи, и напряжения в разных точках попробуете разные емкости. В общем, почувствуйте схему. Но долго работать со схемой не получится, так как дроссель перегревается и дымит. И чем больше насыщение сердечника, тем быстрее нагрев. Трансформатор(дроссель) не рассчитан на работу в резонансном режиме. На форуме Сергей пишет, у него нет нагрева. Давайте прервемся и попробуем разобраться. Построим вольтамперную характеристику (ВАХ) контура. Для этого совместим на одном графике ВАХ дросселя и ВАХ емкости. Подключаем дроссель к ЛАТРу и, меняя напряжение на дросселе и, замеряя ток для каждой точки, строим ВАХ характеристику достаточно 4…6 точек. На практике выглядит так. К ЛАТРу подключают только дроссель и, увеличивая напряжение с шагом 20….30В строят ВАХ. До начала насыщения дроссель работает тихо и токи малы на этом участке характеристика линейна и тут хватит двух точек. При подходе к точке насыщения появляется легкий гул и заметно возрастает ток тут тоже поставить одну точку, далее уверенно гудит, ток растет быстрее напряжения, тут тоже хватит двух трех точек, после все точки соединяем плавной кривой, L на рис. 3.


Рис. 3

По этому графику легко найти величину емкости для резонанса(точка "тр" на рис. 3) или с помощью ЛАТРа построить на этом же графике ВАХ конденсатора, хватит двух точек так как она линейна (50мкФ на рис. 3). По разности напряжений ВАХ дросселя и конденсатора строится результирующая ВАХ резонансного контура (красная кривая на рис. 3) по этой характеристике видно, как на карте, точки входа схемы в резонанс (т.2 рис. 3) и выхода из него (т.3 рис. 3), токи при которых схема работает в резонансе (от т.4 до т.3), короче не проводя глобальных расчетов можно найти любой параметр. На рис. 3 ВАХ для моего транса. Точка "нн" начало насыщения сердечника. Точка "тр" пересечение характеристик катушки и емкости линия резонанса.

При напряжении Uр 85В вход в резонанс скачком из т.2 в т.4 ток при этом подпрыгивает с 0.8 до 3.4А. А дроссель рассчитан на 1А куда идет лишка – в нагрев. То есть для нормальной работы дросселя нужно увеличить сечение провода. Теперь уменьшим емкость резонансного конденсатора до 30мкФ рис. 4.

Рис. 4

ВАХ смещается к началу насыщения сердечника, а скачек тока уменьшается до 2А. При дальнейшем уменьшении емкости система может не войти в резонанс или резонанс будет неустойчив. При увеличении емкости картина будет противоположной (см. график емкость 90мкФ рис. 5).

По утверждению Теслы, год, проведенный им в Питсбурге, был потерян для исследовательских работ в области многофазных токов. Возможно, что это утверждение близко к истине, но возможно и то, что именно этот год стал началом дальнейших творческих успехов изобретателя. Дискуссия с инженерами завода Вестингауза не прошла бесследно. Обоснование предложенной им частоты переменного тока в 60 периодов требовало более тщательного анализа экономической эффективности применения как меньших, так и более высоких частот. Научная добросовестность Теслы не позволяла ему оставить этот вопрос без тщательной проверки.

Возвратившись в 1889 году из Европы, он принялся за конструирование генератора переменного тока большой частоты и вскоре создал машину, статор которой состоял из 348 магнитных полюсов. Этот генератор давал возможность получать переменный ток с частотой в 10 тысяч периодов в секунду (10 кГц). Вскоре ему удалось создать и еще более высокочастотный генератор и начать изучение различных явлений при частоте 20 тысяч периодов в секунду.

Исследования показали, что по мере увеличения частоты переменного тока можно значительно уменьшить объем железа в электромагнитных электродвигателях, а начиная с определенной частоты, можно создавать электромагниты, состоящие из одних только обмоток, вообще без железа в катушках. Двигатели, созданные из таких электромагнитов без железа, были бы чрезвычайно легкими, но во многих других отношениях неэкономичны, и уменьшение затрат металла не окупалось бы из-за значительного увеличения потребления электроэнергии.

Исследуя широкий диапазон частот переменного тока первоначально в пределах, которые могли бы быть применены в многофазной системе (25-200 периодов в секунду), Тесла вскоре перешел к изучению свойств и возможностей практического использования токов повышенных (10-20 тысяч периодов в секунду) и высоких (20-100 тысяч периодов в секунду) частот. Для получения значительно большего числа периодов и значительно более высоких напряжений, чем это могло быть достигнуто созданными им генераторами токов высокой частоты, необходимо было найти и опереться на иные принципы. Хорошо знакомый с мировой литературой по электрофизике и электротехнике, Тесла изучил работу знаменитого американского физика Джозефа Генри, высказавшего еще в 1842 году предположение, что при некоторых электрических разрядах (в том числе и разряде лейденской банки) имеются не только "главные разряды", но и встречные, причем каждый последующий несколько слабее предыдущего. Так было впервые замечено существование затухающего двухстороннего электрического разряда.

Тесла знал и о том, что спустя одиннадцать лет после Генри английский физик лорд Кельвин экспериментально доказал, что электрический разряд конденсатора есть процесс двухсторонний, продолжающийся до тех пор, пока энергия его не будет израсходована на преодоление сопротивления среды. Частота этого двухстороннего процесса достигает 100 миллионов колебаний в секунду. Искра между шариками разрядника, кажущаяся однородной, в действительности состоит из нескольких миллионов искр, проходящих в короткий промежуток времени в обе стороны.

Кельвин дал математическое выражение процесса двухстороннего разряда конденсатора. Позднее Феддерсон, Шиллер, Кирхгоф, Гельмгольц и другие исследователи не только проверили правильность этого математического выражения, но и значительно дополнили теорию электрического разряда. Знаком был Тесла и с работами Антона Обербанка, наблюдавшего явление электрического резонанса, то есть процесс резкого возрастания амплитуды (размаха) колебаний при приближении частоты внешнего колебания к частоте собственные внутренних колебаний системы.

Хорошо известны были ему и опыты Герца и Лоджа, занимавшихся изучением электромагнитных волн. Особенно большое впечатление на Теслу произвели эксперименты Генриха Герца, подтвердившие теоретические предположения Джемса К. Максвелла о волновой природе электромагнитных явлений. Надо заметить, что в работах Герца Тесла впервые нашел указание на явление так называемых "стоячих электромагнитных волн", то есть волн, накладывающихся одна на другую так, что они в одних местах усиливают друг друга, создавая "пучности", а в других уменьшают до нуля, создавая "узлы".

Зная все это, Никола Тесла в 1891 году закончил конструирование прибора, сыгравшего исключительную роль в дальнейшем развитии самых различных отраслей электротехники и особенно радиотехники. Для создания токов высокой частоты и высокого напряжения он решил воспользоваться известным свойством резонанса, то есть явлением резкого возрастания амплитуды собственных колебаний какой-либо системы (механической или электрической) при наложении на них внешних колебаний с той же частотой. На основании этого известного явления Тесла создал свой резонансный трансформатор.

Действие резонансного трансформатора основано на настройке в резонанс его первичного и вторичного контуров. Первичный контур, содержащий как конденсатор, так и индукционную катушку, позволяет получить переменные токи весьма высокого напряжения с частотами в несколько миллионов периодов в секунду. Искра между шариками разрядника вызывает быстрые изменения магнитного поля вокруг первичной катушки вибратора. Эти изменения магнитного поля вызывают возникновение соответствующего высокого напряжения в обмотке вторичной катушки, состоящей из большого числа витков тонкой проволоки, причем частота переменного тока в ней соответственно количеству искровых разрядов достигает нескольких миллионов перемен в секунду.

Наибольшей величины частота достигает в момент, когда периоды первичной и вторичной цепи совпадают, то есть когда наблюдается явление резонанса в этих цепях.

Тесла разработал очень простые методы автоматической зарядки конденсатора от источника тока низкого напряжения и разрядки его через трансформатор с воздушным сердечником. Теоретические расчеты изобретателя показали, что даже при самых незначительных величинах емкости и индукции в созданном им резонансном трансформаторе при соответствующей настройке можно получить путем резонанса весьма высокие напряжения и частоты.

Открытые им в 1890 году принципы электрической настройки резонансного трансформатора и возможность изменять емкость для изменения длины волны электромагнитных колебаний, создаваемых трансформатором, стали одним из наиболее важных оснований радиотехники, а мысли Теслы об огромной роли конденсатора и вообще емкости и самоиндукции в развитии электротехники оправдались.

При создании резонансного трансформатора пришлось решить еще одну практическую задачу: найти изоляцию для катушек сверхвысокого напряжения. Тесла занялся вопросами теории пробоя изоляции и на основании этой теории нашел лучший способ изолировать витки катушек - погружать их в парафиновое, льняное или минеральное масло, называемое теперь трансформаторным. Позднее Тесла еще раз возвратился к разработке вопросов электрической изоляции и сделал весьма важные выводы из своей теории.

Едва начав опыты с токами высокой частоты, Никола Тесла ясно представил себе огромные перспективы, открывавшиеся перед человечеством при широком использовании токов высокой частоты. Направление работ Теслы свидетельствует о необычайно разносторонних выводах, которые он сделал из своего открытия.

Прежде всего, он пришел к убеждению, что электромагнитные волны играют исключительно важную роль в большинстве явлений природы. Взаимодействуя друг с другом, они либо усиливаются, либо ослабляются, либо вызывают новые явления, происхождение которых мы иногда приписываем совершенно другим причинам. Но не только электромагнитные излучения играют огромную роль в самых различных явлениях природы. Тесла интуицией большого ученого понял значение различных излучений еще до замечательных открытий радиоактивных элементов. Когда позднее, в 1896 году, Анри Беккерель, а затем Пьер и Мария Кюри открыли это явление, Тесла нашел в этом подтверждение своих предвидений, высказанных им еще в 1890 году.

Огромное значение переменных токов в развитии промышленности, получившей, наконец, необходимый ей электродвигатель, стало ясно Николе Тесле при первом же знакомстве с преимуществами трехфазного тока, требующего для его передачи всего лишь три провода. Для Теслы уже в то время было несомненно, что должен быть открыт способ передачи электроэнергии и вовсе без проводов, с помощью электромагнитных волн. Эта проблема привлекла внимание Теслы, стала предметом его занятий еще в конце 1889 года.

Однако практическое применение токов высокой частоты для самых разнообразных целей требовало изучения на первый взгляд самых различных, не связанных между собой вопросов. Эти-то эксперименты в широком масштабе и начал проводить в своей лаборатории Никола Тесла.

Начав систематические опыты с токами высокой частоты и высокого напряжения, Тесла должен был прежде всего разработать меры защиты от опасности поражения электрическим током. Эта частная, вспомогательная, но весьма важная задача привела его к открытиям, заложившим основу электротерапии - обширной области современной медицины.

Ход мыслей Николы Теслы был чрезвычайно оригинален. Известно, рассуждал он, что постоянный ток низкого напряжения (до 36 вольт) не оказывает вредных действий на человека. По мере повышения напряжения возможность поражения быстро возрастает.

С увеличением напряжения, поскольку сопротивление тела человека практически неизменно, сила тока так же увеличивается и достигает при 120 вольтах угрожающей величины. Более высокое напряжение становится опасным для здоровья и жизни людей.

Иное дело ток переменный. Для него предел опасного напряжения значительно выше, чем для постоянного, и этот предел отодвигается с повышением частоты. Известно, что электромагнитные волны очень высокой частоты не оказывают никакого болезненного действия на человека 10 . Пример тому свет, воспринимаемый при нормальной яркости здоровым глазом без всяких болезненных ощущений. В пределах каких же частот и напряжений переменный ток опасен? Где начинается зона безопасного тока?

Шаг за шагом исследовал Тесла действие переменного электрического тока на человека при разных частотах и напряжениях. Опыты он проводил на самом себе. Сначала через пальцы одной руки, затем через обе руки, наконец, через все тело пропускал он токи высокого напряжения и высокой частоты. Исследования показали, что действие электрического тока на человеческий организм складывается из двух составляющих: воздействия тока на ткани и клетки нагревом и непосредственного воздействия тока на нервные клетки.

Оказалось, что нагревание далеко не всегда вызывает разрушительные и болезненные последствия, а воздействие тока на нервные клетки прекращается при частоте свыше 700 периодов, аналогично тому, как слух человека не реагирует на колебания свыше 2 тысяч в секунду, а глаз - на колебания за пределами видимых цветов спектра.

Так была установлена безопасность токов высоких частот даже при высоких напряжениях. Более того, тепловые действия этих токов могли быть использованы в медицине, и это открытие Николы Теслы нашло широкое применение; диатермия, лечение УВЧ и другие методы электротерапии есть прямое следствие его исследований. Тесла сам разработал ряд электротермических аппаратов и приборов для медицины, получивших большое распространение как в США, так и в Европе. Его открытие было затем развито другими выдающимися электриками и врачами.

Однажды, занимаясь опытами с токами высокой частоты и доведя напряжение их до 2 миллионов вольт, Тесла случайно приблизил к аппаратуре медный диск, окрашенный черной краской. В то же мгновение густое черное облако окутало диск и тотчас поднялось вверх, а сам диск заблестел, словно чья-то невидимая рука соскоблила всю краску и отполировала его.

Удивленный Тесла повторил опыт, и снова краска исчезла, а диск сиял, поддразнивая ученого. Повторив десятки раз опыты с разными металлами, Тесла понял, что он открыл способ их очистки токами высокой частоты.

"Любопытно, - подумал он, - а не подействуют ли эти токи и на кожу человека, не удастся ли с их помощью снимать с нее различные, трудно поддающиеся удалению краски".

И этот опыт удался. Кожа руки, окрашенная краской, мгновенно стала чистой, как только Тесла внес ее в поле токов высокой частоты. Оказалось, что этими токами можно удалять с кожи лица мелкую сыпь, очищать поры, убивать микробы, всегда в изобилии покрывающие поверхность тела человека. Тесла считал, что его лампы оказывают особое благотворное действие не только на сетчатку глаза, но и на всю нервную систему человека. К тому же лампы Теслы вызывают озонирование воздуха, что также может быть использовано в лечении многих болезней. Продолжая заниматься электротерапией, Тесла в 1898 году сделал обстоятельное сообщение о своих работах в этой области на очередном конгрессе Американской электротерапевтической ассоциации в Буффало.

В лаборатории Тесла пропускал через свое тело токи напряжением в 1 миллион вольт при частоте 100 тысяч периодов в секунду (ток достигал при этом величины в 0,8 ампера). Но, оперируя с токами высокой частоты и высокого напряжения, Тесла был очень осторожен и требовал от своих помощников соблюдения всех им самим выработанных правил безопасности. Так, при работе с напряжением в 110- 50 тысяч вольт при частоте в 60-200 периодов он приучил их работать одной рукой, чтобы предотвратить возможность протекания тока через сердце. Многие другие правила, впервые установленные Теслой, прочно вошли в современную технику безопасности при работе с высоким напряжением.

Создав разнообразную аппаратуру для производства опытов, Тесла в своей лаборатории начал исследование огромного круга вопросов, относящихся к совершенно новой области науки, в которой его больше всего интересовали возможности практического использования токов высокой частоты и высокого напряжения. Работы его охватывали все многообразие явлений, начиная от вопросов генерирования (создания) токов высокой частоты и кончая детальным изучением различных возможностей их практического использования. С каждым новым открытием возникали все новые и новые проблемы.

Как одна из частных задач Теслу заинтересовала возможность использовать открытие Максвеллом и Герцем электромагнитной природы света. У него возникла мысль: если свет представляет собой электромагнитные колебания с определенной длиной волны, нельзя ли искусственно получить его не путем нагрева нити электрической лампы накаливания (что дает возможность использовать лишь 5 процентов энергии, превращающейся в световой поток), а путем создания таких колебаний, которые вызвали бы появление световых волн? Эта задача и стала предметом исследований в лаборатории Теслы в начале 1890 года.

Вскоре он накопил огромное количество фактов, позволивших перейти к обобщениям. Однако осторожность Теслы заставила его проверять десятки и сотни раз каждое свое утверждение. Он повторял сотни раз каждый опыт, прежде чем делал из него какие-либо выводы. Необычайность всех открытий Николы Теслы и огромный авторитет его привлекли внимание руководителей Американского института электроинженеров, вновь, как и три года назад, пригласивших Теслу прочесть лекцию о своих работах. Тесла избрал тему: "Опыты с переменными токами весьма высокой частоты и их использование для искусственного освещения".

По традиции, установившейся с первых лет существования института, было разослано ограниченное число приглашений лишь самым выдающимся электротехникам. Перед такой избранной аудиторией 20 мая 1892 года Тесла и прочел одну из своих самых вдохновенных лекций и продемонстрировал опыты, уже осуществленные им в своей лаборатории.

Нет ничего, что в большей степени могло бы привлечь внимание человека и заслужило бы быть предметом изучения, чем природа. Понять ее огромный механизм, открыть ее созидательные силы и познать законы, управляющие ею, - величайшая цель человеческого разума, - этими словами начал Тесла свое выступление.

И вот он уже демонстрирует перед слушателями результаты своих исследований в новой, еще никем не изученной области токов высокой частоты.

Рассеяние электромагнитной энергии в пространстве, окружающем источник токов высокой частоты, позволяет использовать эту энергию для самых различных целей, - убежденно говорит ученый и тут же показывает замечательный опыт. Он выдвигает гениальное положение о возможности передачи электроэнергии без проводов и в доказательство заставляет как обычные лампы накаливания, так и специально им созданные лампы без нитей внутри светиться, внося их в переменное электромагнитное поле высокой частоты. - Освещение лампами подобного рода, - говорит Тесла, - где свет возникает не под действием нагрева нитей протекающим током, а вследствие особых колебаний молекул и атомов газа, будет проще, чем освещение современными лампами накаливания. Освещение будущего, - подчеркивал ученый, - это освещение токами высокой частоты.

Особенно подробно остановился Тесла на описании своего резонансного трансформатора как источника волн весьма высокой частоты и снова подчеркнул значение разряда конденсатора в создании таких колебаний. Тесла правильно оценил большое будущее этой важнейшей детали современных радиотехнических средств. Он выразил эту мысль следующими словами:

Я думаю, что разряд конденсатора будет в будущем играть важную роль, так как он не только предоставит возможность получать свет более простым способом в том смысле, какой указывает изложенная мною теория, но окажется важным и во многих других отношениях.

Подробно изложив результаты экспериментов с токами высокой частоты, получаемыми с помощью резонансного трансформатора, Тесла завершил лекцию словами, свидетельствующими о его ясном представлении значения дальнейшего изучения явлений, над которыми его работы едва приоткрыли завесу тайны:

Мы проходим с непостижимой скоростью через бесконечное пространство; все окружающее нас находится в движении, и энергия есть повсюду. Должен найтись более прямой способ утилизировать эту энергию, чем известные в настоящее время. И когда свет получится из окружающей нас среды и когда таким же образом без усилий будут получаться все формы энергии из своего неисчерпаемого источника, человечество пойдет вперед гигантскими шагами.

Одно созерцание этой великолепной перспективы подымает наш дух, укрепляет нашу надежду и наполняет наши сердца величайшей радостью.

Под бурные аплодисменты Тесла закончил свое замечательное выступление. Необычайность всего показанного и особенно смелые выводы ученого, видевшего революционные последствия своих открытий, поразили слушателей, хотя далеко не все поняли содержание лекции так глубоко, как того хотелось бы Николе Тесле.


Резонансный трансформатор есть у каждого, но мы настолько к ним привыкли, что не замечаем как они работают. Включив радиоприемник, мы настраиваем его на радиостанцию, которую хотим принять. При надлежащем положении ручки настройки приемник будет принимать и усиливать колебания только тех частот, какие передает эта радиостанция, колебания других частот он не примет. Мы говорим, что приемник настроен.

Настройка приемника основана на важном физическом явлении резонанса. Вращая ручку настройки, мы изменяем емкость конденсатора, а стало быть и собственную частоту колебательного контура. Когда собственная частота контура радиоприемника совпадает с частотой передающей станции, наступает резонанс. Сила тока в контуре радиоприемника достигает максимума и громкость приема данной радиостанции - наибольшая

Явление электрического резонанса позволяет настраивать передатчики и приемники на заданные частоты и обеспечить их работу без взаимных помех. При этом происходит умножение электрической мощности входного сигнала в несколько раз

В электротехнике происходит то же самое

Подключим конденсатор к вторичной обмотке обычного сетевого трансформатора, при этом ток и напряжение данного колебательного контура окажутся сдвинутыми по фазе на 90°. Замечательно то, что трансформатор не заметит этого подключения и ток его потребления снизится.

Невероятная картина: машина дает ток, равный нулю, но распадающийся на два разветвления, по 80 Ампер в каждом. Не правда ли, недурной пример для первого знакомства с переменными токами?"

Максимальный эффект от применения резонанса в колебательном контуре можно получить при его конструировании с целью повышения добротности. Слово «добротность» имеет смысл не только «хорошо сделанного» колебательного контура. Добротность контура - это отношение тока, протекающего через реактивный элемент, к току, протекающему через активный элемент контура. В резонансном колебательном контуре можно получить величину добротности от 30 до 200. При этом, через реактивные элементы: индуктивность и емкость протекают токи, намного больше, чем ток от источника. Эти большие «реактивные» токи не покидают пределов контура, т.к. они противофазны, и сами себя компенсируют, но они реально создают мощное магнитное поле, и могут «работать», например в эффективность которых зависит от резонансного режима работы

Проанализируем работу резонансного контура в симуляторе http://www.falstad.com/circuit/circuitjs.html (бесплатная программа)

Правильно построеннный резонансный контур (резонанс нужно строить, а не собирать из того что оказалось под рукой ) потребляет от сети лишь несколько ватт, при этом в колебательном контуре имеем киловаты реактивной энергии, которые можно снять для отопления дома или теплицы при помощи индукционного котла или при помощи одностороннего трансформатора

Например, имеем домашнюю сеть 220 вольт, 50 Гц. Задача: получить на индуктивности в параллельном резонансном колебательном контуре ток величиной в 70 Ампер

Закон Ома для переменного тока для цепи с индуктивностью

I = U / X L , где X L - индуктивное сопротивление катушки

Знаем, что

X L = 2πfL, где f - частота 50 Гц, L - индуктивность катушки (в Генри)

откуда найдем индуктивность L

L = U / 2πfI = 220 вольт / 2 3,14 * 50 Гц 70 Ампер = 0.010 Генри (10 мили Генри или 10mH).

Ответ: чтобы получить в параллельном колебательном контуре ток 70 Ампер, необходимо сконструировать катушку с индуктивностью 10 мили Генри.

По формуле Томсона

fрез = 1 / (2π √ (L C)) находим величину емкости конденсатора для данного колебательного контура

С = 1 / 4п 2 Lf 2 = 1 / (4 (3,14 3,14) * 0,01 Генри (50 Гц 50 Гц)) = 0,001014 Фарад (или 1014 микро Фарад, или 1,014 мили Фарад или 1mF)

Потребление от сети данного параллельного резонансного автоколебательного контура составит лишь 6,27 Ватт (см. рисунок ниже)

24000 ВА реактивной мощности при потреблении 1300 Вт Диод перед резонансным контуром

Вывод: диод перед резонансным контуром снижает потребление от сети в 2 раза, диоды внутри резонансного контура снижают потребление ещё в 2 раза. Общее снижение потребляемой мощности в 4 раза!

В заключение:

Параллельный резонансный контур в 10 раз увеличивает реактивную мощность!

Диод перед резонансным контуром снижает потребление от сети в 2 раза,

Диоды внутри резонансного контура дополнительно снижают потребление в 2 раза.

Асимметричный трансформатор имеет две катушки L2 и Ls.

Например, трансформатор изображенный ниже - это разделительный трансформатор 220/220 изготовленный по принципу асимметричного.

Если на Ls подать 220 вольт, то на L2 снимем 110 вольт.

Если на L2 подать 220 вольт, то на Ls снимем 6 вольт.

Асимметрия в передаче напряжения налицо.

Этот эффект можно использовать в схеме Резонансного усилителя мощности Громова/Андреева, заменяя магнитный экран на асимметричный трансформатор

Секрет усиления тока в асимметричном трансформаторе заключается в следующем:

Если через множество асимметричных трансформаторов пропустить электромагнитный поток, то все они не будут влиять на этот поток, т.к. любой из асимметричных трансформаторов не влияет на поток. Реализацией такого подхода является набор дросселей на Ш-образных сердечниках и установленных вдоль оси внешнего воздействующего поля, полученного от катушки Ls.

Если вторичные катушки L2 трансформаторов затем соединим параллельно, то получим усиление тока.

В результате: получаем набор асимметричных трансформаторов организованных в стек:

Для выравнивания поля на краях Ls, могут быть организованы дополнительные витки по её концам.

Катушки изготовлены из 5 секций, на ферритовых сердечниках Ш - типа с проницаемостью 2500, с использованием провода в пластиковой изоляции.

Центральные трансформаторные секции L2 имеют по 25 витков, а крайние трансформаторы 36 витков (для выравнивания наводимого в них напряжения).

Все секции соединены параллельно.

Внешняя катушка Ls имеет дополнительные витки для выравнивания магнитного поля на её концах (что отмечалось), при намотке LS была использована однослойная обмотка, число витков зависело от диаметра провода. Усиления тока для этих конкретных катушек - 4-х кратное.

Изменение индуктивности Ls составляет 3% (если L2 закорочена для имитации тока во вторичка (т.е. как-бы к ней подключена нагрузка)

Чтобы избежать потери половины потока магнитной индукции первичной обмотки в незамкнутом магнитопроводе асимметричного трансформатора, состоящем из n-количества Ш-образных или П- образных дросселей, его следует замкнуть, как показано ниже

0. Резонансный генератор свободной энергии. Избыточная мощность 95 Вт на обмотке съёма достигается использованием 1) резонанса напряжений в обмотке возбуждения и 2) резонанса тока в резонансном контуре. Частота 7,5 кГц. Первичное потребление 200 мА, 9 Вольт видео1 и видео2

1. Устройства получения свободной энергии. Патрик Дж. Келли ссылка

Модуляция НЧ сигала ВЧ сигналом на пуш-пулл ссылка

Электрический резонанс

В колебательном контуре на рисунке емкость С, индуктивность L и сопротивление R включены последовательно с источником ЭДС.

Резонанс в таком контуре называется последовательным резонанском напряжений. Его характерная черта - напряжения на емкости и индуктивности при резонансе значительно больше внешней ЭДС. Последователный резонансный контур как бы усиливает напряжение.

Свободные электрические колебания в контуре всегда затухают. Для получения незатухающих колебаний необходимо пополнять энергию контура с помощью внешней ЭДС.

Источником ЭДС в контуре служит катушка L, индуктивно связанная с выходным контуром генератора электрических колебаний.

Таким генератором может служить электрическая сеть с постоянной частотой f = 50 Hz.

Генератор создает в катушке L колебательного контура некоторую ЭДС.

Каждой величине емкости конденсатора С соответствует своя собственная частота колебательного контура

Которая меняется с изменением емкости конденсатора С. При этом частота генератора остается постоянной.

Таким образом, чтобы возможен был резонанс соответственно частоте подбирают индуктивность L и емкость С.

Если в колебательном контуре 1 включены три элемента: емкость C, индуктивность L и сопротивление R, то как же они влияют на амплитуду тока в цепи все вместе?

Электрические свойства контура определяются его резонансной кривой.

Зная резонансную кривую мы сможем заранее сказать какой амплитуды достигнут колебания при самой точной настройке (точка Р) и как повлияет на ток в контуре изменение емкости С, индуктивности L и активного сопротивления R. Поэтому поставим своей задачей построить по данным контура (емкости, индуктивности и сопротивлению) его резонансную кривую. Научившись это делать, мы сможем заранее представить, как себя будет вести контур с любыми значениями С, L и R.

Наш опыт в следующем: меняем емкость конденсатора С и замечаем по амперметру ток в контуре для каждого значения емкости.

По полученный данным строим резонансную кривую для тока в контуре. По горизонтальной оси будем откладывать для каждого значения С отношение частоты генератора к собственной частоте контура. По вертикальной отложим отношение тока при данной емкости к току при резонансе.

Когда собственная частота контура fo приближается к частоте f внешней ЭДС, ток в контуре достигает своего максимального значения.

При электрическом резонансе не только ток достигает своего максимального значения, но и заряд, а следовательно и напряжение на конденсаторе.

Для начала разберем роль емкости, индуктивности и сопротивления в отдельности, а затем уже всех вместе.

Http:="">Показана необходимость изменения внутренней энергии диэлектрика конденсатора (феррита в индуктивности) за цикл «Зарядка-Разрядка» («намагничивание - размагничивание»), если ∂ε/∂E ≠ 0, (∂µ/∂H ≠ 0),

Емкостное сопротивление 1/2πfC зависит от частоты.

На рисунке показан график этой зависимости.

По горизонтальной оси отложена частота f, а по вертикальной - емкостное сопротивление Xc = 1/2πfC.

Мы видим, что высокие частоты (Xc мало) конденсатор пропускает, а низкие (Xc велико) - задерживает.

Влияние индуктивности на резонансный контур

Емкость и индуктивность оказывают на ток в цепи противоположные действия. Пусть вначале внешняя ЭДС заряжает конденсатор. По мере заряда растет напряжение U на конденсаторе. Оно направлено против внешней ЭДС и уменьшает ток заряда конденсатора. Индуктивность наоборот, с уменьшением тока стремится его поддержать. В следующую четверть периода, когда конденсатор разряжается, напряжение на нем стремится увеличить ток заряда, индуктивность же, наоборот, препятствует этому увеличению. Чем больше индуктивность катушки, тем меньшей величины успеет достичь за четверть периода разрядный ток.

Ток в цепи с индуктивностью равен I = U/2πfL. Чем больше индуктивность и частота, тем меньше ток.

Индуктивное сопротивление потому и называется сопротивлением, что оно ограничивает ток в цепи. В катушке индуктивности создается ЭДС самоиндукции, которая мешает току нарастать, и ток успевает нарастать только до некоторой определенной величины i=U/2πfL. При этом электрическая энергия генератора переходит в магнитную энергию тока (магнитное поле катушки). Так продолжается чеверть периода, пока ток не достигнет своего наибольшего значения.

Напряжения на индуктивности и емкости в режиме резонанса равны по величине и, находясь в противофазе, компенсируют друг друга. Таким образом все приложенное к цепи напряжение приходится на ее активное сопротивление (см. рисунок)

Поэтому полное сопротивление Z последовательно включенных конденсатора и катушки равно разности между емкостным и индуктивным сопротивлением:

Если учесть также активное сопротивление колебательного контура, то формула полного сопротивления примет вид:

Когда емкостное сопротивление конденсатора в колебательном контуре равно индуктивному сопротивлению катушки

то полное сопротивление цепи Z переменному току будет наименьшим:

т.е. когда полное сопротивление резонансного контура равно лишь активному сопротивлению контура, то амплитуда тока I достигает своего максимального значения: И ПРИХОДИТ РЕЗОНАНС.

Как и следовало ожидать, резонанс наступает, когда частота внешней ЭДС равна собственной частоте системы f = fo.

Если менять частоту внешней ЭДС или собстенную частоту fo (расстройка) то, чтобы вычислить ток в колебательном контуре при любой расстройке, нам достаточно подставить в формулу значения R, L, C, w и E.

При частотах ниже резонансной часть энергии внешней ЭДС тратится на преодоление возвращающих сил, на преодоление емкостного сопротивления. В следующую четверть периода направление движения совпадает с направлением возвращающей силы, и эта сила отдает источнику энергии, полученную за первую четверть периода. Противодействие со стороны возвращающей силы ограничивает амплитуду колебаний.

При частотах, больших резонансной, основную роль играет инерция (самоиндукция): внешняя сила не успевает за четверть периода ускорить тело, не успевает внести в цепь достаточную энергию.

При резонансной частоте внешней силе легко качать тело, так как частота его свободных колебаний и внешняя сила только преодолевают трение (активное сопротивление). В этом случае полное сопротивление колебательного контура равно только его активному сопротивлению Z = R, а емкостное сопротивление и индуктивное сопротивление контура равны 0. Поэтому ток в контуре максимален I = U/R

Резонанс - явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам), определяемым свойствами системы. Увеличение амплитуды - это лишь следствие резонанса, а причина - совпадение внешней (возбуждающей) частоты с внутренней (собственной) частотой колебательной системы. При помощи явления резонанса можно выделить и/или усилить даже весьма слабые периодические колебания. Резонанс - явление, заключающееся в том, что при некоторой частоте вынуждающей силы колебательная система оказывается особенно отзывчивой на действие этой силы. Степень отзывчивости в теории колебаний описывается величиной, называемой добротность.

Добротность - характеристика колебательной системы, определяющая полосу резонанса и показывающая, во сколько раз запасы энергии в системе больше, чем потери энергии за один период колебаний.

Добротность обратно пропорциональна скорости затухания собственных колебаний в системе - чем выше добротность колебательной системы, тем меньше потери энергии за каждый период и тем медленнее затухают колебания

Тесла писал в своих дневниках, что ток внутри параллельного колебательного контура в добротность разы больше, чем вне его.

Последовательный резонанс. Резонанс и трансформатор. Фильм 3

Диодный колебательный контур Рассматривается новая схема колебательного контура с применением двух катушек индуктивности, включенных через диоды. Добротность контура возросла примерно вдвое, хотя уменьшилось характеристическое сопротивление контура. Индуктивность уменьшилась вдвое, а емкость увеличилась

Последовательно-параллельным реонансный колебательный контур

Исследования резонанса и добротности RLC-контура

Мы исследовали компьютерную модель RLC-контура в программе «Открытая физика», нашли резонансную частоту контура, на резонансной частоте исследовали зависимость добротности контура от сопротивления и построили графики.

В практической части работы исследовали реальный RLC-контур с использованием компьютерной программы «Audiotester». Нашли резонансную частоту контура, на резонансной частоте исследовали зависимость добротности контура от сопротивления и построили графики.

Выводы , сделанные нами в теоретической и практической части работы, совпали полностью.

· резонанс в цепи с колебательным контуром наступает при совпадении частоты генератора f c частотой колебательного контура fo;

· с увеличением сопротивления добротность контура падает. Самая высокая добротность при небольших значениях сопротивления контура;

· самая высокая добротность контура ― на резонансной частоте;

· полное сопротивление контура минимально на резонансной частоте.

· попытка прямым путем снять излишки энергии из колебательного контура приведет к затуханию колебаний.

Применения резонансных явлений в радиотехнике неисчислимы.

Однако, в электротехнике применить резонанс мешают стереотипы и негласные современные законы, которые накладывают запреты на применение резонанса для получения Свободной энергии. Самым интересным оказалось, что все электростанции уже давно пользуются подобным оборудованием, ведь явление резонанса в электрической сети известно всем электромеханикам, но у них совсем иные цели. Когда явление резонанса возникает, идет выброс энергии, который может превосходить норму в 10 раз, и большинство устройств у потребителей перегорают. После этого индуктивность сети изменяется и тогда резонанс исчезает, но перегоревшие устройства не восстановить. Чтобы избежать этих неудобств, устанавливают определенные антирезонирующие вставки, которые автоматически меняют свою емкость и отводят сеть из опасной зоны как только она окажется близкой к резонансным условиям. Если бы резонанс поддерживался в сети специально, с последующим ослаблением силы тока на выходе с резонансной электроподстанции, то потребление топлива снизилось бы в несколько десятков раз и себестоимость производимой энергии снизилась. Но современная электротехника борется с резонансом, создавая антирезонансные трансформаторы и т.п., а у ее сторонников сложились устойчивые стереотипы относительно параметрического резонансного усиления мощности. Поэтому не все явления резонанса применены и реализованы на практике.

Возьмем книгу «Элементарный учебник физики под редакцией академика Г.С. Ландсберга Том III Колебания, волны. Оптика. Строение атома. – М.: 1975г., 640 с. с илл.» откроем ее на страницах 81 и 82 где приведено описание экспериментальной установки для получения резонанса на частоту городского тока 50 Герц.

В приведенном примере ясно показывается, как можно на индуктивности и емкости получить напряжения в десятки раз большие, чем напряжение источника питания.

Резонанс это накопление энергии системой, т.е. мощность источника не надо увеличивать, система накапливает энергию т.к. не успевает её расходовать. Это делается на добавлении энергии в момент максимальных отклонениях в собственной частоте, система производит выброс энергии и замирает в "мертвой точке" в этот момент подается импульс, происходит добавление энергии в систему, т.к. в данный момент её просто нечем расходовать, и происходит рост амплитуды собственных колебаний, естественно он не бесконечный и зависит уже от прочности системы, нужно будет вводить еще одну обратную связь для ограничения накачки, я об этом задумался после взрыва первичной обмотки. Таким образом, если не принимать специальных мер, то мощность, развиваемая резонансом, разрушит элементы установки.

Электрическая схема резонансного усилителя мощности тока промышленной частоты. По Громову.

В резонансном усилителе тока промышленной частоты используется явление ферро-резонанса сердечника трансформатора, а также явление электрического резонанса в последовательном колебательном контуре LC-резонанс. Эффект усиления мощности в последовательном резонансном контуре достигается за счет того, что входное сопротивление колебательного контура при последовательном резонансе является чисто активным, а напряжение на реактивных элементах колебательного контура превышает входное напряжение на величину равную добротности контура Q. Для поддержания незатухающих колебаний последовательного контура в резонансе требуется компенсировать только тепловые потери на активных сопротивлениях индуктивности контура и внутреннем сопротивлении источника входного напряжения.

Структурная схема и состав резонансного усилителя мощности, описанная Громовым Н.Н. в 2006 году, приедена ниже

Входной понижающий трансформатор уменьшает напряжение, но увеличивает ток во вторичной обмотке

Последовательный резонансный контур увеличивает напряжение ссылка

Как известно, при резонансе во вторичке Входного понижающего трансформатора, его потребление тока от сети снижается. ссылка

В результате мы получим большой ток и большое напряжение в резонансном контуре, но при этом очень низкое потребления от сети

В резонансном усилителе тока промышленной частоты нагруженный силовой трансформатор вносит расстройку в последовательный колебательный контур и уменьшает его добротность.

Компенсация расстройки резонанса в колебательном контуре осуществляется введением обратной связи с помошью управляемых магнитных реакторов. В цепи обратной связи осуществляется анализ и геометрическое суммирование составляющих токов вторичной обмотки и нагрузки, формирование и регулирование управляюшего тока.

Цепь обратной связи состоит из: части вторичной обмотки силового транформатора, трансформатор тока, выпрямитель и реостат установки рабочей точки, магнитных реакторов.

Для работы на неизменную (постоянную) нагрузку можно применять упрощенные схемы резонансных усилителей мощности.

Структурная схема упрощенного резонансного усилителя тока промышленной частоты представлена ниже.

Простейший резонансный усилитель мощности состоит всего из четырех элементов.

Назначение элементов такое, как в ранее рассмотренном усилителе. Отличие в том, что в простейшем резонансном усилителе производится ручная настройка в резонанс для конкретной нагрузки.

1. Включить силовой трансформатор 2 в сеть и измерить при заданной нагрузке потребляемый им ток.

2. Измерить активное сопротивление первичной обмотки силового трансформатора 2.

5. Выбрать величину индуктивного сопротивления для регулируемого магнитного реактора равную примерно 20% от индуктивного сопротивления силового трансформатора 2

6. Изготовить регулируемый магнитный реактор, с отводами начиная со средины обмотки до ее конца (чем чаще будут сделаны отводы, тем точнее будет настройка в резонанс).

7. По условию равенства индуктивного и емкостного сопротивлений XL=Xc при резонансе рассчитать значение емкости C, которую необходимо включить последовательно с силовым трансформатором и регулируемым магнитным реактором для получения последовательного резонансного контура.

8. Из условия резонанса, перемножить измеренный потребляемый силовым трансформатором ток на сумму активных сопротивлений первичной обмотки и магнитного реактора, и получить ориентировочное значение напряжения, которое необходимо подать на последовательный резонансный контур.

9. Взять трансформатор, обеспечивающий на выходе, найденное по п.8 напряжение и измеренный по п.1 потребляемый ток (на период настройки Усилителя удобней использовать ЛАТР).

10. Запитать от сети через трансформатор по п.9 резонансный контур - (последовательно соединенные конденсатор, первичную обмотку нагруженного силового трансформатора и магнитный реактор).

11. Изменяя индуктивность магнитного реактора путем переключения отводов, настроить цепь в резонанс при пониженном входном напряжении (для точной настройки можно в небольших пределах изменять емкость конденсатора, подключая параллельно основному, конденсаторы небольшой емкости).

12. Изменяя входное напряжение установить значение напряжения на первичной обмотке силового трансформатора 220 В.

13. Отключить ЛАТР и подключить стационарный понижающий трансформатор с таким же напряжением и током

Область применения резонансных усилителей мощности – стационарные электроустановки. Для мобильных объектов целесообразно применять трансгенераторы на повышенных частотах с последующим преобразованием переменного тока в постоянный.

Нужно добиться того, чтобы трансформаторное железо начало хорошо рычать, т.е возник ферро-резонанас. Не индукционный эффект между емкость и катушкой, а чтобы железо между ними работало хорошо. Железо должно работать и накачивать энергию, сам по себе электрический резонанс не качает, а железо является стратегическим устройством в этом устройстве.

Комбинированный резонанс обусловлен взаимодействием между спиновым магнитным моментом электрона и полем Е (см. Спин-орбитальное взаимодействие). Комбинированный резонанс был впервые предсказан для зонных носителей заряда в кристаллах, для которых он может превышать по интенсивности ЭПР на 7 - 8 порядков ссылка

Электрическая схема соединений представлена ниже.

Работа этого трансформатора связана с обычной электросетью. Пока я не собираюсь делать самозапитку, но это возможно сделать, надо вокруг него сделать такой же силовой трансформатор, один токовый трансформатор и один магнитный реактор. Все это обвязать и будет самозапитка.. Другой вариант самозапитки - это намотать 12 вольтную съемную вторичную катушку Тр2 на втором транформаторе, далее использовать компютерный ИБП, которого передать 220 Вольт уже на вход

Самое главное сейчас - это просто есть сеть, которая подается на схему, а я просто увеличиваю энергию за счет резонанса и питаю отопительный котел в доме. Это индуктивный котел, который называется ВИН. Мощность котла 5 кВт. Целый год этот котел проработал с моим умным трансформатором. За сеть я плачу как за 200 Вт.

Трансформатор может быть любым (на тороидном или П-образном сердечнике). Просто надо пластины трансформатора хорошо изолировать, покрасить, чтобы токов Фуко в нем было как можно меньше, т.е. чтоб сердечник при работе не грелся вообще.

Просто резонанс дает реактивную энергию, а переводя реактивную энергию в любой элемент потребления она становится активной. Счетчик до трансформатора при этом почти не крутится..

Для поиска резонанса я использую прибор Е7-15 еще советского исполнения. С ним я легко добиваюсь резонанса в любом трансформаторе.

Итак, за суровый зимний месяц я заплатил 450 рублей.

С 1-го трансформатора с тороидальным сердечником на 1 кВт я имею во вторичке 28 ампер и 150 вольт. Но нужна обратная связь через токовый трансформатор. Мотаем катушки: Сделать каркас. Когда первичную намотал по всему периметру в два слоя (проводом с диаметром 2,2 мм c учетом 0,9 витка на 1 вольт, т.е. на 220 Вольт в первичной обмотке получается 0,9 витков/В х 220 В = 200 витков), то магнитный экран положил (из меди или латуни), когда вторичную намотал (проводом с диаметром 3 мм с учетом 0,9 витка на 1 Вольт), то снова магнитный экран положил. На вторичной обмотке 1-го транса, начиная с середины, т.е. с 75 Вольт, я сделал множество выводов петлей (около 60-80 штук, кто сколько сможет, примерно 2 Вольта на вывод). На всей вторичной обмотке 1-го трансформатора нужно получить 150 - 170 Вольт. Для 1 кВт я выбрал емкость конденсатора 285 мкФ (тип используемых пусковых конденсаторов для эл. двигателя на рисунке ниже), т.е. два конденсатора. Если использовать 5 кВт трансформатор, то я буду использовать 3 таких конденсатора (неполярный для переменного тока 100 мкФ 450 Вольт). Проявление неполярности у такого кондера незначительное, чем меньше диаметр и короче баночка, тем лучше неполярность. Лучше выбирать более короткие коденсаторы, побольше количество, но меньшей емкости. Я нашел резонанс на середине выводов вторичной обмотки Т1. В идеале для резонанса замеряете индуктивное сопротивление и емкостное сопротивление контура, они должно быть равны. Вы по звуку услышите как трансформатор начнет сильно гудеть. Синусоида резонанса на осциллографе должна быть идеальной. Существуют разные частотные гармоники резонанса, но при 50 Гц трансформатор гудит в два раза громче, чем при 150 Гц. Из электротехнического инструмента я использовал токовые клещи, которые меряют частоту. Резонанс во вторичке Т1 вызывает резкое понижение тока в его первичной обмотке, который составил всего 120-130 мА. Чтобы не было претензий от сетевой компании, то параллельно первичной обмотке первого трансформатора устанавливаем конденсатор и доводим cos Ф = 1 (по токовым клещам). Напряжение я проверял уже на первичной обмотке Второго трансформатора. Итак, в этом контуре (вторичная обмотка 1-го трансформатора -> первичная обмотка 2-го трансформатора) у меня протекает ток 28 Ампер. 28А х 200В = 5,6 кВт. Эту энергию я снимаю с вторичной обмотки 2-го трансформатора (провод сечением 2,2 мм) и передаю на нагрузку, т.е. в индукционный электро-котел. На 3 кВт диаметр провода вторичной обмотки 2го трансформатора составляет 3 мм

Если хотите получить на нагрузке выходную мощность не 1,5 кВт, а 2 кВт, то сердечник 1го и 2го трансформатора (см габаритный расчет мощности сердечника) должны быть на 5 кВт

У 2го трансформатора (сердечник которого надо также перебрать, покрасить балонной краской каждую пластину, заусенцы убрать, тальком посыпать, чтобы пластины не прилипали друг к другу) надо сначала экран положить потом первичку намотать, потом на первичку 2го трансформатора снова экран положить. Между вторичкой и первичкой все-равно должен быть магнитный экран. Если мы получили напряжение в резонансном контуре 220 или 300 Вольт, то первичку 2го трансформатора нужно расчитать и мотать также на эти же 220 или 300 вольт. Если по рачету 0,9 витка на вольт, то количество витков будет соответственно на 220 или 300 Вольт. Возле электро-котла (в моем случае это индукционный котел ВИМ 1,5 кВт) я ставлю конденсатор, ввожу этот контур потребления в резонанс, то смотрю по току или по COS Ф, чтобы COS Ф был равен 1. Тем самым мощность потребления уменьшается и контур, где у меня крутится мошность 5,6 кВт, разгружаю. Я катушки мотал как в обычом трансформаторе - одна над другой. Конденсатор 278 мкФ. Конденсаторы я беру стартерные или сдвигающие, чтобы они на переменном токе хорошо работали. Резонансный трансформатор от Александра Андреева дает прибавку 1 к 20

Первичную обмотку расчитываем как обычный трансформатор. Когда собрали, то если ток там появится в пределах 1 - 2 Ампер, то лучше разобрать сердечник трансформатора, посмотреть где образуются токи Фуко и снова собрать сердечник (может где-то что-нибудь не докрасили или заусенец торчит. Оставьте трансформатор на 1 час в рабочем состоянии, затем пощупайте пальцами там где нагрелось или пирометром замерили в каком углу греется) Первичную обмотку надо мотать, чтобы она потребляла 150 - 200 мА в холостую.

Цепь обратной связи от вторичной обмотки трансформатора Т2 к первичной обмотке транформатора Т1 необходима для автоматичекой регулировки нагрузки, чтобы резонанс не срывался. Для этого в цепи нагрузки я разместил токовый трансформатор (первичка 20 витков, вторичка 60 витков и там несколько отводов сделал, далее через резистор, через диодный мост и на трансформатор в линию подающую напряжение к 1-му трансформатору (200 витков / на 60-70 витков)

Схема эта есть во всех древних учебниках по электротехнике. Она работает в плазматронах, в усилителях мощности, она в приемнике гама V работает. Температура обеих трансформаторов в работе около 80°С. Переменный резистор - это керамический резистор 120 Ом и 150 Вт, можно реостат школьный нихромовый с ползунком туда поставить. Он тоже нагревается до 60-80°С, поскольку ток через него проходит хороший => 4 Ампер

Смета для изготовления резонансного трансформатора для отопления дома или дачи

Трансформаторы Тр1 и Тр2 = по 5000 руб каждый причем Тр1 и Тр2 трансформатор можно купить в магазине. Он называется медицинский трансформатор. У него первичная обмотка уже заизолирована магнитным экраном от вторичной. http://omdk.ru/ skachat_prays В крайнем случае можно купить китайский сварочный трансформатор

Трансформатор тока Тр3 и подстроечный Тр4 = 500 рублей каждый

Диодный мост Д - 50 рублей

Подстроечный резистор R 150 Вт - 150 рублей

Конденсаторы C - 500 рублей

Резонанс в резонансе от Романова https://youtu.be/fsGsfcP7Ags

https:// www.youtube.com /watch?v=snqgHaTaXVw

Цыкин Г.С. - Трансформаторы низкой частоты Ссылка

Резонансный дроссель Андреева на Ш-образном сердечнике от трансформатора. Как дроссель превратить в генератор электроэнергии.

Александр Андреев рассказывает: Это принцип дросселя и трансформатора в одном лице, но он настолько простой, что никто еще не догадался его использовать. Если взять Ш-образный сердечник 3х фазного трансформатора, то Функциональная схема генератора получения дополнительной энергии будет как на рисунке ниже

Чтобы получить больший реактивный ток в резонансном контуре, ты должен трансформатор превратить в дроссель, то есть разорвать сердечник трансформатора полностью (сделать воздушный зазор).

Всего-навсего нужно первой намотать не входную, как обычно мотают, а выходную обмотку, т.е. ту где забирается энергия.

Вторую мотаем резонансную. При этом диаметр провода должен быть в 3 раза толще, чем силовая

В третий слой мотаем входную обмотку, т.е сетевую.

Это условие для того, чтобы резонанс между обмотками гулял.

Чтобы не было тока в первичной обмотке, то трансформатор превращаем в дроссель. Т.е. Ш-образки с одной стороны собираем, а ламельки (пластиночки) с другой стороны собираем. И там выставляем зазор. Зазор должен быть по мощности трансформатора. Если 1 кВт, то ему 5 А в первичной обмотке. Делаем зазор так, чтобы в первичной обмотке было 5А холостого хода без нагрузки. Этого нужно добиться зазором, который изменяет индуктивность обмоток. Потом, когда делаем резонанс ток падает до "0" и тогда уже будешь постепенно нагрузку подключать, подключать и смотреть разницу входа мощности и выхода мощности и тогда халява получится. Я 1-фазным 30 кВт-ым трансформатором добился соотношения 1:6 (в пересчете на мощность 5А - на входе и 30А - на выходе)

Только надо постепенно набирать мощность, чтобы не перепрыгнуть барьер халавщины. Т.е. как и в первом случае (с двумя трансформаторами) резонанс существует до определенной мощности нагрузки (меньше можно, но больше нельзя) Этот барьер нужно подбирать вручную. Можно подключать любую нагрузку (активную, индуктивную, насос, пылесос, телевизор, компьютер...) По нагрузке надо так согласовать, чтобы не было перебора этой мощности. Когда перебор мощности будет, тогда резонанс уходит, тогда резонанс перестает работать в режиме накачки энергии.

По конструкции

Я взял Ш-образный сердечник от французского инвертора 1978 года. Но искать надо сердечник с минимальным содержанием марганца и никеля, а кремний должен быть в пределах 3%. Тогда халявы много будет. Авторезонанс получится. Трансформатор может самостоятельно заработать. Раньше были такие пластины Ш-образные на которых как-будто кристаллы нарисованы. А сейчас появились мягкие пластины, они не хрупкие, в отличие от старого железа, а мягкие и не ломаются. Вот такое старое железо для трансформатора самое оптимальное.

Если делать на торе, то тор нужно в двух местах распиливать, чтобы потом стяжку сделать. Шлифовать распиленный зазор нужно очень хорошо

На Ш-образном 30кВт-ном трансформаторе у меня получился зазор 6 мм, если 1 кВт-ный - то зазор будет где-то 0,8-1,2 мм. В качестве прокладки картон не подойдет. Магнитострикция его раздолбает. Лучше брать стеклотекстолит

Первой мотается обмотка, которая идет на нагрузку, она и все остальные мотаются на центральном стержне Ш-образного трансформатора. Все обмотки мотаются в одну сторону

Подбор конденсаторов для резонансной обмотки лучше делать магазином конденсаторов. Ничего там сложного нет. Нужно добиться того, чтобы железо начало хорошо рычать, т.е возник ферро-резонанас. Не индукционный эффект между емкость и катушкой, а чтобы железо между ними работало хорошо. Железо должно работать и накачивать энергию,

Напряжение в моей резонансной обмотке было 400 Вольт. Но чем больше - тем лучше. По поводу резонанса - нужно соблюдение реактивных сопротивлений между индуктивностью и емкостью, чтобы они были равны. Это та точка, где и когда возникает резонанс. Можно еще сопротивление добавить последовательно.

Из сети идет 50 Гц, которые возбуждают резонанс. Происходит увеличение реактивной мощности, далее с помощью зазора на обкладке в съемной катушке мы превращаем реактивную мощность в активную.

В этом случае я просто собирался упростить схему и перейти от 2х трансформаторной или 3х трансформаторной, схемы с обратной связью и дроссельной связью. Вот упростил до такого варианта, который еще и работает. 30 кВт-ный работает, но нагрузку я могу снимать только 20 кВт, т.к. все остальное - для накачки. Если я буду больше энергии забирать из сети, то он и отдавать будет больше, но уменьшаться будет халява.

Следует назвать еще одно неприятное явление, связанное с дросселями, - все дроссели при работе на частоте 50 Гц создают гудящий звук разной интенсивности. По уровню производимого шума дроссели делятся на четыре класса: с нормальным, пониженным, очень низким и особо низким уровнем шума (в соответствии с ГОСТ 19680 они маркируются буквами Н, П, С и А).

Шум от сердечника росселя создается магнитострикцией (изменением формы) пластин сердечника, когда магнитное поле проходит через них. Этот шум также известен, как холостой шум, т.к. он не зависит от нагрузки, подаваемой на дроссель или трансформатор. Шум нагрузки возникает только у трансформаторов, к которым подключается в нагрузка, и он добавляется к холостому шуму (шуму сердечника). Этот шум вызывается электромагнитными силами, связанными с рассеиванием магнитного поля. Источником данного шума являются стенки корпуса, магнитные экраны, и вибрация обмоток. Шумы, вызываемые сердечником и обмотками, находятся, в основном, в полосе частот 100-600 Hz.

Магнитострикция имеет частоту вдвое выше частоты подаваемой нагрузки: при частоте 50 Hz, пластины сердечника вибрируют с частотой 100 раз в секунду. Более того, чем выше плотность магнитного потока, тем выше частота нечетных гармоник. Когда резонансная частота сердечника совпадает с частотой возбуждения, то уровень шума увеличивается еще больше

Известно, что если через катушку протекает большой ток, то материал сердечника насыщается. Насыщение сердечника дросселя может привести к увеличению потерь в материале сердечника. При насыщении сердечника его магнитная проницаемость уменьшается, что приводит к уменьшению индуктивности катушки.

В нашем случае сердечник катушки индуктивности выполнен с воздушным диэлектрическим зазором на пути магнитного потока. Сердечник с воздушным зазором позволяет:

  • исключить насыщение сердечника,
  • уменьшить в сердечнике потери мощности,
  • увеличить ток в катушке и т.д.
  • Выбор дросселя и Характеристики сердечника. Магнитные материалы сердечника состоят из маленьких магнитных доменов (размерами порядка нескольких молекул). Когда внешнее магнитное поле отсутствует, эти домены ориентированы случайным образом. При появлении внешнего поля домены стремятся выравняться по его силовым линиям. При этом происходит поглощение части энергии поля. Чем сильнее внешнее поле, тем больше доменов полностью выравниваются по нему. Когда все домены окажутся ориентированы по силовым линиям поля, дальнейшее увеличение магнитной индукции не будет влиять на характеристики материала, т.е. будет достигнуто насыщение магнитопровода дросселя. По мере того как напряжённость внешнего магнитного поля начинает снижаться, домены стремятся вернуться в первоначальное (хаотичное) положение. Однако некоторые домены сохраняют упорядоченность, а часть поглощённой энергии, вместо того чтобы вернуться во внешнее поле, преобразуется в тепло. Это свойство называется гистерезисом. Потери на гистерезис являются магнитным эквивалентом диэлектрических потерь. Оба вида потерь происходят из-за взаимодействия электронов материала с внешним полем. http:// issh.ru/ content/ impulsnye-istochniki-pitanija/ vybor-drosselja/ kharakteristiki-serdechnika/ 217/

    Расчет воздушного зазора в дросселе не очень точен, т.к. данные производителей о стальных магнитных сердечниках неточны (обычно погрешность составляет +/- 10%). Программа схемотехнического моделирования Micro-cap позволяет довольно точно рассчитать все параметры катушек индуктивности и магнитные параметры сердечника http://www.kit-e.ru/ articles/ powerel/ 2009_05_82.php

    Влияние воздушного зазора на добротность Q дросселя со стальным сердечником. Если частота напряжения, приложенного к дросселю, не изменяется и с введением воздушного зазора в сердечник амплитуда напряжения увеличивается так, что магнитная индукция поддерживается неизменной, то и потери в сердечнике будут сохраняться такими же. Введение воздушного зазора в сердечник вызывает увеличение магнитного сопротивления сердечника обратнопропорционально m∆ (см формулу 14-8) Следовательно для получения той же магнитной индукции намагничивания ток должен соответственно увеличиваться. Добротность Q дросселя можно определять по уравнению

    Для получения большей величины добротности в сердечник дросселя обычно вводят воздушный зазор, увеличивая тем самым ток Im настолько, чтобы выполнялось равенство 14-12. Так как введение воздушного зазора уменьшает индуктивность дросселя, то высокое значение Q достигается обычно за счет снижения индуктивности (ссылка)

    Отопление от Андреева на резонансном дросселе с Ш-образным сердечником от трансформатора и лампах ДРЛ

    Если использовать лампу ДРЛ, то выделяемой ей тепло можно отбирать. Схема подключения ламп ДРЛ простая.

    Трансформатор, мощностью 3 кВт имеет: три первичные обмотки, три вторичные обмотки и одну резонансную, а также зазор.

    Каждую лампу ДРЛ в первичных обмотках я соединил последовательно. Потом настраивал каждую лампу в резонанс при помощи конденсаторов.

    На выходе трансформатора у меня три выходных обмотки. К ним я тоже последовательно подсоединил лампы и тоже их настраивал в резонанс при помощи блоков из конденсаторов.

    Потом к резонансной обмотке подключал конденсаторы и последовательно с этими конденсаторами я умудрился еще три лампы подключить. Каждая лампа по 400 Вт.

    Я работал с ртутными лампами ДРЛ, а натриевые лампы НаД трудно зажечь. У ртутной лампы начало зажигания около 100 Вольт.

    От искового промежутка в лампе ДРЛ генерируется более высокая частота, которая моделирует частоту сети 50 Гц. Получаем ВЧ модуляцию при помощи искового промежутка лампы ДРЛ для НЧ сигнала в 50Гц от сети.

    Т.о. три лампы ДРЛ потребляя энергию выдают энергию еще для 6 ламп

    Но подобрать резонанс контура - это одно, а подобрать резонанс металла сердечника - это другое. До этого ещё мало кто дошел. Поэтому когда Тесла демонстрировал свою резонансную разрушающую установку, то когда он подбирал частоту для нее, то на всем проспекте начало разворачиваться землятресение. И тогда Тесла молотком разбил свое устройство. Это пример того, как малым устройством можно разрушить большое здание. В нашем случае нужно заставить метал сердечника вибрировать на частоте резонанса, например как от ударов в колокол.

    Основа для ферромагнитного резонанса из книги Уткина "Основы теслатехники"

    Когда ферромагнитный материал помещается в постоянное магнитное поле (например, подмагничивание сердечника трансформатора постоянным магнитом), то сердечник может поглощать внешнее переменное электромагнитное излучение в направлении, перпендикулярном к направлению постоянного магнитного поля на частоте прецессии доменов, что приведет к ферромагнитному резонансу на этой частоте. Приведенная формулировка является наиболее общей и не отражает всех особенностей поведения доменов. Для жестких ферромагнетиков существует явление магнитной восприимчивости, когда способность материала намагничиваться или размагничиваться зависит от внешних воздействующих факторов (например, ультразвука или электромагнитных высокочастотных колебаний). Это явление широко используется при записи в аналоговых магнитофонах на магнитной пленке и называется "высокочастотное подмагничивание". Магнитная восприимчивость при этом резко возрастает. Т.е, намагнитить материал в условиях высокочастотного подмагничивания проще. Это явление можно также рассматривать как разновидность резонанса и группового поведения доменов.

    Это основа для усиливающего трансформатора Тесла.

    Вопрос: какая польза от ферромагнитного стержня в устройствах свободной энергии?

    Ответ: ферромагнитный стержень может изменять намагниченность своего материала вдоль направления магнитного поля без необходимости использования мощных внешних сил.

    Вопрос: правда ли, что резонансные частоты для ферромагнетиков находятся в диапазоне десятков гигагерц?

    Ответ: да, частота ферромагнитного резонанса зависит от внешнего магнитного поля (высокое поле = высокая частота). Но в ферромагнетиках можно получить резонанс без применения какого-либо внешнего магнитного поля, это так называемый "естественный ферромагнитный резонанс". В этом случае магнитное поле определяется внутренней намагниченностью образца. Здесь частота поглощения находится в широкой полосе, из-за большой вариации в возможных условиях намагничивания внутри, и поэтому вы должны использовать широкую полосу частот, чтобы получить ферромагнитный резонанс для всех условий. Здесь ХОРОШО ПОДХОДИТ ИСКРА на искровом разряднике.

    Обыкновенный трансформатор. Никаких хитрых намоток (бифиляром, встречных...) Обыкновенные намотки, кроме одного - отсутствие влияния вторичной цепи на первичную. Это готовый генератор свободной энергии. Ток, который пошёл на насыщение сердечника получили и во вторичной цепи, но только с коэффициентом трансформации 5, т.е. с прибавкой в 5 раз. Принцип работы трансформатора как генератора свободной энергии: дать ток на первичную для насыщения сердечника в его нелинейном режиме и отдать ток на нагрузку во вторую четверть периода без влияния ее на первичную цепь трансформатора. В обыкновенном классическом трансформаторе это линейный процесс, т.е. мы получаем ток в первичной цепи путем изменения индуктивности во вторичной подключением нагрузки. В данном трансформаторе этого нет, т.е мы без нагрузки получаем ток для насыщения сердечника. Если мы отдали ток 1 А, то мы его и получим на выходе, но только с коэффициентом трансформации таким - какой нам нужен. Все зависит от размеров окна трансформатора. Наматывает вторичную на 300 В или на 1000 В. На выходе получите напряжение с тем током, который вы подали на насыщение сердечника. В первую четверть периода у нас сердечник получает ток на насыщение, во вторую четверть периода этот ток забирает нагрузка через вторичную обмотку трансформатора.

    Частота в районе 5000 Гц на этой частоте сердечник близок к своему резонансу и первичная перестает видеть вторичку. На видео показываю как замыкаю вторичную, а на блоке питания первички не происходит никаких изменений. Данный эксперимент лучше синусом проводить, а не меандром. Вторичную можно мотать хоть на 1000 Вольт, ток во вторичной будет максимум тока, протекающего в первичной. Т.е. если в первичке 1 А, то во вторичной можно выжать тоже 1 А тока с коэффициентом трансформации. Далее пробую сделать резонанс в последовательном колебательном контуре и загнать его на частоту сердечника. Получится резонанс в резонансе, как показывал Акула0083

    Коммутационный способ возбуждения параметрического резонанса электрических колебаний и устройство для его осуществления.

    Устройство показанное на схеме относится к автономным источникам электропитания, и может найти применение в промышленности, в бытовой технике и на транспорте. Техническим результатом является упрощение и снижение стоимости изготовления.

    Все известные в настоящее время источники электропитания по своей физической сути являются преобразователями различных видов энергии (механической, химической, электромагнитной, ядерной, тепловой, световой) в электрическую энергию и реализуют только эти затратные способы получения электрической энергии.

    электрическая схема позволяет создание на основе параметрического резонанса электрических колебаний автономного источника электропитания (генератора), не сложного по конструкции и не дорогого по стоимости. Под автономностью в подразумевается полная функциональная независимость этого источника от воздействия сторонних сил или привлечения других видов энергии. Под параметрическим резонансом понимается явление непрерывного возрастания амплитуд электрических колебаний в колебательном контуре при периодических изменениях одного из его параметров (индуктивности или емкости). Эти колебания происходят без участия внешней электродвижущей силы.

    Трансформатор, доработанный для решения этой задачи, изображен на фиг.1 с различными типами магнитопроводов: a - стержневой, b - броневой, с - на ферритовых чашках. Все проводники первичной обмотки 1 находятся только с внешней стороны магнитопровода 2. Его участок внутри вторичной обмотки 3 всегда замкнут огибающей магнитной цепью.

    В штатном режиме при подаче переменного напряжения на первичную обмотку 1 весь магнитопровод 2 намагничивается вдоль ее оси. Примерно половина потока магнитной индукции проходит через вторичную обмотку 3, вызывая на ней выходное напряжение. При обратном включении переменное напряжение подается на обмотку 3. Внутри нее возникает магнитное поле, которое замыкается огибающей ветвью магнитопровода 2. В итоге, изменение суммарного потока магнитной индукции через обмотку 1, опоясывающую весь магнитопровод, определяется только слабым рассеянием за его пределы.

    5) использование "ферроконцентраторов" - магнитопроводов с переменным сечением, в которых магнитный поток, создаваемый первичкой, при прохождении по магнитопроводу, сужается (концентрируется) перед прохождением внутри вторички;

    6) множество других технических решений, например патент Степанова А.А.(N° 2418333) или приёмы, описанные у Уткина в "Основах Теслатехники". Можно так же посмотреть описание трансформатора Е.М.Ефимова (http:// www.sciteclibrary.ru/ rus/ catalog/ pages/ 11197.html, http:// www.sciteclibrary.ru/ rus/ catalog/ pages/ 11518.html), статью А.Ю. Далечина "Трансформатор реактивной энергии" или "Резонансный усилитель мощности тока промышленной частоты" Громова Н.Н.

    7) Однонаправленный трансформатор видео

    Эти изобретения сводятся к решению одной задачи - "сделать, чтобы энергия из первички во вторичку передавалась полностью, а обратно не передавалась вообще" - обеспечить режим одностороннего перетекания энергии.

    Решение этой задачи - ключ к построению резонансных сверхединичных СЕ-трансформаторов.

    Видимо Степанов придумал ещё один способ снятия энергии с резонансного колебательного контура - на этот раз с помощью той самой странной цепи, состоящей из трансформатора тока и диодов. .

    Колебательный контур в режиме резонанса токов, является усилителем мощности.

    Большие токи, циркулирующие в контуре, возникают за счет мощного импульса тока от генератора в момент включения, когда заряжается конденсатор. При значительном отборе мощности от контура эти токи «расходуются», и генератору вновь приходится отдавать значительный ток подзарядки

    Колебательный контур с низкой добротностью и катушкой небольшой индуктивности слишком плохо "накачивается" энергией (запасает мало энергии), что понижает КПД системы. Также катушка с маленькой индуктивностью и на низких частотах обладает малым индуктивным сопротивлением, что может привести к "короткому замыканию" генератора по катушке, и вывести генератор из строя.

    Добротность колебательного контура пропорциональна L/C, колебательный контур с низкой добротностью плохо «запасает» энергию. Для повышения добротности колебательного контура используют несколько путей:

    Повышение рабочей частоты: из формул видно, что выходная мощность прямо пропорциональна частоте колебаний в цепи (количеству импульсов в секунду) Если вдвое увеличить частоту импульсов, то выходная мощность увеличивается вдвое

    По возможности увеличить L и уменьшить C. Если увеличить L с помощью увеличения витков катушки или увеличения длины провода нельзя, используют ферромагнитные сердечники или ферромагнитные вставки в катушку; катушка обклеивается пластинками из ферромагнитного материала и т.п.

    Рассмотрите временные характеристики последовательного LC контура. В резонансе ток отстает от напряжения на 90°. Токовым трансформатором я использую токовую состовляющую, таким образом я не вношу изменения в контур, даже при полной нагрузке токового трансформатора. При изменении нагрузки, происходит компенсация индуктивностей (другого слова не подобрал) контур сам себя подстраивает не давая уйти с резонансной частоты.

    К примеру, катушка на воздухе 6 витков медной трубки 6 мм2, диаметр каркаса 100мм, и ёмкость в 3 мкф имеет резонансную частоту примерно 60 кГц. На этом контуре можно разогнать до 20 кВт реактива. Соответственно токовый трансформатор должен иметь габаритную мощность не менее 20 кВт. Можно применять что угодно. Кольцо - хорошо, но при таких мощностях больше вероятность ухода сердечника в насыщение, поэтому необходимо вводить зазор в сердечник , а это проще всего с ферритами от ТВСа. На этой частоте один сердечник способен рассеять около 500 Вт, значит необходимо 20000\500 не менее 40 сердечников.

    Важное условие - создать резонанс в последовательном LC контуре. Процессы происходящие при таком резонансе хорошо описаны. Важный элемент - это токовый трансформатор. Его индуктивность должна быть не более 1/10 индуктивности контура. Если больше, резонанс будет срываться. Следует также учесть коэффициенты трансформации, согласующего и токового трансформаторов. Первый рассчитывается исходя из импедансов (полных сопротивлений) генератора и колебательного контура. Второй зависит от напряжения развиваемого в контуре. На предыдущем примере в контуре 6 витков развилось напряжение в 300 вольт. Получается на виток 50 вольт. Токовый транс использует 0,5 витков, значит в его первичке будет 25 вольт, следовательно вторичка должна содержать 10 витков, для достижения напряжения в 250 вольт на выходе.

    Все остальное рассчитывается по классическим схемам. Как вы будете возбуждать резонансный контур неважно. Важная часть - это согласующий трансформатор, колебательный контур, и токовый трансформатор для съема реактивной энергии.

    Если вы хотите данный эффект на трансформаторе Тесла (далее ТТ) реализовать. Вам необходимо знать и иметь опыт по построению ВЧ цепей. В ТТ при 1/4 волновом резонансе, так же происходит разделение тока от напряжения на 90°. Сверху напряжение, снизу ток. Если проведете аналогию с представленной схемой и ТТ, увидите сходство, как накачка так и съем происходит на стороне возникновения токовой составляющей. Аналогично работает и устройство Смита. Поэтому не рекомендую начинать с ТТ или Смита будучи не опытным. А данное устройство можно буквально на коленке собрать, при этом имея только один тестер. Как правильно в одном из постов заметила lazj "Капанадзе осциллограф из-за угла видел."

    Таким образом происходит модуляция несущей. А такое решение - транзисторы ведь с однополярным током могут работать. Если на них подать не выпрямленное, то пройдет только одна полуволна.

    модуляция нужна для того, чтобы потом не мучиться с преобразованием в 50 Гц стандарт.

    Для получения на выходе синуса 50 гц. Без неё потом можно будет питать только активную нагрузку (лампочки накаливания, тены...). Двигатель, или трансформатор на 50 гц работать не будут, без такой модуляции.

    Задающий генератор я обозначил прямоугольником. Он стабильно выдает частоту, на которой резонирует LC контур. Пульсирующее изменение напряжения (синус) подается только на выходные ключи. Резонанс колебательного контура от этого не срывается, просто в каждый момент времени в контуре крутиться больше или меньше энергии, в такт синуса. Это как если качели толкать, с большей или меньшей силой, резонанс качелей не меняется, меняется только энергия.

    Резонанс можно сорвать только нагрузив его непосредственно, т к меняются параметры контура. В данной схеме нагрузка не влияет на параметры контура, в ней происходит автоподстройка. Нагружая токовый трансформатор, с одной стороны меняются параметры контура, а с другой стороны меняется магнитная проницаемость сердечника трансформатора, уменшая его индуктивность. Таким образом для резонанского контура нагрузка "невидна". И резонансный контур как совершал свободные колебания так и продолжает совершать. Меняя напряжение питания ключей (модуляция), меняется только амлитуда свободных колебаний и все. Если есть осциллограф и генератор, проведите эксперимент, с генератора подайте на контур частоту резонанса контура, затем меняйте амплитуду входного сигнала. И увидете что нет никакого срыва.

    Да, согласующий трансформатор и трансформатор тока построены на ферритах, резонансный контур воздушный. Чем больше в нем витков тем выше добротность, с одной стороны. А с другой выше сопротивление, что снижает конечную мощность, потому как основная мощность уходит на нагрев контура. Поэтому следует искать компромис. По поводу добротности. Даже имея добротность 10 при 100 Вт входной мощности 1000 Вт будет реактива. Из них 900 Вт можно снять. Это при идиальных условиях. В реале 0,6-0,7 от реактива.

    Но это все мелочи, по сравнению с тем, что не надо закапывать радиатор отопления в землю и париться с заземлением! А то Капанадзе пришлось даже на острове разориться на устройство заземления! А оно оказывается и вовсе не нада! Реактивная энергия прет и без рабочего заземления. Это бесспорно. А вот со сьемным трансформатором тока - придется повозится... Не так все просто. Обратное влияние имеется. Степанов как-то это решил, в патенте у него там диоды для этой цели нарисованы. Хотя наличие диодов у Степанова каждый трактует по-своему.

    Степанов в Питере запитывал станки по следующей схеме. Его схема была проста, но мало понимаема

    Еще в начале этого века Аркадьев (7] высказал мысль, что в переменных магнитных полях в ферромагнитных телах должен наблюдаться резонанс элементарных носителей магнитного момента - естественный ферромагнитный резонанс, и он же впервые наблюдал подобный ферромагнитный резонанс в железных и никелевых проволоках. Впервые объяснение этого явления было дано Дорфманом (13]. В 1935 г. Ландау и Лифшиц разработали общую теорию поведения ферромагнитных кристаллов в переменных магнитных полях с учетом структуры ферромагнитных областей и получили формулу для ферромагнитного резонанса. Позже Киттель , обобщив результаты исследования Ландау и Лифшица, учел действие поверхности образца и магнитной анизотропии и получил для резонансной частоты формулу

    где - гиромагнитное отношение элементарных носителей магнитного момента, постоянное магнитное поле, направленное по оси составляющая намагниченности насыщения вдоль этого направления, размагничивающие факторы вдоль осей члены, учитывающие влияние магнитной анизотропии.

    В частном случае, когда, например, образец представляет собой тонкую пластинку и поле направлено параллельно плоскости пластинки, Пренебрегая поправками на анизотропию формулу (14.1) запишем

    Если внешнее поле направлено перпендикулярно плоскости пластинки, то Резонансная частота определяется в этом случае так:

    Для образца в форме шара имеем

    Поправочные члены в общем случае имеют сложный вид , но для кристаллов кубической формы, если плоскость совпадает с плоскостью , эти члены определяют по следующим простым формулам:

    где угол между полем и направлением , а постоянная анизотропии.

    Формулы (14.5) дают возможность определить константу анизотропии.

    Ферромагнитный резонанс во внешнем магнитном поле в никеле и железо-кремневых сплавах изучал Завойский , который создал высокочувствительную установку, основанную на методе вариации потерь в контуре. Почти одновременно этот эффект в ферромагнитных металлах обнаружил Гриффите . Он применял для этой цели волновод с полым резонатором. В дальнейшем это явление было исследовано в других металлах и в ферромагнитных полупроводниках - ферритах . В этих и многих других работах определяли ширину резонансной линии и ее изменение с температурой и рассчитывали гиромагнитное отношение у или значение фактора Ланде Оказалось, что между значениями определенными из опытов по ферромагнитному резонансу и из гиромагнитных опытов, есть расхождение. В последнее время ферромагнитный резонанс исследовали в ферромагнетиках нового типа, ферритах со структурой граната . У ферритов-гранатов обнаружена самая узкая ширина резонансной линии

    Ферромагнитный резонанс можно исследовать при помощи резонансной полости, в которую помещают исследуемый металл в форме пластинки или образец из его порошка. При этом производят измерение добротности полости. На рис. 111 показана принципиальная схема установки для исследования ферромагнитного резонанса, которая была применена в работе .

    Источником высокочастотных колебаний является клистронный генератор 1. Прямоугольные колебания подают на отражатель, который модулирует высокочастотные колебания. Калиброванный аттенюатор 3 регулирует амплитуду этих колебаний, которые частично отражаются резонансной полостью, расположенной на одном конце волновода. Отраженная мощность микроволнового

    излучения поступает в кристаллический детектор 12 через направленный ответвитель 4 и выпрямляется. Затем выпрямленный сигнал проходит через узкополосный усилитель 14 и синхронизированный детектор.

    При отражении высокочастотных колебаний от резонансной полости образуются стоячие волны, коэффициент которых можно измерить при помощи индикатора стоячих волн.

    Рис. 111. Блок-схема установки для изучения ферромагнитного резонанса: 1 - клистрон, 2 - генератор прямоугольных колебаний, 3 - калиброванный аттенюатор, 4 - направленный ответвитель, 5 - индикатор стоячей волны, 6 - слюдяное окошко, 7 - трубка, соединяющаяся с насосом, 8 - охлаждающая водяная рубашка, 9 - полюсные наконечники электромагнита, 10 - резонансная полость, 11 - печь, 12 - кристаллический детектор, 13 - аттенюатор, 14 - узкополосный усилитель, 15 - синхронизированный усилитель, 16 - спектральный анализатор, 17 - катодный осциллограф, 18 - исследуемый образец

    Для определения частотных характеристик кристаллического детектора 12 и усилителя 15 используют калиброванный аттенюатор 3. В случае необходимости высокочастотные колебания можно направить в спектральный анализатор 16, где с помощью волномера измеряется частота. Резонансная полость 10 прямоугольного сечения является частью волновода. С одной стороны она заканчивается пластиной из ферромагнитного материала, а с другой - связана с окошком волновода, через который можно возбуждать колебания определенного типа. Следует отметить, что размеры диафрагмы (окошка) выбирают таким образом, чтобы резонансная полость имела слабую связь с волноводом. Отраженная мощность излучения должна составлять 10-20% падающей мощности.

    Резонансную полость с образцом помещают в пространство между полюсами 9 электромагнита, создающего постоянное магнитное поле напряженностью до 1,6» 106 а/л. Ширина зазора между полюсами электромагнита позволяет поместить там резонансную полость вместе с печью 11 для проведения исследования при различных температурах. Температуру измеряют с помощью

    платино-родиевой термопары, один конец которой прикреплен к торцовой стенке резонансной полости. Для предохранения стенок полости от окисления в ней создан вакуум порядка

    Волновод охлаждается проточной водой, которая протекает через охладительную рубашку.

    При проведении эксперимента необходимо особое внимание уделить изготовлению образца из исследуемого материала. При этом следует помнить, что образцы не должны иметь внутренних напряжений и поверхностных загрязнений, так как глубина проникновения высокочастотного электромагнитного поля равна приблизительно Для изготовления образцов можно использовать электролитическую фольгу толщиной После того как из фольги будут вырезаны образцы нужных размеров, их припаивают золотом к держателю из меди, имеющему вид диска, и подвергают температурному отжигу в течение часа при -Затем образец вместе с печью медленно охлаждается до комнатной температуры. Чтобы поверхность образца была гладкой, ее полируют. После всех этих операций образец припаивают серебром к концу волновода. Следует помнить, что припой не должен проникать на внутреннюю поверхность стенок волновода. Поэтому пайку следует проводить аккуратно и желательно в атмосфере очищенного водорода. Чтобы убедиться в правильности проведенной пайки, нужно провести исследование с другой полостью, в которой образец плотно прижимается к узкому краю стенки волновода. При измерениях частота медленно изменяется до тех пор, пока минимальное отражение в направленный ответвитель не покажет на резонанс в полости. Коэффициент стоячей волны напряжения в момент резонанса выражается так:

    где и - потери в медной и ферромагнитной стенках, - внешняя добротность, которая определена как отношение запасенной энергии к энергии, расходуемой на внешней нагрузке, добротность ненагруженной полости.

    Для вычисления коэффициента стоячей волны можно также использовать формулу

    где отраженная мощность на выходе направленного ответвителя.

    При применении последней формулы не нужно знать зависимость в функции постоянного магнитного поля Но при различных температурах. В этом случае при каждом цикле измерения измеряется индикатором стоячей волны только при двух значениях В других точках определяют только Нахождение

    коэффициента стоячей волны последним методом дает более точные результаты, особенно вблизи максимума поглощения, где становится очень большим. Полную добротность полости определяют по измерению зависимости коэффициента стоячей волны напряжения от частоты. Применяя соотношение (14.6) и формулу

    можно найти

    Добротность вычисляют из геометрических размеров резонансной полости и из данных проводимости меди. Тогда, используя формулу (14.6), можно рассчитать а для вычисления проницаемости применить формулу

    где добротность стенки при условии, что ее проницаемость равна единице.

    Вычисление по формуле (14.9) дает значение этой величины, которое отличается от истинного раза в три и более, что связано с большой ошибкой в определении Такая погрешность является результатом различных дефектов на поверхности образца, потерь в местах припоя и в зажимных соединениях. Чтобы избежать этих ошибок, обычно берут два значения проницаемости которые соответствуют двум значениям магнитного поля Но и Но, и для них определяют коэффициенты стоячей волны Тогда из соотношений (14.6) и (14.9) можно получить выражение следующего вида:

    За эталонное значение берут предельное значение проницаемости для больших значений магнитных полей Но. Ошибка, при определении абсолютных значений этим методом довольно велика и может достигнуть

    Установка, показанная на рис. не дает возможности вести измерения при различных частотах и, как уже отмечалось выше, имеет сравнительно невысокую точность измерения.

    Лазукин для изучения ферромагнитного резонанса применил метод, основанный на использовании стоячих волн внутри коаксиального волновода, куда помещают исследуемый образец. Этот метод в некоторой мере устраняет отмеченные выше недостатки. У коаксиального волновода отсутствует излучение электромагнитной волны во внешнее пространство и его можно использовать в широком диапазоне частот. Измерительная линия в этой

    установке состояла из латунной трубки с внутренним диаметром Вдоль оси этой трубки расположен стержень диаметром Один конец трубки соединен с генератором сантиметровых волн, на другом ее конце находится исследуемый образец, который вставлен внутрь линии. Генератор подключали к измерительной линии с помощью коаксиального кабеля или специальной генераторной головки.

    Для получения лучшей стабильности частоты осуществлялась двойная стабилизация питающего напряжения: ферромагнитным и электронным стабилизаторами. Это давало возможность поддерживать частоту клистрона с точностью до 0,1%. Чтобы нагрузка в линии не влияла на режим работы генератора, между нагрузкой и генератором вводили поглощающее сопротивление, которое обеспечивало нужную развязку. Измерительная линия на протяжении имела узкую щель, через которую в полость вводили зонд, укрепленный на каретке. Каретка могла свободно перемещаться вдоль щели с помощью микрометрического винта. Положение каретки и зонда отсчитывали с точностью до

    Энергия резонатора отсасывалась прямоугольной петлей и подавалась на высокочастотный кристаллический детектор, который был соединен с высокочувствительным гальванометром. При погружении зонда в измерительную полость изменение интенсивности колебаний не наблюдалось до глубины погружения, а форма волны заметно искажалась только при погружении зонда на

    Исследуемое вещество применяли в виде порошков и лент. Из мелкодисперсного порошка - ферромагнетика и диэлектрика приготовляли смесь, из которой затем изготовляли нужной формы образец. Размеры зерен порошка не превышали а объемная концентрация ферромагнитной компоненты составляла 60-70%. Такие условия обеспечивали изоляцию зерен друг от друга.

    Для определения комплексной магнитной проницаемости измеряли коэффициент стоячей волны смещение узлов длину волны и толщину образца Измерение длины волны производили по двум узлам стоячей волны напряжения. Положение узла отмечали как среднее между двумя положениями зонда по обе стороны узла в тот момент, когда ток через детектор имел одинаковое значение. Два последовательных положения минимума позволяют определить смещение узлов стоячей волны Если коэффициент стоячей волны нельзя измерить непосредственно как отношение то он рассчитывается по формуле

    где сила тока, измеренная в минимуме и на расстоянии х от узла.

    Исследование резонансного поглощения производили в следующем порядке. Прежде всего образец помещали в измерительную линию около поршня и вместе с ней располагали между полюсами электромагнита. Не меняя частоту генератора, измеряли смещение узлов и коэффициент при нескольких значениях напряженности магнитного поля. Затем образец перемещали на расстояние четверти волны от поршня, опять устанавливали в прежнее положение между полюсами электромагнита и производили те же измерения.

    В заключение рассмотрим высокочувствительную схему, основанную на использовании разделительного кольца . Эта схема позволяет наблюдать ферромагнитный резонанс на частоте На рис. 112 показана блок-схема установки.

    Как видно из рисунка, мощность микроволнового излучения от клистронного генератора 1 подается через плечо на разделительное кольцо 2. В кольце мощность делится на две части, которые поступают в плечи II и IV. В плече II имеется волновод с поршнем, к которому прикрепляли исследуемый образец. Отраженная мощность в плече II делится между плечами и III. В плечах III находится детектор. Ферритовые вентили 12, находящиеся в плечах развязывают генератор от разделительного кольца и не дают возможности пропускать отраженную мощность от трактов III и IV. Для получения постоянного магнитного поля напряженностью до используют электромагнит, полюсные наконечники которого имеют диаметр

    Рис. 112. Блок-схема установки с разделительным кольцом для исследования ферромагнитного резонанса: 1 - генератор, 2 - разделительное кольцо, которое заменяет двойной тройник, 3 - отрезок волновода с поршнем и образцом, 4-датчик измерителя поля, 5 - детектор, 6 - протонный измеритель напряженности поля, 7 - усилитель низкой частоты, 8 - осциллограф, 9 - электромагнит, 10 - волномер, 11 - согласователи, 12 - ферритовые вентили, 13 - держатель образца, 14 - исследуемый образец, 15 - модулирующие катушки

    Кривые резонансного поглощения наблюдают на экране осциллографа, развертка луча которого синхронизирована с частотой модулирующего поля, создаваемой катушками 15. Исследуемые образцы можно использовать или в виде полушара (монокристаллы) диаметром от 2 до или в форме шариков (поликристаллы) диаметром от 1 до Эта установка позволяет исследовать ферромагнитный резонанс как при комнатных, так и при низких температурах.

    Как мы уже отмечали, ширина резонансной кривой поглощения показывает зависимость поглощаемой мощности в исследуемом образце от величины постоянного магнитного поля. Эту величину определяют ядерным или парамагнитным датчиком, который помещают в магнитном поле рядом с образцом. На кривой поглощения, наблюдаемой на экране осциллографа, есть метка датчика, соответствующая кривой поглощения ядерного или парамагнитного

    резонанса. Эта метка и дает возможность измерить ширину кривой поглощения.

    В работе разработан метод определения ширины линии по изменению частоты высокочастотных колебаний. Для этой цели применяют эхорезонатор, метка от которого находится также на кривой поглощения. Этот способ измерения ширины линии в основном применяют для измерения очень узких кривых поглощения.

    Инструкция для желающих потрогать ферро-резонанс "своими руками"

    Для успешных испытаний нужен трансформатор с быстро разбираемым железом марки ОСД или ему подобные мощностью 100…300 Вт. Подходят от старых ламповых телевизоров. Удобны в работе трансы стержневого типа (две обмотки на разных стержнях). Разобранный транс мощностью 150 Вт такого типа смотри фото удобство в быстрой смене катушек на новые или перемотка старых. Но и трансы броневого типа дадут такой же результат.

    Для приведенного описания взят транс 150 Вт сердечник стержневого типа, на котором по обе стороны две катушки. Левая половина сетевой обмотки (130 вольт сопротивлением 7,7 Ома). Диаметр провода 0,5 мм, сечение 0,2 мм кв., индуктивность 0,2 Гн, такая же обмотка с правой стороны использовалась для подключения нагрузки лампы накаливания 220в на 100ват. Замеряем величину индуктивности резонансной катушки. Прибор любого производителя. Если не известно напряжение обмоток а их много вбирают ту, у которой наибольшая индуктивность (будет меньше емкость а значит дешевле). По замеренной индуктивности и рабочей частоте найдем реактивное сопротивление обмотки. Индуктивность 0,2 Гн, частота 50 Гц по сопротивлению емкость резонансного конденсатора:

    Можно ставить расчетный, но чтобы попасть в насыщение сердечника емкость увеличивают на 15…20 % (поясню ниже). Теперь мы готовы к сборке схемы. Смотри рисунок съем мощности с дросселя. Включаем латер и плавно увеличивая напряжение смотрим на лампу. При входе схемы в резонанс яркость лампы увеличивается скачком. Это контур вошел в резонанс и начал черпать из гравитационного поля земли или по Мельниченко из магнитопровода. Но нам, строителям вечняка, сейчас по барабану, где он ее черпает. Главное побольше. Теперь можно крутить латер в сторону уменьшения и лампа будет гореть с постоянным свечением до определенного момента а потом скачком погаснет. Схема вышла из резонанса. Не спешите искать халяву, поработайте на разных режимах измерьте токи и напряжения в разных точках попробуете разные емкости. В общем, почувствуйте схему. Но долго работать со схемой не получится, т.к. дроссель перегревается и дымит. И чем больше насыщение сердечника, тем быстрее нагрев. Трансформатор (дроссель) не рассчитан на работу в резонансном режиме. На форуме Сергей пишет у него нет нагрева. Давайте прервемся и попробуем разобраться. Построим вольт амперную характеристику (ВАХ) контура. Для этого совместим на одном графике ВАХ дросселя и ВАХ емкости. Подключают дроссель к латеру и, меняя напряжение на дросселе и замеряя ток, для каждой точки строим ВАХ характеристику достаточно 4…6 точек. На практике выглядит так. К латеру подключают только дроссель и увеличивая напряжение с шагом 20… 30 В строят ВАХ. До начала насыщения дроссель работает тихо и токи малы на этом участке характеристика линейна и тут хватит двух точек, при подходе к точке насыщения появляется легкий гул и заметно возрастает ток тут тоже поставить одну точку далее уверенно гудит ток растет быстрее напряжения тут тоже хватит двух трех точек после все точки соединяем плавной кривой (L на рис 6).

    По этому графику легко найти величину емкости для резонанса(точка тр на рис. 6) или с помощью латера построить на этом же графике ВАХ кондера хватит двух точек так она линейна. (50мкф на рис. 6) по разности напряжений ВАХ дросселя и кондера строится результирующая ВАХ резонансного контура (Красная кривая на рис. 6) по этой характеристике видно как на карте точки входа схемы в резонанс(Т2 рис. 6) выхода из него (Т3 рис.6) токи при которых схема работает в резонансе(от т4 до т3), короче не проводя глобальных расчетов можно найти любой параметр. На рисунке 6 ВАХ для моего транса. Точка нн начало насыщения сердечника. Точка тр пересечение характеристик катушки и емкости линия резонанса.

    При напряжении Uр=85 В вход в резонанс скчком из т2 в т4 ток при этом подпрыгивает с 0,8 до 3,4 Ампера. А дроссель расчитан на 1А куда идет лишка - в нагрев. То есть для нормальной работы дросселя нужно увеличить сечение провода. Теперь уменьшим емкость резонансного конденсатора до 30 мкф. Рис 9.

    ВА смещается к началу насыщения сердечника а прыжек тока уменьшается до 2 А. при дальнейшем уменьшении емкости система может не войти в резонанс или резонанс будет неустойчив. При увеличении емкости картина будет противоположной (см график емкость 90 мкф).

    Выбирай но осторожно. думаю понятно имея характеристики разных катушек и емкостей можно высчитать поведение контура даже не включая его в розетку.

    Соберем схему резонанса напряжений с отбором нагрузки со вторичной обмотки. В качестве нагрузки удобно использовать лампы накаливания ват по 20…40 увенчивая мощность параллельным включением. Дешево а главное наглядно. Введем схему в резонанс при 85 В т4 рис 6. И начнем увеличивать нагрузку. И вот он катаклизм и парадокс. Нагрузка растет а мощность потребления контуром падает. Контур движется из т4 в т3 и далее выход из резонанса

    Нагрузку можно воткнуть и в параллельный контур (резонанс токов). Результат будет аналогичный только прыжок не по току а по напряжению. контур надо питать источником тока. Подойдет или мощный реостат или емкость в виде баластника.

    Все графики сделаны по реальным испытаниям резонанса проведены 2005 г. при разных значениях емкостей 45,50,90 мкф. Поэтому любой параметр ток или напряжение можно взять из графика. При нагрузке сто ват (схема на фото) Из розетки тянет восемьдесят. И это на стандартном трасе. Думаю что проще уже некуда. Фото сделал вчера. Собрал на скорую руку, благо транс валялся, хоть и разобранный, но рядом.

    Насчет простоты. Ясно, что это для красного словца. Даже проведение таких простейших опытов требуют времени и материальных затрат. Трансы хоть и бу но не дешевы. Конденсаторы больших емкостей еще дороже. Кстати, о емкостях - это только фазосдвигающие кондеры для моторов или гасители реактивной мощи. Электролиты не годятся. И еще питание резонансного контура от сети это явное расточительство и годится только для наработки опыта. Это можно проверить Если запитать рез контур через диод (диод помощнее), то есть половиной синусоиды контур упорно продолжает выдавать синус. Вспомним тесла питание его катушек только от однополярных импульсов а это блокинг-генератор.

    Тому, кто хочет строить доказательную схему или мини черпачок. Схему резонанса токов (она лучше всех подходит) запитать от блокинг-генератора катушки, которого можно намотать прямо на железо дросселя. Можно, как у М, выполнить отдельным блоком. Частоту поднять, но для железа не выше килогерца оптимально 400 Гц. Совет тем у кого, как говорят, выпадает из резонанса под нагрузкой. Для начала получите результат на конкретную нагрузку. Лампа накаливания или двигатель.

    • Сергей Савенков

      какой то “куцый” обзор… как будто спешили куда то