Модели совместного использования файлов системами контроля версий. Централизованные системы контроля версий. В появившемся окне можно подтвердить расположение папки репозитория и открытие созданного хранилища в рабочей среде

Обзор систем контроля версий

Системы контроля версий стали неотъемлемой частью жизни не только разработчиков программного обеспечения, но и всех людей, столкнувшихся с проблемой управления интенсивно изменяющейся информацией, и желающих облегчить себе жизнь. Вследствие этого, появилось большое число различных продуктов, предлагающих широкие возможности и предоставляющих обширные инструменты для управления версиями. В этой статье будут кратко рассмотрены наиболее популярные из них, приведены их достоинства и недостатки.

Для сравнения были выбраны наиболее распространенные системы контроля версий: RCS, CVS, Subversion, Aegis, Monoton, Git, Bazaar, Arch, Perforce, Mercurial, TFS.

RCS - система управления пересмотрами версий.
(www.gnu.org/software/rcs/rcs.html)

Начнем наш обзор с одной из первых систем контроля версий – RCS (Revision Control System – система управления пересмотрами версий), разработанной в 1985 году. Она пришла на смену популярной в то время системы контроля версий SCCS (Source Code Control System – система управления исходным кодом).

На данный момент RCS активно вытесняется более мощной системой контроля версий CVS, но все еще - достаточно популярна, и является частью проекта GNU.

RCS позволяет работать только с отдельными файлами, создавая для каждого историю изменений. Для текстовых файлов сохраняются не все версии файла, а только последняя версия и все изменение, внесенные в нее. RCS также может отслеживать изменения в бинарных файлах, но при этом каждое изменение хранится в виде отдельной версии файла.

Когда изменения в файл вносит один из пользователей, для всех остальных этот файл остается заблокированным. Они не могут запросить его из репозитория для редактирования, пока первый пользователь не закончит работу и не зафиксирует изменения.

Рассмотрим основные преимущества и недостатки системы контроля версий RCS.

Преимущества:

1. RCS - проста в использовании и хорошо подходит для ознакомления с принципами работы систем контроля версий.

2. Хорошо подходит для резервного копирования отдельных файлов, не требующих частого изменения группой пользователей.

3. Широко распространена и предустановленна в большинстве свободно распространяемых операционных системах.

Недостатки:

1. Отслеживает изменения только отдельных файлов, что не позволяет использовать ее для управления версиями больших проектов.

2. Не позволяет одновременно вносить изменения в один и тот же файл несколькими пользователями.

3. Низкая функциональность, по сравнению с современными системами контроля версий.

Выводы:

Система контроля версий RCS предоставляет слишком слабый набор инструментов для управления разрабатываемыми проектами и подходит разве что для ознакомления с технологией контроля версий или ведения небольшой истории откатов отдельных файлов.

CVS - система управления параллельными версиями.
(www.nongnu.org/cvs)

Система управления параллельными версиями (Concurrent Versions System) – логическое развитие системы управления пересмотрами версий (RCS), использующая ее стандарты и алгоритмы по управлению версиями, но значительно более функциональная, и позволяющая работать не только с отдельными файлами, но и с целыми проектами.

CVS основана на технологии клиент-сервер, взаимодействующих по сети. Клиент и сервер также могут располагаться на одной машине, если над проектом работает только один человек, или требуется вести локальный контроль версий.

Работа CVS организована следующим образом. Последняя версия и все сделанные изменения хранятся в репозитории сервера. Клиенты, подключаясь к серверу, проверяют отличия локальной версии от последней версии, сохраненной в репозитории, и, если есть отличия, загружают их в свой локальный проект. При необходимости решают конфликты и вносят требуемые изменения в разрабатываемый продукт. После этого все изменения загружаются в репозиторий сервера. CVS, при необходимости, позволяет откатываться на нужную версию разрабатываемого проекта и вести управление несколькими проектами одновременно.

Приведем основные достоинства и недостатки системы управления параллельными версиями.

Достоинства:

1. Несколько клиентов могут одновременно работать над одним и тем же проектом.

2. Позволяет управлять не одним файлом, а целыми проектами.

3. Обладает огромным количеством удобных графических интерфейсов, способных удовлетворить практически любой, даже самый требовательный вкус.

4. Широко распространена и поставляется по умолчанию с большинством операционных систем Linux.

5. При загрузке тестовых файлов из репозитория передаются только изменения, а не весь файл целиком.

Недостатки:

1. При перемещении или переименовании файла или директории теряются все, привязанные к этому файлу или директории, изменения.

2. Сложности при ведении нескольких параллельных веток одного и того же проекта.

3. Ограниченная поддержка шрифтов.

4. Для каждого изменения бинарного файла сохраняется вся версия файла, а не только внесенное изменение.

5. С клиента на сервер измененный файл всегда передается полностью.

6. Ресурсоемкие операции, так как требуют частого обращения к репозиторию, и сохраняемые копии имеют некоторую избыточность.

Выводы:

Несмотря на то, что CVS устарела и обладает серьезными недостатками, она все еще является одной из самых популярных систем контроля версий и отлично подходит для управления небольшими проектами, не требующих создания нескольких параллельных версий, которые надо периодически объединять. CVS можно порекомендовать, как промежуточный шаг в освоении работы систем контроля версий, ведущий к более мощным и современным видам таких программ.

Система управления версиями Subversion.
(www.subversion.tigris.org)

Subversion – эта централизованная система управления версиями, созданная в 2000 году и основанная на технологии клиент-сервер. Она обладает всеми достоинствами CVS и решает основные ее проблемы (переименование и перемещение файлов и каталогов, работа с двоичными файлами и т.д.). Часто ее называют по имени клиентской части – SVN.

Принцип работы с Subversion очень походит на работу с CVS. Клиенты копируют изменения из репозитория и объединяют их с локальным проектом пользователя. Если возникают конфликты локальных изменений и изменений, сохраненных в репозитории, то такие ситуации разрешаются вручную. Затем в локальный проект вносятся изменения, и полученный результат сохраняется в репозитории.

При работе с файлами, не позволяющими объединять изменения, может использоваться следующий принцип:

1. Файл скачивается из репозитория и блокируется (запрещается его скачивание из репозитория).

2. Вносятся необходимые изменения.

3. Загружается файл в репозиторий и разблокируется (разрешается его скачивание из репозитория другим клиентам).

Во многом, из-за простаты и схожести в управлении с CVS, но в основном, из-за своей широкой функциональности, Subversion с успехом конкурирует с CVS и даже успешно ее вытесняет.

Однако, и у Subversion есть недостатки. Давайте рассмотрим ее слабые и сильные стороны для сравнения с другими системами управления версиями.

Достоинства:

1. Система команд, схожая с CVS.

2. Поддерживается большинство возможностей CVS.

3. Разнообразные графические интерфейсы и удобная работа из консоли.

4. Отслеживается история изменения файлов и каталогов даже после их переименования и перемещения.

5. Высокая эффективность работы, как с текстовыми, так и с бинарными файлами.

6. Встроенная поддержка во многие интегрированные средства разработки, такие как KDevelop, Zend Studio и многие другие.

7. Возможность создания зеркальных копий репозитория.

8. Два типа репозитория – база данных или набор обычных файлов.

9. Возможность доступа к репозиторию через Apache с использованием протокола WebDAV.

10. Наличие удобного механизма создания меток и ветвей проектов.

11. Можно с каждым файлом и директорией связать определенный набор свойств, облегчающий взаимодействие с системой контроля версии.

12. Широкое распространение позволяет быстро решить большинство возникающих проблем, обратившись к данным, накопленным Интернет-сообществом.

Недостатки:

1. Полная копия репозитория хранится на локальном компьютере в скрытых файлах, что требует достаточно большого объема памяти.

2. Существуют проблемы с переименованием файлов, если переименованный локально файл одним клиентом был в это же время изменен другим клиентом и загружен в репозиторий.

3. Слабо поддерживаются операции слияния веток проекта.

4. Сложности с полным удалением информации о файлах попавших в репозиторий, так как в нем всегда остается информация о предыдущих изменениях файла, и непредусмотрено никаких штатных средств для полного удаления данных о файле из репозитория.

Выводы:

Subversion – современная система контроля версий, обладающая широким набором инструментов, позволяющих удовлетворить любые нужды для управления версиями проекта с помощью централизованной системы контроля. В Интернете множество ресурсов посвящено особенностям Subversion, что позволяет быстро и качественно решать все возникающие в ходе работы проблемы.

Простота установки, подготовки к работе и широкие возможности позволяют ставить subversion на одну из лидирующих позиций в конкурентной гонке систем контроля версий.

Система управления версиями Aegis.

Aegis, созданная Питером Миллером в 1991 году, является первой альтернативой централизованным системам управления версиями. Все операции в ней производятся через файловую систему Unix. К сожалению, в Aegis нет встроенной поддержки работы по сети, но взаимодействия можно осуществлять, используюя такие протоколы, как NFS, HTTP, FTP.

Основная особенность Aegis – это способ контроля вносимых в репозиторий изменений.

Во-первых, перед занесением каких-либо изменений, они должны обязательно пройти ряд тестов. И если нововведения в исходный код программы не проходят тесты, то требуется либо добавлять новые тесты, либо исправлять возможные ошибки в исходном коде.

Во-вторых, перед внесением изменений в основную ветку разрабатываемого проекта, они должны быть одобрены обозревателем.

В третьих, предусмотрена иерархия доступа к репозиторию, основанная на системе прав доступа Unix-подобных операционных систем к файлам.

Все это делает использование системы контроля версий Aegis надежным, но крайне сложным, и даже хорошо проработана документация не сильно это облегчает.

Выделим основные достоинства и недостатки системы контроля версий Aegis.

Достоинства:

1. Надежный контроль корректности загружаемых изменений.

2. Возможность предоставлять различные уровни доступа к фалам репозитория, что дает приличный уровень безопасности.

3. Качественная документация.

4. Возможность переименовывать файлы, сохраненные в репозитории, без потери истории изменений.

5. Возможность работы с локальным репозиторием, если отсутствует сетевой доступ к главному репозиторию.

Недостатки:

1. Отсутствие встроенной поддержки сетевого взаимодействия.

2. Сложность настройки и работы с репозиторием.

3. Слабые графические интерфейсы.

Выводы:

Сложность работы Aegis может оттолкнуть пользователей от использования систем контроля версий, поэтому ее нельзя рекомендовать для ознакомления или ведения небольших программных проектов. Однако, она имеет ряд преимуществ, которые могут быть полезны в некоторых специфических ситуациях, особенно, когда требуется жесткий контроль за качеством разрабатываемого программного обеспечения.

Система управления версиями Monotone.
(monotone.ca)

Monotone – еще одна децентрализованная система управления версиями, разработанная Грейдоном Хоэм. В ней каждый клиент сам отвечает за синхронизацию версий разрабатываемого продукта с другими клиентами.

Работа с этой системой контроля версий - достаточно проста, а многие команды - схожи с командами, используемыми в Subversion и CVS. Отличия, в основном, заключаются в организации слияния ветвей проектов различных разработчиков.

Работа с Monotone строится следующим образом. В первую очередь, создается база данных проекта SQLite, и генерируются ключи с использованием алгоритма хеширования SHA1 (Secure Hash Algorithm 1).

Затем, по ходу корректировки проекта пользователем, все изменения сохраняются в этой базе данных, аналогично сохранению изменений в репозитории других систем контроля версий.

Для синхронизации проекта с другими пользователями необходимо:

Экспортировать ключ (хэш - код последней версии проекта) и получить аналогичные ключи от других клиентов.

Теперь каждый, зарегистрированный таким образом пользователь, может синхронизировать разработку со своими коллегами, используя простой набор команд.

Обобщим достоинства и недостатки системы контроля версий Monotone.

Достоинства:

1. Простой и понятный набор команд, схожий с командами Subversion и CVS.

2. Поддерживает переименование и перемещение файлов и директорий.

3. Качественная документация, значительно облегчающая использование системы контроля версий.

Недостатки:

1. Низкая скорость работы.

2. Отсутствие мощных графических оболочек.

3. Возможные (но чрезвычайно низкие) совпадения хэш - кода отличных по содержанию ревизий.

Выводы:

Monotone - это мощный и удобный инструмент для управления версиями разрабатываемого проекта. Набор команд - продуман и интуитивно понятен, особенно, он будет удобен для пользователей, привыкших к работе c Subversion и CVS. Прекрасно оформленная и полная документация позволит быстро освоиться и использовать все возможности Subversion на полную мощность.

Однако, относительно низкая скорость работы и отсутствие мощных графических оболочек, возможно, сделает работу с большими проектами несколько затруднительной. Поэтому, если вам требуется система контроля версий для поддержки сложных и объемных продуктов, стоит обратить внимание на Git или Mercurial.

Система управления версиями Git.
(www.git-scm.com)

С февраля 2002 года для разработки ядра Linux’а большинством программистов стала использоваться система контроля версий BitKeeper. Довольно долгое время с ней не возникало проблем, но в 2005 году Лари МакВоем (разработчик BitKeeper’а) отозвал бесплатную версию программы.

Разрабатывать проект масштаба Linux без мощной и надежной системы контроля версий – невозможно. Одним из кандидатов и наиболее подходящим проектом оказалась система контроля версий Monotine, но Торвальдса Линуса не устроила ее скорость работы. Так как особенности организации Monatone не позволяли значительно увеличить скорость обработки данных, то 3 апреля 2005 года Линус приступил к разработке собственной системы контроля версий – Git.

Практически одновременно с Линусом (на три дня позже), к разработке новой системы контроля версий приступил и Мэтт Макал. Свой проект Мэтт назвал Mercurial, но об этом позже, а сейчас вернемся к распределенной системе контроля версий Git.

Git – это гибкая, распределенная (без единого сервера) система контроля версий, дающая массу возможностей не только разработчикам программных продуктов, но и писателям для изменения, дополнения и отслеживания изменения «рукописей» и сюжетных линий, и учителям для корректировки и развития курса лекций, и администраторам для ведения документации, и для многих других направлений, требующих управления историей изменений.

У каждого разработчика, использующего Git, есть свой локальный репозиторий, позволяющий локально управлять версиями. Затем, сохраненными в локальный репозиторий данными, можно обмениваться с другими пользователями.

Часто при работе с Git создают центральный репозиторий, с которым остальные разработчики синхронизируются. Пример организации системы с центральным репозиторием – это проект разработки ядра Linux’a (http://www.kernel.org).

В этом случае все участники проекта ведут свои локальны разработки и беспрепятственно скачивают обновления из центрального репозитория. Когда необходимые работы отдельными участниками проекта выполнены и отлажены, они, после удостоверения владельцем центрального репозитория в корректности и актуальности проделанной работы, загружают свои изменения в центральный репозиторий.

Наличие локальных репозиторием также значительно повышает надежность хранения данных, так как, если один из репозиториев выйдет из строя, данные могут быть легко восстановлены из других репозиториев.

Работа над версиями проекта в Git может вестись в нескольких ветках, которые затем могут с легкостью полностью или частично объединяться, уничтожаться, откатываться и разрастаться во все новые и новые ветки проекта.

Можно долго обсуждать возможности Git’а, но для краткости и более простого восприятия приведем основные достоинства и недостатки этой системы управления версиями

Достоинства:

1. Надежная система сравнения ревизий и проверки корректности данных, основанные на алгоритме хеширования SHA1 (Secure Hash Algorithm 1).

2. Гибкая система ветвления проектов и слияния веток между собой.

3. Наличие локального репозитория, содержащего полную информацию обо всех изменениях, позволяет вести полноценный локальный контроль версий и заливать в главный репозиторий только полностью прошедшие проверку изменения.

4. Высокая производительность и скорость работы.

5. Удобный и интуитивно понятный набор команд.

6. Множество графических оболочек, позволяющих быстро и качественно вести работы с Git’ом.

7. Возможность делать контрольные точки, в которых данные сохраняются без дельта компрессии, а полностью. Это позволяет уменьшить скорость восстановления данных, так как за основу берется ближайшая контрольная точка, и восстановление идет от нее. Если бы контрольные точки отсутствовали, то восстановление больших проектов могло бы занимать часы.

8. Широкая распространенность, легкая доступность и качественная документация.

9. Гибкость системы позволяет удобно ее настраивать и даже создавать специализированные контроля системы или пользовательские интерфейсы на базе git.

10. Универсальный сетевой доступ с использованием протоколов http, ftp, rsync, ssh и др.

Недостатки:

1. Unix – ориентированность. На данный момент отсутствует зрелая реализация Git, совместимая с другими операционными системами.

2. Возможные (но чрезвычайно низкие) совпадения хеш - кода отличных по содержанию ревизий.

3. Не отслеживается изменение отдельных файлов, а только всего проекта целиком, что может быть неудобно при работе с большими проектами, содержащими множество несвязных файлов.

4. При начальном (первом) создании репозитория и синхронизации его с другими разработчиками, потребуется достаточно длительное время для скачивания данных, особенно, если проект большой, так как требуется скопировать на локальный компьютер весь репозиторий.

Выводы:

Git – гибкая, удобная и мощная система контроля версий, способная удовлетворить абсолютное большинство пользователей. Существующие недостатки постепенно удаляются и не приносят серьезных проблем пользователям. Если вы ведете большой проект, территориально удаленный, и тем более, если часто приходится разрабатывать программное обеспечение, не имея доступа к другим разработчикам (например, вы не хотите терять время при перелете из страны в страну или во время поездки на работу), можно делать любые изменения и сохранять их в локальном репозитории, откатываться, переключаться между ветками и т.д.). Git – один из лидеров систем контроля версий.

Система управления версиями Mercurial.
(mercurial.selenic.com)

Распределенная система контроля версий Mercurial разрабатывалась Мэттом Макалом параллельно с системой контроля версий Git, созданной Торвальдсом Линусом.

Первоначально, она была создана для эффективного управления большими проектами под Linux’ом, а поэтому была ориентирована на быструю и надежную работу с большими репозиториями. На данный момент mercurial адаптирован для работы под Windows, Mac OS X и большинство Unix систем.

Большая часть системы контроля версий написана на языке Python, и только отдельные участки программы, требующие наибольшего быстродействия, написаны на языке Си.

Идентификация ревизий происходит на основе алгоритма хеширования SHA1 (Secure Hash Algorithm 1), однако, также предусмотрена возможность присвоения ревизиям индивидуальных номеров.

Так же, как и в git’е, поддерживается возможность создания веток проекта с последующим их слиянием.

Для взаимодействия между клиентами используются протоколы HTTP, HTTPS или SSH.

Набор команд - простой и интуитивно понятный, во многом схожий с командами subversion. Так же имеется ряд графических оболочек и доступ к репозиторию через веб-интерфейс. Немаловажным является и наличие утилит, позволяющих импортировать репозитории многих других систем контроля версий.

Рассмотрим основные достоинства и недостатки Mercurial.

Достоинства:

1. Быстрая обработка данных.

2. Кросплатформенная поддержка.

3. Возможность работы с несколькими ветками проекта.

4. Простота в обращение.

5. Возможность конвертирования репозиториев других систем поддержки версий, таких как CVS, Subversion, Git, Darcs, GNU Arch, Bazaar и др.

Недостатки:

1. Возможные (но чрезвычайно низкие) совпадения хеш - кода отличных по содержанию ревизий.

2. Ориентирован на работу в консоли.

Выводы:

Простой и отточенный интерфейс, и набор команд, возможность импортировать репозитории с других систем контроля версий, - сделают переход на Mercurial и обучение основным особенностями безболезненным и быстрым. Вряд ли это займет больше нескольких дней.

Надежность и скорость работы позволяют использовать его для контроля версий огромных проектов. Все это делает mercurial достойным конкурентом git’а.

Система управления версиями Bazaar.
(bazaar.canonical.com)

Bazaar – распределенная, свободно распространяемая система контроля версий, разрабатываемая при поддержке компании Canonical Ltd. Написана на языке Python и работает под управлением операционных систем Linux, Mac OS X и Windows.

В отличие от Git и Mercurial, создаваемых для контроля версий ядра операционной системы Linux, а поэтому ориентированных на максимальное быстродействие при работе с огромным числом файлов, Bazaar ориентировался на удобный и дружественный интерфейс пользователя. Оптимизация скорости работы производилось уже на втором этапе, когда первые версии программы уже появились.

Как и во многих других системах контроля версий, система команд Bazaar’a - очень похожа на команды CVS или Subversion, что, впрочем, неудивительно, так как обеспечивает удобный, простой и интуитивно понятный интерфейс взаимодействия с программой.

Приятно, что огромное внимание уделяется работе с ветками проектов (создание, объединение веток и т.д.), что очень важно при разработке серьезных проектов и позволяет проводить доработки и эксперименты без угрозы потери основной версии программного обеспечения.

Большой плюс этой системе контроля версий дает возможность работы с репозиториями других систем контроля версий, таких как Subversion или Git.

Кратко приведем наиболее значительные достоинства и недостатки этой системы контроля версий.

Достоинства:

1. Кросплатформенная поддержка.

2. Удобный и интуитивно понятный интерфейс.

3. Простая работа с ветками проекта.

4. Возможность работы с репозиториями других систем контроля версий.

5. Великолепная документация.

6. Удобный графический интерфейс.

7. Чрезвычайная гибкость, позволяющая подстроится под нужды конкретного пользователя.

Недостатки:

1. Более низкая скорость работы, по сравнению с git и mercurial, но эта ситуация постепенно исправляется.

2. Для полноценного функционирования необходимо устанавливать достаточно большое количество плагинов, позволяющих полностью раскрыть все возможности системы контроля версий.

Выводы:

Bazaar – удобная система контроля версий с приятным интерфейсом. Хорошо подходит для пользователей, которых отталкивает перспектива работы с командной строкой. Множество дополнительных опций и расширений позволит настроить программу под свои нужды. Схожесть системы команд с Git и Subversion, и возможность работы напрямую с их репозиториями, - сделает переход на Bazaar быстрым и безболезненным. Об успешности базара говорит и тот факт, что ей пользуются разработчики Ubuntu Linux.

Система управления версиями Arch.

Arch – распределенная система контроля версий, созданная Томом Лордом. Изначально она создавалась для решения проблем CVS, что им вполне удалось.

Arch осуществляет атомарные операции по сохранению изменений в репозиторий, т.е. исключает ситуацию скачивания репозитория, когда часть изменений загружена, а часть еще не успела загрузиться.

Поддерживаются возможности ветвления версий проекта и объединение отдельных веток, переименование и перемещение файлов и каталогов с сохранением истории изменений, и многие другие приятные возможности.

Не требует специального сервиса для сетевого репозитория и может использовать такие протоколы, как FTP, SFTP или WebDAV и так далее.

Но, к сожалению, поддерживается только UNIX – системами, однако, перевод Arch под другие операционные системы не должен составлять труда.

Трудно отметить какие то принципиально лучшие качества, по сравнению с другими распределенным системами контроля версий, такими как git, mercurial, bazaar, так что если есть выбор, то лучше использовать что-то более мощное и распространенное.

Система управления версиями Perforce.
(www.perforce.com)

Продолжим обзор систем контроля версий и перейдем к коммерческим программам. Начнем с централизованной системы контроля версий – Perforce, разработанной компанией Perforce Software.

Система Perforce имеет клиент-серверную организацию и позволяет одновременно управлять несколькими проектами, создавая для каждого проекта свой репозиторий.

Perforce – кроссплатформенная система. Существуют версии, способные работать под управлением операционных систем Unix, Mac OS X, Microsoft Windows.

Для работы с системой контроля версий можно использовать, как консоль, так и специально разработанный графический интерфейс.

Серьезное преимущество Perforce’у дает возможность интегрироваться со множеством средств разработки программного обеспечения и такими приложениями, как Autodesk 3D Studio Max, Maya, Adobe Photoshop, Microsoft Office, Eclipse, emacs и многими другими.

Поддержка возможности создания веток версий проекта, гибко управлять ими, объединять, откатываться на предыдущие ревизии, - делает Perforce вполне конкурентно способной системой и способствуют ее широкому распространению. Однако, это продукт - коммерческий, что несколько сужает область его применения и сдерживает распространение. В основном, он используется в больших коммерческих компаниях, для которых важна не только функциональность, но и своевременная техническая поддержка.

Система управления версиями Team Foundation Server.
(msdn.microsoft.com/en-us/library/ms364061.aspx)

Собственно говоря, нельзя назвать Team Foundation Server (TFC) просто системой контроля версий – это некое комплексное решение, в состав которого входит и система управления версиями, и система сбора данных, и построения отчетов, и другие полезные функции.

Управляемый проект при работе с TFC представляет собой ветки исходного кода проекта, наборы отчетов и пользовательские элементы. При создании проекта заранее выбираются его параметры, которые можно, как выбирать самостоятельно, так и использовать шаблоны. Шаблоны позволяют определить путь развития проекта, сделать его гибким или жестко формализованным, заложить стратегию развития, учесть необходимые заготовки документов и отчетов.

TFC легко интегрируется с Microsoft Excel и Microsoft Project, что значительно облегчает создание и отслеживание элементов контролируемых проектов.

В качестве системы контроля версий, TFC позволяет:

Совместно корректировать файлы проекта;

Разрешать конфликты;

Создавать ветки проектов, а затем объединять их;

Управлять доступом к репозиторию;

Откатываться на предыдущие версии;

Создавать отложенные изменения - изменения, которые, непосредственно, не добавлены в репозиторий, но их могут видеть другие пользователи, причем скачать эти изменения можно, только получив специальное разрешение от владельца изменений;

Помечать отдельные версии файлов в репозитории и группировать их;

Для сохранения данных и репозиториев разрабатываемых проектов используются базы данных SQL Server 2005.

TFC - мощный и удобный инструмент, позволяющий не только управлять версиями исходного кода, но и полностью организовывать весь цикл разработки проекта от написания программ до их документации. Однако, эта мощная и сложная система больше подходит для ведения больших проектов, требующих сложного и досконального управления разработкой. Если у вас - небольшая разработка, то имеет смысл использовать менее мощный инструмент, а еще лучше свободно распространяемый, так как это вам сэкономит время, деньги и нервы.

Обобщение.

Большой выбор систем контроля версий позволяет удовлетворить любые требования и организовать работу так, как вам необходимо. Однако, среди всего многообразия систем есть явные лидеры. Так, если необходимо управлять огромным проектом, состоящим из десятков тысяч файлов и над которым работу ведут тысячи человек, то лучше всего выбор остановить на Git или Mercurial. Если для вас главное – удобный интерфейс, а разрабатываемый проект - не очень большой, то для вас предпочтительна система Bazaar.

Для программистов-одиночек или небольших проектов, не требующих ветвления и создания множества версий, лучше всего подойдет Subversion.

Но, в конечном итоге, выбор - это дело вкуса, так как сейчас существует множество систем контроля версий, которые дадут вам все необходимое. Так что выбирайте и не пожалеете. Системы контроля версий – это абсолютно необходимое программное обеспечения для каждого разработчика и не только.


Основы VCS

Введение

Перед тем, как говорить про какую либо конкретную систему контроля версий необходимо понимать, что это такое, какими они бывают и зачем вообще они появились. Эта лекция предназначена для первоначального знакомства с системами контроля и управления версиями, и сначала я расскажу о происхождении инструментов для контроля версий, расскажу, какие системы управления версиями сейчас популярны и в чем у них основные различия.

О контроле версий

Что такое контроль версий, и зачем он вам нужен?

Наверное стоит начать с определения системы контроля версий (СКВ) - это система, регистрирующая изменения в одном или нескольких файлах с тем, чтобы в дальнейшем была возможность вернуться к определённым старым версиям этих файлов.

В последнее время файлы являются конечным результатом для многих профессий (для примера, писательскую деятельность, научные работы и, конечно, разработку программного обеспечения). Тратится много времени и сил на разработку и поддержку этих файлов и никто не хочет, чтобы пришлось тратить еще больше времени и сил на восстановление данных потерянных в результате каких-либо изменений.

Представим, что программист разрабатывает проект состоящий из одного небольшого файла (кстати, пример вполне реальный, не синтетический, встречался в реальной жизни). После выпуска первой версии проекта перед ним встает непростой выбор: необходимо исправлять проблемы о которых сообщают пользователи первой версии и, в тоже время, разрабатывать что-то новое для второй. Даже если надо просто исправлять возникающие проблемы, то велика вероятность, что после какого-либо изменения проект перестает работать, и надо определить, что было изменено, чтобы было проще локализовать проблему. Также желательно вести какой-то журнал внесенных изменений и исправлений, чтобы не делать несколько раз одну и ту же работу.

В простейшем случае вышеприведенную проблему можно решить хранением нескольких копий файлов, например, один для исправления ошибок в первой версии проекта и второй для новых изменений. Так как изменения обычно не очень большие по сравнению с размером файла, то можно хранить только измененные строки используя утилиту diff и позже объединять их с помощью утилиты patch. Но что если проект состоит из нескольких тысяч файлов и над ним работает сотня человек? Если в этом случае использовать метод с хранением отдельных копий файлов (или даже только изменений) то проект застопорится очень быстро. В последующих лекциях, для примеров я буду использовать исходные коды программ, но на самом деле под версионный контроль можно поместить файлы практически любого типа.

Если вы графический или веб-дизайнер и хотели бы хранить каждую версию изображения или макета - а этого вам наверняка хочется - то пользоваться системой контроля версий будет очень мудрым решением. СКВ даёт возможность возвращать отдельные файлы к прежнему виду, возвращать к прежнему состоянию весь проект, просматривать происходящие со временем изменения, определять, кто последним вносил изменения во внезапно переставший работать модуль, кто и когда внёс в код какую-то ошибку, и многое другое. Вообще, если, пользуясь СКВ, вы всё испортите или потеряете файлы, всё можно будет легко восстановить. Вдобавок, накладные расходы за всё, что вы получаете, будут очень маленькими.

Локальные системы контроля версий

Как уже говорилось ранее - один из примеров локальной СУВ предельно прост: многие предпочитают контролировать версии, просто копируя файлы в другой каталог (как правило добавляя текущую дату к названию каталога). Такой подход очень распространён, потому что прост, но он и чаще даёт сбои. Очень легко забыть, что ты не в том каталоге, и случайно изменить не тот файл, либо скопировать файлы не туда, куда хотел, и затереть нужные файлы. Чтобы решить эту проблему, программисты уже давно разработали локальные СКВ с простой базой данных, в которой хранятся все изменения нужных файлов

Одной из наиболее популярных СКВ такого типа является RCS (Revision Control System, Система контроля ревизий), которая до сих пор устанавливается на многие компьютеры. Даже в современной операционной системе Mac OS X утилита rcs устанавливается вместе с Developer Tools. RCS была разработана в начале 1980-х годов Вальтером Тичи (Walter F. Tichy). Система позволяет хранить версии только одного файла, таким образом управлять несколькими файлами приходится вручную. Для каждого файла находящегося под контролем системы информация о версиях хранится в специальном файле с именем оригинального файла к которому в конце добавлены символы ",v". Например для файла file.txt версии будут храниться в файле file.txt,v. Эта утилита основана на работе с наборами патчей между парами версий (патч - файл, описывающий различие между файлами). Это позволяет пересоздать любой файл на любой момент времени, последовательно накладывая патчи. Для хранения версий система использует утилиту diff. Хотя RCS соответствует минимальным требованиям к системе контроля версий она имеет следующие основные недостатки, которые также послужили стимулом для создания следующей рассматриваемой системы:

  • Работа только с одним файлом, каждый файл должен контролироваться отдельно;
  • Неудобный механизм одновременной работы нескольких пользователей с системой, хранилище просто блокируется пока заблокировавший его пользователь не разблокирует его;
  • От бекапов вас никто не освобождает, вы рискуете потерять всё.

Централизованные системы контроля версий

Следующей основной проблемой оказалась необходимость сотрудничать с разработчиками за другими компьютерами. Чтобы решить её, были созданы централизованные системы контроля версий (ЦСКВ). В таких системах, например CVS, Subversion и Perforce, есть центральный сервер, на котором хранятся все файлы под версионным контролем, и ряд клиентов, которые получают копии файлов из него. Много лет это было стандартом для систем контроля версий.

Такой подход имеет множество преимуществ, особенно над локальными СКВ. К примеру, все знают, кто и чем занимается в проекте. У администраторов есть чёткий контроль над тем, кто и что может делать, и, конечно, администрировать ЦСКВ намного легче, чем локальные базы на каждом клиенте. Однако при таком подходе есть и несколько серьёзных недостатков. Наиболее очевидный - централизованный сервер является уязвимым местом всей системы. Если сервер выключается на час, то в течение часа разработчики не могут взаимодействовать, и никто не может сохранить новой версии своей работы. Если же повреждается диск с центральной базой данных и нет резервной копии, вы теряете абсолютно всё - всю историю проекта, разве что за исключением нескольких рабочих версий, сохранившихся на рабочих машинах пользователей.

CVS

CVS (Concurrent Versions System, Система совместных версий) пока остается самой широко используемой системой, но быстро теряет свою популярность из-за недостатков которые я рассмотрю ниже. Дик Грун (Dick Grune) разработал CVS в середине 1980-х. Для хранения индивидуальных файлов CVS (также как и RCS) использует файлы в RCS формате, но позволяет управлять группами файлов расположенных в директориях. Также CVS использует клиент-сервер архитектуру в которой вся информация о версиях хранится на сервере. Использование клиент-сервер архитектуры позволяет использовать CVS даже географически распределенным командами пользователей где каждый пользователь имеет свой рабочий директорий с копией проекта. Как следует из названия пользователи могут использовать систему совместно.

Возможные конфликты при изменении одного и того же файла разрешаются тем, что система позволяет вносить изменения только в самую последнюю версию файла. Таким образом всегда рекомендуется перед заливкой своих изменений обновлять свою рабочую копию файлов на случай возможных конфликтующих изменений. При обновлении система вносит изменения в рабочую копию автоматически и только в случае конфликтующих изменений в одном из мест файла требуется ручное исправление места конфликта.

CVS также позволяет вести несколько линий разработки проекта с помощью ветвей (branches) разработки. Таким образом, как уже упоминалось выше, можно исправлять ошибки в первой версии проекта и параллельно разрабатывать новую функциональность.

CVS использовалась большим количеством проектов, но конечно не была лишена недостатков которые позднее привели к появлению следующей рассматриваемой системы. Рассмотрим основные недостатки:

  • Так как версии хранятся в файлах RCS нет возможности сохранять версии директорий. Стандартный способ обойти это препятствие - это сохранить какой-либо файл (например, README.txt) в директории;
  • Перемещение, или переименование файлов не подвержено контролю версий. Стандартный способ сделать это: сначала скопировать файл, удалить старый с помощью команды cvs remove и затем добавить с его новым именем с помощью команды cvs add;
Subversion

Subversion (SVN) был разработан в 2000 году по инициативе фирмы CollabNet. SVN изначально разрабатывался как "лучший CVS" и основной задачей разработчиков было исправление ошибок допущенных в дизайне CVS при сохранении похожего интерфейса. SVN также как и CVS использует клиент-сервер архитектуру. Из наиболее значительных изменений по сравнению с CVS можно отметить:

  • Атомарное внесение изменений (commit). В случае если обработка коммита была прервана не будет внесено никаких изменений.
  • Переименование, копирование и перемещение файлов сохраняет всю историю изменений.
  • Директории, символические ссылки и мета-данные подвержены контролю версий.
  • Эффективное хранение изменений для бинарных файлов.

Распределённые системы контроля версий

И в этой ситуации в игру вступают распределённые системы контроля версий (РСКВ). В таких системах как Git, Mercurial, Bazaar или Darcs клиенты не просто выгружают последние версии файлов, а полностью копируют весь репозиторий. Поэтому в случае, когда "умирает" сервер, через который шла работа, любой клиентский репозиторий может быть скопирован обратно на сервер, чтобы восстановить базу данных. Каждый раз, когда клиент забирает свежую версию файлов, он создаёт себе полную копию всех данных.

Кроме того, в большей части этих систем можно работать с несколькими удалёнными репозиториями, таким образом, можно одновременно работать по-разному с разными группами людей в рамках одного проекта. Так, в одном проекте можно одновременно вести несколько типов рабочих процессов, что невозможно в централизованных системах.

Зачем нужны распределенные системы?

Как следует из названия одна из основных идей распределенных систем - это отсутствие четко выделенного центрального хранилища версий - репозитория. В случае распределенных систем набор версий может быть полностью, или частично распределен между различными хранилищами, в том числе и удаленными. Такая модель отлично вписывается в работу распределенных команд, например, распределенной по всему миру команды разработчиков работающих над одним проектом с открытым исходным кодом. Разработчик такой команды может скачать себе всю информацию по версиям и после этого работать только на локальной машине. Как только будет достигнут результат одного из этапов работы, изменения могут быть залиты в один из центральных репозиториев или, опубликованы для просмотра на сайте разработчика, или в почтовой рассылке. Другие участники проекта, в свою очередь, смогут обновить свою копию хранилища версий новыми изменениями, или попробовать опубликованные изменения на отдельной, тестовой ветке разработки. К сожалению, без хорошей организации проекта отсутствие одного центрального хранилища может быть минусом распределенных систем. Если в случае централизованных систем всегда есть один общий репозиторий откуда можно получить последнюю версию проекта, то в случае распределенных систем нужно организационно решить какая из веток проекта будет основной. Почему распределенная система контроля версий может быть интересна кому-то, кто уже использует централизованную систему - такую как Subversion? Любая работа подразумевает принятие решений, и в большинстве случаев необходимо пробовать различные варианты: при работе с системами контроля версий для рассмотрения различных вариантов и работы над большими изменениями служат ветки разработки. И хотя это достаточно естественная концепция, пользоваться ей в Subversion достаточно не просто. Тем более, все усложняется в случае множественных последовательных объединений с одной ветки на другую - в этом случае нужно безошибочно указывать начальные и конечные версии каждого изменения, что бы избежать конфликтов и ошибок. Для распределенных систем контроля версий ветки разработки являются одной из основополагающих концепций - в большинстве случаев каждая копия хранилища версий является веткой разработки. Таким образом, механизм объединения изменений с одной ветки на другую в случае распределенных систем является одним из основных, что позволяет пользователям прикладывать меньше усилий при пользовании системой.

Краткое описание популярных распределенных СУВ

  • Git - распределенная система контроля версий, разработанная Линусом Торвальдсом. Изначально Git предназначалась для использования в процессе разработки ядра Linux, но позже стала использоваться и во многих других проектах - таких, как, например, X.org и Ruby on Rails, Drupal. На данный момент Git является самой быстрой распределенной системой, использующей самое компактное хранилище ревизий. Но в тоже время для пользователей, переходящих, например, с Subversion интерфейс Git может показаться сложным;
  • Mercurial - распределенная система, написанная на языке Python с несколькими расширениями на C. Из использующих Mercurial проектов можно назвать, такие, как, Mozilla и MoinMoin.
  • Bazaar - система разработка которой поддерживается компанией Canonical - известной своими дистрибутивом Ubuntu и сайтом https://launchpad.net/ . Система в основном написана на языке Python и используется такими проектами, как, например, MySQL.
  • Codeville - написанная на Python распределенная система использующая инновационный алгоритм объединения изменений (merge). Система используется, например, при разработке оригинального клиента BitTorrent.
  • Darcs - распределенная система контроля версий написанная на Haskell используемая, например, проектом Buildbot.
  • Monotone - система написанная на C++ и использующая SQLite как хранилище ревизий.

Что такое контроль версий, и зачем он вам нужен? Система контроля версий (СКВ) - это система, регистрирующая изменения в одном или нескольких файлах с тем, чтобы в дальнейшем была возможность вернуться к определённым старым версиям этих файлов. Для примеров в этой книге мы будем использовать исходные коды программ, но на самом деле под версионный контроль можно поместить файлы практически любого типа.

Если вы графический или веб-дизайнер и хотели бы хранить каждую версию изображения или макета - а этого вам наверняка хочется - то пользоваться системой контроля версий будет очень мудрым решением. СКВ даёт возможность возвращать отдельные файлы к прежнему виду, возвращать к прежнему состоянию весь проект, просматривать происходящие со временем изменения, определять, кто последним вносил изменения во внезапно переставший работать модуль, кто и когда внёс в код какую-то ошибку, и многое другое. Вообще, если, пользуясь СКВ, вы всё испортите или потеряете файлы, всё можно будет легко восстановить. Вдобавок, накладные расходы за всё, что вы получаете, будут очень маленькими.

Локальные системы контроля версий

Многие предпочитают контролировать версии, просто копируя файлы в другой каталог (как правило добавляя текущую дату к названию каталога). Такой подход очень распространён, потому что прост, но он и чаще даёт сбои. Очень легко забыть, что ты не в том каталоге, и случайно изменить не тот файл, либо скопировать файлы не туда, куда хотел, и затереть нужные файлы.

Чтобы решить эту проблему, программисты уже давно разработали локальные СКВ с простой базой данных, в которой хранятся все изменения нужных файлов (см. рисунок 1-1).

Рисунок 1-1. Схема локальной СКВ.

Одной из наиболее популярных СКВ такого типа является rcs, которая до сих пор устанавливается на многие компьютеры. Даже в современной операционной системе Mac OS X утилита rcs устанавливается вместе с Developer Tools. Эта утилита основана на работе с наборами патчей между парами версий (патч - файл, описывающий различие между файлами), которые хранятся в специальном формате на диске. Это позволяет пересоздать любой файл на любой момент времени, последовательно накладывая патчи.

Централизованные системы контроля версий

Следующей основной проблемой оказалась необходимость сотрудничать с разработчиками за другими компьютерами. Чтобы решить её, были созданы централизованные системы контроля версий (ЦСКВ). В таких системах, например CVS, Subversion и Perforce, есть центральный сервер, на котором хранятся все файлы под версионным контролем, и ряд клиентов, которые получают копии файлов из него. Много лет это было стандартом для систем контроля версий (см. рис. 1-2).


Рисунок 1-2. Схема централизованного контроля версий.

Такой подход имеет множество преимуществ, особенно над локальными СКВ. К примеру, все знают, кто и чем занимается в проекте. У администраторов есть чёткий контроль над тем, кто и что может делать, и, конечно, администрировать ЦСКВ намного легче, чем локальные базы на каждом клиенте.

Однако при таком подходе есть и несколько серьёзных недостатков. Наиболее очевидный - централизованный сервер является уязвимым местом всей системы. Если сервер выключается на час, то в течение часа разработчики не могут взаимодействовать, и никто не может сохранить новой версии своей работы. Если же повреждается диск с центральной базой данных и нет резервной копии, вы теряете абсолютно всё - всю историю проекта, разве что за исключением нескольких рабочих версий, сохранившихся на рабочих машинах пользователей. Локальные системы контроля версий подвержены той же проблеме: если вся история проекта хранится в одном месте, вы рискуете потерять всё.

Распределённые системы контроля версий

И в этой ситуации в игру вступают распределённые системы контроля версий (РСКВ). В таких системах как Git, Mercurial, Bazaar или Darcs клиенты не просто выгружают последние версии файлов, а полностью копируют весь репозиторий. Поэтому в случае, когда "умирает" сервер, через который шла работа, любой клиентский репозиторий может быть скопирован обратно на сервер, чтобы восстановить базу данных. Каждый раз, когда клиент забирает свежую версию файлов, он создаёт себе полную копию всех данных (см. рисунок 1-3).


Рисунок 1-3. Схема распределённой системы контроля версий.

Кроме того, в большей части этих систем можно работать с несколькими удалёнными репозиториями, таким образом, можно одновременно работать по-разному с разными группами людей в рамках одного проекта. Так, в одном проекте можно одновременно вести несколько типов рабочих процессов, что невозможно в централизованных системах.

Привет, Хабр. Решил затронуть измученную во многих статьях тему, конкретнее – описать во многом нестандартное (я бы сказал, несорцовое) использование систем контроля версий (далее – СКВ). Товарищи программисты, давайте спрячем тухлые помидоры и пройдем мимо, ибо данная статья – не для вас. Да, все вы уже изучили все тонкости работы Git, SVN, CVS и знаете много других умных слов. Позвольте же и нам, простым смертным, ознакомиться со всеми преимуществами использования СКВ.
Приглашаю под кат всех желающих ознакомиться с СКВ, а также всех тех, кто, так или иначе, имеет дело с быстроменяющимися данными.

Зачем это нужно

Сам я являюсь студентом технического ВУЗа и практически постоянно работаю с документами (текстами, рисунками, чертежами), изменяя их по три (десять, сто) раз на дню. Порой получается так, что правки, сделанные в течение последней недели, необходимо отменить и вернуться к документам в состоянии недельной давности. Хорошо, если правок было сделано немного, в этом случае могут помочь полсотни ударов по Ctrl+Z. Однако если в течение этой недели шла более-менее активная работа с документом, просто так восстановить статус «до важной правки, сделанной неделю назад» не получится. Для этого необходима копия документа на момент «до важной правки», а также еще десяток копий «до другой важной правки», «до сомнительной правки» и «до правки, которую, скорее всего, придется отменить». В принципе, такой подход возможен и практикуется многими. До недавнего времени я и сам держал важные версии файлов, сохраняя их с префиксами «дата_время», и, вроде бы, был доволен. Преимуществом этого метода является простота, недостатком – «разбухание» рабочих папок и неудобство использования. И, если с первым из них можно как-то бороться (большими жесткими дисками и 7zip’ом), то с неудобством что-то нужно было делать.

Что с этим можно сделать, или что такое СКВ

Вырываем абзац из Википедии: «Система управления версиями (от англ. Version Control System, VCS или Revision Control System) – программное обеспечение для облегчения работы с изменяющейся информацией. Система управления версиями позволяет хранить несколько версий одного и того же документа, при необходимости, возвращаться к более ранним версиям, определять, кто и когда сделал то или иное изменение и многое другое». Похоже на принцип работы самой Википедии – все версии статей со всеми правками доступны для изучения.
Таким образом, использование СКВ в ситуации, когда нужно хранить множество версий файлов – то, что надо. К преимуществам такого подхода относятся удобство использования и экономия свободного дискового пространства благодаря так называемому дельта-сжатию (когда сохраняются не сами файлы в различных версиях, а изменения от версии к версии, что уменьшает объем хранимых данных). Давайте попробуем.

Какие бывают СКВ

Та же Википедия подсказывает, что СКВ бывают централизованные и распределенные, большие и маленькие, с примочками и без. Нас это не особо интересует, так как мы будем пользоваться (по крайней мере, сначала) только частью функционала СКВ. Этот самый функционал и рассмотрим.
Практически все СКВ представляют собой некое хранилище, в котором хранятся все версии файлов, с которыми мы работаем. Здесь необходимо уточнить, что версии хранимых файлов чаще всего определяет пользователь. Внесли мы, допустим, с десяток мелких правок и решили, что пора бы сохранить результаты нашей деятельности в хранилище. В голову приходит аналогия с периодическим нажатием Ctrl+S, с тем лишь отличием, что к данной версии файла можно будет обращаться в будущем. Естественно, что «одним махом» таким образом можно занести в хранилище версии сколь угодно большого количества файлов. Называется это действие «commit», или «фиксация изменений» по-простому.
В любой момент в репозиторий (а именно так по-умному называется хранилище) можно добавить новый или удалить существующий файл, и СКВ будет «помнить» когда и что мы добавили/удалили. А благодаря комментариям при commit’ах можно еще и описать для чего собственно данный commit выполняется («добавили фенечку туда-то»/«удалили возможно нужный кусок оттуда-то»).
Когда же мы, наконец, понимаем, что пора бы нам вернуться к версии недельной давности, у нас имеется вся история изменений. И тут мы можем выбирать, как поступить. Если необходимо скопировать из старого файла нужный кусочек и вставить в текущую версию – просто извлекаем из хранилища старый файл и копируем из него необходимое. Если же необходимо полностью откатиться назад и продолжить работу со старой версией нам на помощь снова приходит СКВ – можно вернуться к ранней версии и создать так называемую новую ветку («branch»), сохранив при этом все, от чего мы «отказались», откатившись в версиях на неделю назад. Таким образом, историю версий проекта графически можно представить в виде дерева – от «корней» (начала проекта) до «ветвей» (удачных и неудачных правок). Кроме того, «ветку» можно создать и искусственно, к примеру, в том случае, когда из одних исходных файлов мы решим развить две различные версии – в первой работаем над одними фенечками, во второй – над другими. Более того, в случае, если рабочие файлы представляют собой текстовые документы (и в некоторых других), возможно объединение различных веток в одну – так называемое слияние («merge»). Теперь представим, что над проектом работают несколько человек, и каждый занимается своей такой «фенечкой». Наличие общего репозитория в этом случае сильно упрощает разработку.

От теории к практике, или начинаем использовать СКВ

Итак, надеюсь, я убедил вас в том, что использование СКВ – это хорошо. Осталось лишь научиться использовать СКВ. Этим и займемся.
Существуют различные системы контроля версий, отличающиеся друг от друга различными аспектами использования. Так как нас не интересуют (по крайней мере, сначала) тонкости работы различных систем, остановимся на самой простой и дружелюбной из них. По моему скромному мнению, такой системой, как ни странно, является Mercurial – «кроссплатформенная распределённая система управления версиями, разработанная для эффективной работы с очень большими репозиториями кода» с графической оболочкой TortoiseHg. Работа с системой возможна под Windows, Linux и Mac OS X.
Сразу оговорюсь, что буду описывать работу с системой в Windows. Освоившим Linux не составит труда изучить все по аналогии.
Кроме того, параллельно обучимся работать с бесплатным хостингом Mercurial репозиториев – bitbucket.org, необходимым в случае, если вы работаете над проектом не одни или же, что очень удобно, хотите иметь доступ ко всем версиям проекта через интернет. По сути, это удобная замена Dropbox, если вы использовали его ранее.
Для начала устанавливаем Mercurial + TortoiseHg отсюда: tortoisehg.bitbucket.org.
Эта система работает в консоли, поэтому для удобства использования позже напишем несколько *.bat файлов для типичных операций.
Все операции производятся командой hg. Вызванная без параметров, она выводит список основных команд.
В качестве репозитория выступает любая выбранная нами директория (я буду использовать папку “C:\project\”), в которой и должны храниться все файлы нашего будущего проекта. Разумеется, никто не запрещает иметь несколько репозиториев на одном компьютере.
Чтобы система «поняла», что мы хотим создать репозиторий, выполняем команду:
hg init c:\project
после которой будет создана папка “c:\project\”, если она не была создана ранее и папка “c:\project\.hg\”, в которой Mercurial будет хранить всю служебную информацию.
Тут же вспоминаем, что хотим получить не только локальный репозиторий на своем компьютере, но и удаленный репозиторий, в который будем отправлять все наши изменения (или, как говорят умники, «пушить» изменения в удаленный репозиторий, от англ. «push»). Для этого идем на bitbucket.org, регистрируемся, и создаем свой первый репозиторий (Repositories - Create new repository). Даем репозиторию имя (я для определенности назову его remote_project) и жмем на Create repository.
Теперь у нас имеются два репозитория – локальный, находящийся в папке “c:\project\” и удаленный, расположенный по адресу “bitbucket.org/имя_вашей_учетки/remote_project/”, где имя_вашей_учетки – указанное при регистрации на bitbucket, remote_project – имя репозитория, выбранное при его создании.
Для того, чтобы продолжить изучение, нам необходимо поместить что-нибудь в наш локальный репозиторий. Просто создайте в нем (в моем случае – в папке “c:\project\”) любой файл вашего будущего проекта либо скопируйте туда ваш текущий проект.
Теперь, строго говоря, нам необходимо указать Mercurial: «мы добавили в папку проекта такой-то и такой-то файлы и пару новых папок», для этого предусмотрена команда “hg add”. Однако, более удобен другой подход – при очередном commit’е мы прикажем Mercurial подхватить все свежесозданные файлы из папки проекта и забыть про удаленные, это гораздо легче, чем каждый раз при создании нового документа выполнять “hg add c:\project\new_document.doc”.
Итак, приступаем к нашему первому commit’у. Выполняется он следующей командой:
hg commit –A –m “comment to commit”
Разберем все по порядку. Команда должна вводиться тогда, когда мы находимся в репозитории (то есть предварительно необходимо выполнить “cd c:\project”). Опция “-A” необходима для того, чтобы Mercurial «подхватил» свежесозданные файлы (см. выше), опция “-m” позволяет добавить к commit’у комментарий. Эти комментарии будут отображаться при просмотре версий (или changeset’ов – списков изменений) в TortoiseHg и на странице проекта в bitbucket.org. Очень важно давать осмысленные комментарии, чтобы потом не мучаться, вспоминая, когда же была сделана та или иная правка.
Теперь в нашем репозитории хранится начальная версия нашего проекта. Все дальнейшие commit’ы выполняются аналогично после того, как мы решим, что пора бы сохранить текущую версию.
Сделанный commit можно «втолкнуть» в удаленный репозиторий командой:
hg push https://bitbucket.org/имя_вашей_учетки/remote_project
При этом также необходимо находиться в папке, соответствующей репозиторию. После ввода команды будет запрошено имя и пароль нашей учетки на bitbucket.org, чтобы не вводить их при каждом push’е команду можно заменить на следующую:
hg push hg push https://имя_вашей_учетки:пароль_вашей_учетки@bitbucket.org/имя_вашей_учетки/remote_project
Так как все команды мы забьем в *.bat файл, в этом случае пароль будет храниться в открытом виде, что представляет собой некоторую угрозу безопасности, однако для меня это приемлемо.
Итак, для удобства создаем в зоне прямой досягаемости файлы commit.bat, push.bat и commit&push.bat со следующим содержанием:
[содержание файла commit.bat]
IF !%1==! goto exit1
cd C:\project
hg commit -A -m "%*"
goto exit0
:exit1
echo "NO COMMAND-LINE ARG!"
:exit0
Этот файл, вызванный с аргументами, выполнит commit проекта с занесением аргументов в комментарии к commit’у. Пример: выполняем “commit.bat my first commit” и получаем commit с комментарием «my first commit». В FAR’е для этого удобно использовать сочетание Ctrl+Enter.
[содержание файла push.bat]
cd C:\project
hg push https://имя_вашей_учетки:пароль_вашей_учетки@bitbucket.org/имя_вашей_учетки/remote_project
Этот файл произведет push в удаленный репозиторий.
[содержание файла commit&push.bat]
IF !%1==! goto exit1
cd C:\project
hg commit -A -m "%*"
goto exit0
:exit1
echo "NO COMMAND-LINE ARG!"
:exit0
call ./push.bat
Этот файл, вызванный с аргументами, выполнит последовательный commit и push проекта с занесением аргументов в комментарии к commit’у.
Кроме того, для мелких промежуточных commit’ов я рекомендую создать файл commit_date_time.bat:
[содержание файла commit_date_time.bat]
cd C:\project
hg commit -A -m "%DATE% %TIME%"
Этот файл произведет commit с указанием текущей даты и времени в качестве комментария, что часто бывает удобно.
Вопрос о частоте commit’ов и push’ей каждый решает в индивидуальном порядке в зависимости от интенсивности и сложности вносимых правок. Хотя и рекомендуется руководствоваться правилом «чаще – лучше».
Правым кликом на файле/папке репозитория можно запустить Repository Explorer (TortoiseHg - Repository Explorer), в котором представлены все наши commit’ы с комментариями к ним. В этом окне отображается древовидная структура нашего репозитория, отсюда же можно производить commit’ы, push’и, откаты к предыдущим версиям (backout’ы) и другие операции.
По адресу bitbucket.org/имя_вашей_учетки/remote_project находится аналогичный набор changeset’ов, при этом можно скачать любую версию проекта одним архивом, что иногда также очень удобно.
В общем, первоначальное знакомство с Mercurial на этом считаю оконченным. За более подробной информацией можно обратиться по адресу: translated.by/you/mercurial-the-definitive-guide/into-ru/trans/

Для кого эта статья

Закончу, пожалуй, тем, с чего следовало бы начать – для кого эта статья? Ответ прост – для тех, кто хочет научиться использовать СКВ. Мне удалось «подсадить» на СКВ нескольких дизайнеров, инженеров и даже писателя. Попробуйте и вы – этим вы, возможно, сильно облегчите себе работу.

P. S. Перенес в блог «Системы управления версиями».

Теги:

  • системы управления версиями
  • mercurial
  • bitbucket
Добавить метки

Система управления версиями

Система управления версиями (от англ. Version Control System, VCS или Revision Control System ) - программное обеспечение для облегчения работы с изменяющейся информацией. Система управления версиями позволяет хранить несколько версий одного и того же документа, при необходимости возвращаться к более ранним версиям, определять, кто и когда сделал то или иное изменение, и многое другое.

Такие системы наиболее широко используются при разработке программного обеспечения для хранения исходных кодов разрабатываемой программы. Однако они могут с успехом применяться и в других областях, в которых ведётся работа с большим количеством непрерывно изменяющихся электронных документов. В частности, системы управления версиями применяются в САПР , обычно в составе систем управления данными об изделии (PDM). Управление версиями используется в инструментах конфигурационного управления (Software Configuration Management Tools ).

При определении допустимости слияния изменений в пределах одного и того же текстового файла работает типовой механизм построчного сравнения текстов (примером его реализации является системная утилита GNU diff), который сравнивает объединяемые версии с базовой и строит список изменений, то есть добавленных, удалённых и заменённых наборов строк. Минимальной единицей данных для этого алгоритма является строка, даже самое малое отличие делает строки различными. С учётом того, что символы-разделители, в большинстве случаев, не несут смысловой нагрузки, механизм слияния может игнорировать эти символы при сравнении строк.

Те найденные наборы изменённых строк, которые не пересекаются между собой, считаются совместимыми и их слияние делается автоматически. Если в сливаемых файлах находятся изменения, затрагивающие одну и ту же строку файла, это приводит к конфликту. Такие файлы могут быть объединены только вручную. Любые файлы, кроме текстовых, с точки зрения VCS являются бинарными и не допускают автоматического слияния.

Конфликты и их разрешение

Ситуация, когда при слиянии нескольких версий сделанные в них изменения пересекаются между собой, называют конфликтом . При конфликте изменений система управления версиями не может автоматически создать объединённый проект и вынуждена обращаться к разработчику. Как уже говорилось выше, конфликты могут возникать на этапах фиксации изменений, обновления или слияния ветвей. Во всех случаях при обнаружении конфликта соответствующая операция прекращается до его разрешения. Некоторые системы (например, Subversion) даже не пытаются разрешать конфликты на этапе фиксации или слияния ветви со стволом; при возникновении таких конфликтов операция полностью отменяется и разработчику предлагается сначала выполнить обновление рабочей копии (очевидно, что при этом возникнут те же самые конфликты), разрешить конфликты и только после этого выполнять объединение своих изменений с базовой ветвью.

Для разрешения конфликта система, в общем случае, предлагает разработчику три варианта конфликтующих файлов: базовый, локальный и серверный. Конфликтующие изменения либо показываются разработчику в специальном программном модуле объединения изменений (в этом случае там демонстрируются сливаемые варианты и динамически изменяющийся в зависимости от команд пользователя объединённый вариант файла), либо просто помечаются специальной разметкой прямо в тексте объединённого файла (тогда разработчик должен сам сформировать желаемый текст в спорных местах и сохранить его).

Конфликты в файловой системе разрешаются проще: там может конфликтовать только удаление файла с одной из прочих операций, а порядок файлов в каталоге не имеет значения, так что разработчику остаётся лишь выбрать, какую операцию нужно сохранить в сливаемой версии.

Блокировки

Механизм блокировки позволяет одному из разработчиков захватить в монопольное использование файл или группу файлов для внесения в них изменений. На то время, пока файл заблокирован, он остаётся доступным всем остальным разработчикам только на чтение, и любая попытка внести в него изменения отвергается сервером. Технически блокировка может быть организована по-разному. Типичным для современных систем является следующий механизм.

Массовое использование блокировок, когда все или большинство файлов в проекте являются блокируемыми и для любых изменений необходимо заблокировать соответствующий набор файлов, называется ещё стратегией «блокированного извлечения». Ранние системы управления версиями поддерживали исключительно эту стратегию, предотвращая таким способом появление конфликтов на корню. В современных VCS предпочтительным является использование неблокирующих извлечений, блокировки же считаются скорее неизбежным злом, которое нужно по возможности ограничивать. Недостатки использования блокировок очевидны:

  • Блокировки просто мешают продуктивной работе, поскольку вынуждают ожидать освобождения блокированных файлов, хотя в большинстве случаев даже совместные изменения одних и тех же файлов, которые делаются в ходе разных по смыслу работ, не пересекаются и объединяются при слиянии автоматически.
  • Частота возникновения конфликтов и сложность их разрешения в большинстве случаев не настолько велики, чтобы создать серьёзные затруднения. Возникновение же серьёзного конфликта изменений чаще всего сигнализирует либо о существенном расхождении во мнениях разных разработчиков относительно дизайна одного и того же фрагмента, либо о неправильной организации работы (когда два или более разработчиков делают одно и то же).
  • Блокировки создают административные проблемы. Типичный пример: разработчик может забыть снять блокировку с занятых им файлов, уходя в отпуск. Для разрешения подобных проблем приходится применять административные меры, в том числе включать в систему технические средства для сброса неверных блокировок, но и при их наличии на приведение системы в порядок расходуется время.

С другой стороны, в некоторых случаях использование блокировок вполне оправданно. Очевидным примером является организация работы с бинарными файлами, для которых нет инструментальных средств слияния изменений либо такое слияние принципиально невозможно (как, например, для файлов изображений). Если автоматическое слияние невозможно, то при обычном порядке работы любое параллельное изменение подобных файлов будет приводить к конфликту. В данном случае гораздо удобнее сделать такой файл блокируемым, чтобы гарантировать, что любые изменения в него будут вноситься только последовательно.

Версии проекта, теги

Система управления версиями обеспечивает хранение всех существовавших вариантов файлов и, как следствие, всех вариантов проекта в целом, имевших место с момента начала его разработки. Но само понятие «версии» в разных системах может трактоваться двумя различными способами.

Одни системы поддерживают версионность файлов . Это означает, что любой файл, появляющийся в проекте, получает собственный номер версии (обычно - номер 1, условной «нулевой» версией файла считается пустой файл с тем же именем). При каждой фиксации разработчиком изменений, затрагивающих файл, соответствующая часть фиксируемых изменений применяется к файлу и файл получает новый, обычно следующий по порядку, номер версии. Поскольку фиксации обычно затрагивают только часть файлов в репозитории, номера версий файлов, имеющиеся на один и тот же момент времени, со временем расходятся, и проект в целом (то есть весь набор файлов репозитория), фактически, никакого «номера версии» не имеет, поскольку состоит из множества файлов с различными номерами версий. Подобным образом работает, например, система управления версиями CVS.

Для других систем понятие «версия» относится не к отдельному файлу, а к репозиторию целиком. Вновь созданный пустой репозиторий имеет версию 1 или 0, любая фиксация изменений приводит к увеличению этого номера (то есть даже при изменении одного файла на один байт весь репозиторий считается изменённым и получает новый номер версии). Таким способом трактует номера версий, например, система Subversion. Номера версии отдельного файла здесь, фактически, не существует, условно можно считать таковым текущий номер версии репозитория (то есть считать, что при каждом изменении, внесённом в репозиторий, все его файлы меняют номер версии, даже те, которые не менялись). Иногда, говоря о «версии файла» в таких системах, имеют в виду ту версию репозитория, в которой файл был последний раз (до интересующего нас момента) изменён.

Для практических целей обычно имеет значение не отдельный файл, а весь проект целиком. В системах, поддерживающих версионность отдельных файлов, для идентификации определённой версии проекта можно использовать дату и время - тогда версия проекта будет состоять из тех версий входящих в него файлов, которые имелись в репозитории на указанный момент времени. Если поддерживается версионность репозитория в целом, номером версии проекта может выступать номер версии репозитория. Однако оба варианта не слишком удобны, так как ни дата, ни номер версии репозитория обычно не несут информации о значимых изменениях в проекте, о том, насколько долго и интенсивно над ним работали. Для более удобной пометки версий проекта (или его частей) системы управления версиями поддерживают понятие тегов .

Тег (tag) - это символическая метка, которая может быть связана с определённой версией файла и/или каталога в репозитории. С помощью соответствующей команды всем или части файлов проекта, отвечающим определённым условиям (например, входящим в головную версию главной ветви проекта на определённый момент времени) может быть присвоена заданная метка. Таким образом можно идентифицировать версию проекта (версия «XX.XXX.XXX» - это набор версий файлов репозитория, имеющих тег «XX.XXX.XXX»), зафиксировав таким образом его состояние на некоторый желаемый момент. Как правило, система тегов достаточно гибкая и позволяет пометить одним тегом и не одновременные версии файлов и каталогов. Это позволяет собрать «версию проекта» любым произвольным образом. С точки зрения пользователя системы пометка тегами может выглядеть по-разному. В некоторых системах она изображается именно как пометка (тег можно создать, применить к определённым версиям файлов и каталогов, снять). В других системах (например, Subversion) тег представляет собой просто отдельный каталог на файловом дереве репозитория, куда из ствола и ветвей проекта с помощью команды копирования делаются копии нужных версий файлов. Так что визуально тег - это просто вынесенная в отдельный каталог копия определённых версий файлов репозитория. По соглашению в дерево каталогов, соответствующее тегу, запрещена фиксация изменений (то есть версия проекта, представляемая тегом, является неизменной).

Базовые принципы разработки ПО в VCS

Порядок использования системы управления версиями в каждом конкретном случае определяется техническими регламентами и правилами, принятыми в конкретной фирме или организации, разрабатывающей проект. Тем не менее, общие принципы правильного использования VCS немногочисленны и едины для любых разработок и систем управления версиями.

  1. Любые рабочие, тестовые или демонстрационные версии проекта собираются только из репозитория системы. «Персональные» сборки, включающие ещё незафиксированные изменения, могут делать только разработчики для целей промежуточного тестирования. Таким образом, гарантируется, что репозиторий содержит всё необходимое для создания рабочей версии проекта.
  2. Текущая версия главной ветви всегда корректна. Не допускается фиксация в главной ветви неполных или не прошедших хотя бы предварительное тестирование изменений. В любой момент сборка проекта, проведённая из текущей версии, должна быть успешной.
  3. Любое значимое изменение должно оформляться как отдельная ветвь. Промежуточные результаты работы разработчика фиксируются в эту ветвь. После завершения работы над изменением ветвь объединяется со стволом. Исключения допускаются только для мелких изменений, работа над которыми ведётся одним разработчиком в течение не более чем одного рабочего дня.
  4. Версии проекта помечаются тегами. Выделенная и помеченная тегом версия более никогда не изменяется.

Распределённые системы управления версиями

branch Ветвь - направление разработки, независимое от других. Ветвь представляет собой копию части (как правило, одного каталога) хранилища, в которую можно вносить свои изменения, не влияющие на другие ветви. Документы в разных ветвях имеют одинаковую историю до точки ветвления и разные - после неё. changeset , activity Набор изменений. Представляет собой поименованный набор правок, сделанных в локальной копии для какой-то общей цели. В системах, поддерживающих наборы правок, разработчик может объединять локальные правки в группы и выполнять фиксацию логически связанных изменений одной командой, указывая требуемый набор правок в качестве параметра. При этом прочие правки останутся незафиксированными. Типичный пример: ведётся работа над добавлением новой функциональности, а в этот момент обнаруживается критическая ошибка, которую необходимо немедленно исправить. Разработчик создаёт набор изменений для уже сделанной работы и новый - для исправлений. По завершении исправления ошибки отдаётся команда фиксации только второго набора правок. check-in , commit , submit Создание новой версии, фиксация изменений. Распространение изменений, сделанных в рабочей копии, на хранилище документов. При этом в хранилище создаётся новая версия изменённых документов. check-out , clone Извлечение документа из хранилища и создание рабочей копии. conflict Конфликт - ситуация, когда несколько пользователей сделали изменения одного и того же участка документа. Конфликт обнаруживается, когда один пользователь зафиксировал свои изменения, а второй пытается зафиксировать и система сама не может корректно слить конфликтующие изменения. Поскольку программа может быть недостаточно разумна для того, чтобы определить, какое изменение является «корректным», второму пользователю нужно самому разрешить конфликт (resolve ). head Основная версия - самая свежая версия для ветви/ствола, находящаяся в хранилище. Сколько ветвей, столько основных версий. merge , integration Слияние - объединение независимых изменений в единую версию документа. Осуществляется, когда два человека изменили один и тот же файл или при переносе изменений из одной ветки в другую. rebase Перенос точки ветвления (версии, от которой начинается ветвь) на более позднюю версию основной ветви. Например, после выпуска версии 1.0 проекта в стволе продолжается доработка (исправление ошибок, доработка имеющегося функционала), одновременно начинается работа над новой функциональностью в новой ветви. Через какое-то время в основной ветви происходит выпуск версии 1.1 (с исправлениями); теперь желательно, чтобы ветвь разработки новой функциональности включала изменения, произошедшие в стволе. Вообще, это можно сделать базовыми средствами, с помощью слияния (merge), выделив набор изменений между версиями 1.0 и 1.1 и слив его в ветвь. Но при наличии в системе поддержки перебазирования ветви эта операция делается проще, одной командой: по команде rebase (с параметрами: ветвью и новой базовой версией) система самостоятельно определяет нужные наборы изменений и производит их слияние, после чего для ветви базовой версией становится версия 1.1; при последующем слиянии ветви со стволом система не рассматривает повторно изменения, внесённые между версиями 1.0 и 1.1, так как ветвь логически считается выделенной после версии 1.1. repository , depot Хранилище документов - место, где система управления версиями хранит все документы вместе с историей их изменения и другой служебной информацией. revision Версия документа. Системы управления версиями различают версии по номерам, которые назначаются автоматически. shelving Откладывание изменений. Предоставляемая некоторыми системами возможность создать набор изменений (changeset) и сохранить его на сервере без фиксации (commit’а). Отложенный набор изменений доступен на чтение другим участникам проекта, но до специальной команды не входит в основную ветвь. Поддержка откладывания изменений даёт возможность пользователям сохранять незавершённые работы на сервере, не создавая для этого отдельных ветвей. tag , label Метка, которую можно присвоить определённой версии документа. Метка представляет собой символическое имя для группы документов, причем метка описывает не только набор имен файлов, но и версию каждого файла. Версии включенных в метку документов могут принадлежать разным моментам времени. trunk , mainline , master Ствол - основная ветвь разработки проекта. Политика работы со стволом может отличаться от проекта к проекту, но в целом она такова: большинство изменений вносится в ствол; если требуется серьёзное изменение, способное привести к нестабильности, создаётся ветвь , которая сливается со стволом, когда нововведение будет в достаточной мере испытано; перед выпуском очередной версии создаётся «релизная » ветвь, в которую вносятся только исправления. update , sync Синхронизация рабочей копии до некоторого заданного состояния хранилища. Чаще всего это действие означает обновление рабочей копии до самого свежего состояния хранилища. Однако при необходимости можно синхронизировать рабочую копию и к более старому состоянию, чем текущее. working copy Рабочая (локальная) копия документов.

См. также

  • Конфигурационное управление (Software Configuration Management), инструменты конфигурационного управления (Software Configuration Management Tools)
  • Программные продукты с прозрачным управлением версиями
    • Некоторые реализации
  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то