Raid из двух дисков. RAID массив: виды и процесс создания. Аппаратные и программные RAID-массивы

RAID – аббревиатура, расшифровываемая как Redundant Array of Independent Disks – “отказоустойчивый массив из независимых дисков” (раньше иногда вместо Independent использовалось слово Inexpensive). Концепция структуры, состоящей из нескольких дисков, объединенных в группу, обеспечивающую отказоустойчивость родилась в 1987 году в основополагающей работе Паттерсона, Гибсона и Катца.

Исходные типы RAID-массивов

RAID-0
Если мы считаем, что RAID это “отказоустойчивость”(Redundant…), то RAID-0 это “нулевая отказоустойчивость”, отсутствие ее. Структура RAID-0 это “массив дисков с чередованием”. Блоки данных поочередно записываются на все входящие в массив диски, по порядку. Это повышает быстродействие, в идеале во столько раз, сколько дисков входит в массив, так как запись распараллеливается между несколькими устройствами.
Однако во столько же раз снижается надежность, поскольку данные будут потеряны при выходе из строя любого из входящих в массив дисков.

RAID-1
Это так называемое “зеркало”. Операции записи производятся на два диска параллельно. Надежность такого массива выше, чем у одиночного диска, однако быстродействие повышается незначительно (или не повышается вовсе).

RAID-10
Попытка объединить достоинства двух типов RAID и лишить их присущих им недостатков. Если взять группу RAID-0 с повышенной производительностью, и придать каждому из них (или массиву целиком) “зеркальные” диски для защиты данных от потери в результате выхода из строя, мы получим отказоустойчивый массив с повышенным, в результате использования чередования, быстродействием.
На сегодняшний день “в живой природе” это один из наиболее популярных типов RAID.
Минусы – мы платим за все вышеперечисленные достоинства половиной суммарной емкости входящих в массив дисков.

RAID-2
Остался полностью теоретическим вариантом. Это массив, в котором данные кодируются помехоустойчивым кодом Хэмминга, позволяющим восстанавливать отдельные сбойные фрагменты за счет его избыточности. Кстати различные модификации кода Хэмминга, а также его наследников, используются в процессе считывания данных с магнитных головок жестких дисков и оптических считывателей CD/DVD.

RAID-3 и 4
“Творческое развитие” идеи защиты данных избыточным кодом. Код Хэмминга незаменим в случае “постоянно недостоверного” потока, насыщенного непрерывными слабопредсказуемыми ошибками, такого, например, как зашумленный эфирный канал связи. Однако в случае жестких дисков основная проблема не в ошибках считывания (мы считаем, что данные выдаются жесткими дисками в том виде, в каком мы их записали, если уж он работает), а в выходе из строя целиком диска.
Для таких условий можно скомбинировать схему с чередованием (RAID-0) и для защиты от выхода из строя одного из дисков дополнить записываемую информацию избыточностью, которая позволит восстановить данные при потере какой-то ее части, выделив под это дополнительный диск.
При потере любого из дисков данных мы можем восстановить хранившиеся на нем данные путем несложных математических операций над данными избыточности, в случае выходя из строя диска с данными избыточности мы все равно имеем данные, считываемые с дискового массива типа RAID-0.
Варианты RAID-3 и RAID-4 отличаются тем, что в первом случае чередуются отдельные байты, а во втором – группы байт, “блоки”.
Основным недостатком этих двух схем является крайне низкая скорость записи на массив, поскольку каждая операция записи вызывает обновление “контрольной суммы”, блока избыточности для записанной информации. Очевидно, что, несмотря на структуру с чередованием, производительность массива RAID-3 и RAID-4 ограничена производительностью одного диска, того, на котором лежит “блок избыточности”.

RAID-5
Попытка обойти это ограничение породила следующий тип RAID, в настоящее время он получил, наряду с RAID-10, наибольшее распространение. Если запись на диск “блока избыточности” ограничивает весь массив, давайте его тоже размажем по дискам массива, сделаем для этой информации невыделенный диск, тем самым операции обновления избыточности окажутся распределенными по всем дискам массива. То есть мы также как и в случае RAID-3(4) берем дисков для хранения N информации в количестве N + 1 диск, но в отличие от Type 3 и 4 этот диск также используется для хранения данных вперемешку с данными избыточности, как и остальные N.
Недостатки? А как же без них. Проблема с медленной записью отчасти была решена, но все же не полностью. Запись на массив RAID-5 осуществляется, тем не менее, медленнее, чем на массив RAID-10. Зато RAID-5 более “экономически эффективен”. Для RAID-10 мы платим за отказоустойчивость ровно половиной дисков, а в случае RAID-5 это всего один диск.

Однако скорость записи снижается пропорционально увеличению количества дисков в массиве (в отличие от RAID-0, где она только растет). Это связано с тем, что при записи блока данных массиву нужно заново рассчитать блок избыточности, для чего прочитать остальные “горизонтальные” блоки и пересчитать в соответствии с их даными блок избыточности. То есть на одну операцию записи массив из 8 дисков (7 дисков данных + 1 дополнительный) будет делать 6 операций чтения в кэш (остальные блоки данных со всех дисков, чтобы рассчитать блок избыточности), вычислять из этих блоков блок избыточности, и делать 2 записи (запись блока записываемых данных и перезапись блока избыточности). В современных системах частично острота снимается за счет кэширования, но тем не менее удлиннение группы RAID-5 хотя и вызывает пропорциональное увеличение скорости чтения, но также и соответственное ему снижение скорости записи.
Ситуация со снижением производительности при записи на RAID-5 иногда порождает любопытный экстремизм, например, http://www.baarf.com/ ;)

Тем не менее, поскольку RAID-5 есть наиболее эффективная RAID-структура с точки зрения расхода дисков на “погонный мегабайт” он широко используется там, где снижение скорости записи не является решающим параметром, например для долговременного хранения данных или для данных, преимущественно считываемых.
Отдельно следует упомянуть, что расширение дискового массива RAID-5 добавлением дополнительного диска вызывает полное пересчитывание всего RAID, что может занимать часы, а в отдельных случаях и дни, во время которых производительность массива катастрофически падает.

RAID-6
Дальнейшее развитие идеи RAID-5. Если мы рассчитаем дополнительную избыточность по иному нежели применяемому в RAID-5 закону, то мы сможем сохранить доступ к данным при отказе двух дисков массива.
Платой за это является дополнительный диск под данные второго “блока избыточности”. То есть для хранения данных равных объему N дисков нам нужно будет взять N + 2 диска.Усложняется “математика” вычисления блоков избыточности, что вызывает еще большее снижение скорости записи по сравнению с RAID-5, зато повышается надежность. Причем в ряде случаев она даже превышает уровень надежности RAID-10. Нетрудно увидеть, что RAID-10 тоже выдерживает выход из строя двух дисков в массиве, однако в том случае, если эти диски принадлежат одному “зеркалу” или разным, но при этом не двум зеркальным дискам. А вероятность именно такой ситуации никак нельзя сбрасывать со счета.

Дальнейшее увеличение номеров типов RAID происходит за счет “гибридизации”, так появляются RAID-0+1 ставший уже рассмотренным RAID-10, или всяческие химерические RAID-51 и так далее.
В живой природе к счастью не встречаются, обычно оставаясь “сном разума” (ну, кроме уже описанного выше RAID-10).

Проблема повышения надежности хранения информации всегда стоит на повестке дня. Особенно это касается больших массивов данных, баз данных от которых зависит работа комплексных систем в большом диапазоне сфер отраслей. Особенно это важно для высокопроизводительных серверов.

Как известно, производительность современных процессоров неизменно растет, за чем явно не успевают в своем развитии современные
жесткие диски. Наличие одного диска, будь то SCSI или, еще хуже IDE, уже не сможет решить задачи, актуальные нашему времени. Нужно множество дисков, которые будут дополнять друг друга, подменять в случае выхода одного из них, хранить резервные копии, работать качественно и продуктивно.

Однако, просто наличия нескольких жестких дисков недостаточно, их нужно объединить в систему , которая будет слаженно работать и не допустит потери данных при любых сбоях, связанных с дисками.

О создании такой системы нужно позаботиться заранее, ведь, как говорит известная пословица – пока жареный петух не клюнет - не хватятся. Можно потерять свои данные безвозвратно .

Этой системой может стать RAID – технология виртуального хранения информации, объединяющая несколько дисков в один логический элемент. RAID массивом называется избыточный массив независимых дисков. Используют обычно для улучшения производительности и надежности.

Что нужно для создания рейд? Как минимум наличие двух винчестеров. В зависимости от уровня массива варьируется количество используемых устройств хранения.

Какие бывают массивы raid

Существуют базовые, комбинированные массивы RAID. Институт в Беркли штат Калифорния предложил разделять рейд на уровни спецификации :

  • Базовые :
    • RAID1 ;
    • RAID2 ;
    • RAID3 ;
    • RAID4 ;
    • RAID5 ;
    • RAID6 .
  • Комбинированные :
    • RAID10 ;
    • RAID01 ;
    • RAID50 ;
    • RAID05 ;
    • RAID60 ;
    • RAID06 .

Рассмотрим наиболее часто используемые.

Рейд 0

RAID 0 предназначен для увеличения скорости и записи. Он не увеличивает надежность хранения, в связи с этим не является избыточным. Еще его зовут страйп (striping - «чередование» ). Обычно используется от 2 до 4 дисков.

Данные делятся на блоки, записывающие по очереди на диски. Скорость записи/чтения возрастает при этом в число раз, кратное количеству дисков. Из недостатков можно отметить возросшую вероятность потери данных при такой системе. Базы данных на таких дисках хранить не имеет смысла, ведь любой серьезный сбой приведет к полной неработоспособности рейда, так как отсутствуют средства восстановления.

Рейд 1

RAID 1 обеспечивает зеркальное хранение данных на аппаратном уровне. Называют также массив Mirror , что значит «зеркало » . То есть данные дисков в этом случае дублируются. Можно использовать при количестве устройств хранения от 2 до 4.

Скорость записи/чтения при этом практически не меняется, что можно отнести к преимуществам . Массив работает, если хоть один диск рейда находится в работе, но объем системы при этом равен объему одного диска. На практике при выходе из строя одного из винчестеров Вам нужно будет как можно быстрее принять меры к его замене.

Рейд 2

RAID 2 – использует так называемый код Хемминга . Данные разбиваются по жестким дискам аналогично RAID 0, на оставшихся дисках хранятся коды исправления ошибок , при сбое по которым можно регенерировать информации. Этот метод позволяет на лету обнаруживать , а затем и исправлять сбои в системе.

Быстрота чтения/записи в этом случае в сравнении с использованием одного диска повышается . Минусом является большое количество дисков, при котором его рационально применять, чтобы не было избыточности данных, обычно это 7 и больше .

RAID 3 – в массиве данные разбиваются на все диске кроме одного, в котором хранятся байты четности. Устойчив к отказам системы . Если один из дисков выходит из строя . То его информацию легко «поднять», используя данные контрольных сумм четности.

В сравнении с RAID 2 нет возможности коррекции ошибок на лету. Этот массив отличается высокой производительностью и возможностью использовать от 3 дисков и больше.

Главным минусом такой системы можно считать повышенную нагрузку на диск, хранящий байты четности и низкую надежность этого диска.

Рейд 4

В целом RAID 4 аналогичен RAID 3 с той разницей , что данные четности хранятся в блоках, а не в байтах, что позволило увеличить скорость передачи данных малого объема.

Минусом указанного массива оказывается скорость записи, ведь четность записи генерируется на один единственный диск, как и RAID 3.

Представляется собой неплохое решение для тех серверов, где файлы чаще считываются, чем записываются.

Рейд 5

RAID от 2 до 4 имеют недостатки, связанные с невозможностью распараллеливания операций записи. RAID 5 устраняет этот недостаток. Блоки четности записываются одновременно на все дисковые устройства массива, нет асинхронности в распределении данных, а значит, четность является распределенной.

Число используемых винчестеров от 3. Массив очень распространён благодаря своей универсальности и экономичности , чем большее число дисков будет использоваться, тем экономнее будет затрачиваться дисковое пространство. Скорость при этом высокая за счет распараллеливания данных, но производительность снижается в сравнении с RAID 10, за счет большого числа операций. Если выходит из строя один диск, то надежность снижается до уровня RAID 0. Требуется много времени на восстановление.

Рейд 6

Технология RAID 6 схожа с RAID 5, но повышается надежностью за счет увеличения количества дисков четности.

Однако, дисков уже требуется минимум 5 и более мощный процессор для обработки возросшего числа операций, причем количество дисков обязательно должно быть равно простому числу 5,7,11 и так далее.

Рейд 10, 50, 60

Далее идут комбинации указанных ранее рейдов. Например, RAID 10 это RAID 0 + RAID 1.

Они наследуют и преимущества массивов их составляющих в плане надежности, производительности и количестве дисков, а вместе с тем экономичности.

Создание рейд массива на домашнем ПК

Преимущества создания рейд массива дома неочевидны, ввиду того, что это неэкономично , потеря данных не столь критична в сравнении с серверами, а информацию можно хранить в резервных копиях, периодически делая бэкапы.

Для этих целей Вам понадобится рейд-контроллер , обладающий собственной BIOS и своими настройками. В современных системных платах рейд-контроллер может быть интегрирован в южный мост чипсета. Но даже в таких плата посредством подключения к PCI или PCI-E разъему можно подключить еще один контроллер. Примерами могут быть устройства фирм Silicon Image и JMicron.

Каждый контроллер может иметь свою утилиту для настройки.

Рассмотрим создание рейд с помощью Intel Matrix Storage Manager Option ROM.

Перенесите все данные с Ваших дисков, иначе в процессе создания массива они будут очищены .

Зайдите в BIOS Setup Вашей материнской платы и включите режим работы RAID для вашего sata винчестера.

Чтобы запустить утилиту перезагрузите ПК, нажмите ctrl+i во время процедуры POST . В окне программы Вы увидите список доступных дисков. Нажмите Create Massive , Далее выберите необходимый уровень массива .

В дальнейшем следуя интуитивно понятному интерфейсу введите размер массива и подтвердите его создание.

Если вы когда-либо задумывались о приобретении серверов или NAS хранилищ, то вы наверняка слышали магический термин “RAID”. RAID расшифровывается как Redundant Array of Independent Disks - избыточный массив независимых дисков. Вообще, системы с RAID используют два или более жестких дисков или для того, чтоб улучшить производительность, или для повышения отказоустойчивости, или для того и другого вместе. Отказоустойчивость, в этом случае означает то, что оборудование (например, сервер) сможет работать и данные не потеряются даже в том случае, если один (или даже больше) из дисков вышел из строя.

Для того, чтобы понять как именно RAID помогает улучшить производительность и отказоустойчивость, нужно разобраться какие бывают уровни RAID. Уровень RAID зависит от того, сколько дисков в массиве, насколько критична возможная поломка диска, насколько важна скорость работы системы. Например, для бизнес-приложений гораздо важнее сохранность данных в случае выхода компонентов из строя, а для домашних пользователей, возможно, скорость будет решающим фактором. Уровни RAID представляют разные комбинации баланса производительности, отказоустойчивости и стоимости решения.

Обзор технологии RAID

Как правило, RAID используется в компаниях, где отказоустойчивость и производительность – не роскошь, а необходимость. Серверы и NAS-хранилища, в большинстве случаев оснащены так называемыми RAID-контроллерами – аппаратными модулями, которые управляют массивами из SATA или SSD дисков. Также, в большинстве современных операционных систем поддерживается программный RAID, где управление дисками и массивами осуществляется силами самой операционной системы.

Какой уровень RAID нужен мне?

Как уже говорилось, существует несколько уровней RAID, в зависимости от того, чего хочется достичь – большей производительности, большей надежности или и того и другого. Также важно, используется аппаратный или программный RAID. Программный RAID поддерживает не все уровни, а в случае использования аппаратного – нужно подумать о выборе соответствующего контроллера.

Самые распространенные уровни RAID.

RAID0 – используется для повышения производительности. Также известен как массив с «чередованием». Это означает, что поток данных как-бы делится на несколько дисков, вместо того, чтоб все время использовать один. Таким образом достигается «параллельность» чтения или записи, что ускоряет работу. Для RAID0 нужно минимум два диска. RAID0 поддерживается как аппаратными, так и программными решениями. Недостаток RAID0 в том, что нет никакой отказоустойчивости – при выходе из строя любого диска теряется информация.

RAID1 – используется для повышения надежности. Также известен как массив с «зеркалированием». Из названия понятно, что в случае RAID1 информация одновременно записывается на два диска, получается две копии данных – два «зеркала». В случае отказа одного из дисков второй продолжает работать и данные не теряются. Это самый простой и относительно недорогой способ повысить отказоустойчивость. Минусом такого решения является небольшое уменьшение производительности. Для RAID1 требуется минимум два диска. RAID1 можно собрать как программно, так и с помощью аппаратного контроллера.

RAID5 – наверное, самая распространенная конфигурация RAID. RAID5 обеспечивает лучшую производительность, чем «зеркалирование», к тому же обеспечивая и отказоустойчивость. В конфигурации RAID5 блоки данных и так называемая четность (дополнительный блок данных для восстановления) записываются последовательно на три или более дисков. При отказе одного из дисков данные восстанавливаются из оставшихся блоков и четности автоматически и незаметно. Естественно, в таком случае система остается полностью работоспособной. Другим плюсом RAID5 является «горячая замена» - возможность менять любой из дисков не прерывая работы системы (сервера или хранилища). Негативным моментом использования RAID5 является резкое снижение производительности во время восстановления информации на вновь замененном диске. Также RAID5 в принципе требователен к вычислительным ресурсам, поэтому рекомендуется использовать аппаратный контроллер, хотя программными способами RAID5 создать тоже возможно.

RAID10 – комбинация RAID1 и RAID0. Сочетает «зеркалирование» RAID1 и «чередование» RAID0. Обеспечивает хорошую производительность и отказоустойчивость, однако достаточно дорог, ибо требует минимум четыре диска и общая емкость массива будет равна половине емкости физических дисков.

Существуют и другие уровни RAID – RAID2, RAID4, RAID7, RAID50, RAID01, в большинстве - они являются специфическими комбинациями и вариантами уже описанных конфигураций. Для малого бизнеса и типичных решений самыми распространенными являются уровни 0, 1, 5 и 10.

Стоит упомянуть, что в случае использования дисков разной емкости массив будет равен емкости наименьшего диска. Например, емкость RAID1 из двух дисков 1000 Гб и 500 Гб будет равна 500 Гб. Совершенно естественно, что для RAID рекомендуется использовать диски одинаковой емкости.

Также, из соображений производительности и надежности, рекомендуется использовать диски одинаковой модели и желательно в пределах одной партии. Разные диски, тем более разных производителей, могут изнашиваться и провоцировать задержки совершенно непредсказуемо.

Полезно помнить, что RAID не заменяет резервное копирование. RAID может быть отличным способом повышения надежности и производительности, но это лишь часть стратегии восстановления данных.

RAID (Redundant Array of Independent Disks) — избыточный массив независимых дисков, т.е. объединение физических жестких дисков в один логический для решения каких либо задач. Скорее всего, вы его будете использовать для отказоустойчивости. При выходе из строя одного из дисков система будет продолжать работать. В операционной системе массив будет выглядеть как обычный HDD. RAID – массивы зародились в сегменте серверных решений, но сейчас получили широкое распространение и уже используются дома. Для управления RAID-ом используется специальная микросхема с интеллектом, которая называется RAID-контроллер. Это либо чипсет на материнской плате, либо отдельная внешняя плата.

Типы RAID массивов

Аппаратный – это когда состоянием массива управляет специальная микросхема. На микросхеме есть свой CPU и все вычисления ложатся на него, освобождая CPU сервера от лишней нагрузки.

Программный – это когда состоянием массива управляет специальная программа в ОС. В этом случае будет создаваться дополнительная нагрузка на CPU сервера. Ведь все вычисления ложатся именно на него.

Однозначно сказать какой тип рейда лучше – нельзя. В случае программного рейда нам не нужно покупать дорогостоящий рейд-контроллер. Который обычно стоит от 250 у.е. (можно найти и за 70 у.е. но я бы не стал рисковать данными) Но все вычисления ложатся на CPU сервера. Программная

реализация хорошо подходит для рейдов 0 и 1. Они достаточно просты и для их работы не нужны большие вычисления. Поэтому программные рейды чаще используют в решениях начального уровня. Аппаратный рейд в своей работе использует рейд-контроллер. Рейд-контроллер имеет свой процессор для вычислений, и именно он производит операции ввода/вывода.

Уровни RAID-массивов

Их достаточно много. Это основные – 0, 1, 2, 3, 4, 5, 6, 7 и комбинированные – 10, 30, 50, 53… Мы рассмотрим только самые ходовые, которые используются в современной инфраструктуре предприятия. Буква D в схемах означает Data (данные), или блок данных.

RAID 0 (Striped Disk Array without Fault Tolerance)

Он же stripe. Это когда два или более физических дисков объединяются в один логический с целью объединения места. То есть берем два диска по 500 Гб, объединяем их в RAID 0 и в системе видим 1 HDD объемом в 1 Тб. Информация распределяется по всем дискам рейда равномерно в виде небольших блоков (страйпов).

Плюсы – Высокая производительность, простота реализации.

Минусы – отсутствие отказоустойчивости. При использование этого рейда надежность системы понижается в два раза (если используем два диска). Ведь при выходе из строя хотя бы одного диска вы теряете все данные.

RAID 1 (Mirroring & Duplexing)

Он же mirror. Это когда два или более физических дисков объединяются в один логический диск с целью повышения отказоустойчивости. Информация пишется сразу на оба диска массива и при выходе одного из них информация сохраняется на другом.

Плюсы – высокая скорость чтения/записи, простота реализации.

Минусы – высокая избыточность. В случае использования 2-х дисков это 100%.

RAID 1E

RAID 1E работает так: три физических диска объединяются в массив, после чего создается логический том. Данные распределяются по дискам, образуя блоки. Порция данных (strip), помеченная ** – это копия предшествующей ей порции *. При этом каждый блок зеркальной копии записывается со сдвигом на один диск

Наиболее простое в реализации из отказоустойчивых решений – это RAID 1 (mirroring), зеркальное отображение двух дисков. Высокая доступность данных гарантирована наличием двух полных копий. Такая избыточность структуры массива сказывается на его стоимости – ведь полезная емкость вдвое меньше используемой. Поскольку RAID 1 строится на двух HDD – этого явно мало современным, прожорливым до дискового пространства приложениям. В силу таких требований область применения RAID 1 обычно ограничивается служебными томами (OS, SWAP, LOG), для размещения пользовательских данных ими пользуются разве что в малобюджетных решениях.

RAID 1E – это комбинация распределения информации по дискам (striping) от RAID 0 и зеркалирования – от RAID 1. Одновременно с записью области данных на один накопитель создается их копия на следующем диске массива. Отличие от RAID 1 в том, что количество HDD может быть нечетным (минимум 3). Как и в случае с RAID 1, полезная емкость составляет 50% суммарной емкости дисков массива. Правда, если количество дисков четное, предпочтительней использовать RAID 10, который при той же утилизации емкости состоит из двух (или больше) «зеркал». При физическом отказе одного из дисков RAID 1E контроллер переключает запросы чтения и записи на оставшиеся диски массива.

Преимущества:

  • высокая защищенность данных;
  • неплохая производительность.

Недостатки:

  • как и в RAID 1, используется лишь 50% емкости дисков массива.

RAID 2

В массивах такого типа диски делятся на две группы - для данных и для кодов коррекции ошибок, причем если данные хранятся на дисках, то для хранения кодов коррекции необходимо дисков. Данные записываются на соответствующие диски так же, как и в RAID 0, они разбиваются на небольшие блоки по числу дисков, предназначенных для хранения информации. Оставшиеся диски хранят коды коррекции ошибок, по которым в случае выхода какого-либо жёсткого диска из строя возможно восстановление информации. Метод Хемминга давно применяется в памяти типа ECC и позволяет на лету исправлять однократные и обнаруживать двукратные ошибки.

Недостаток массива RAID 2 в том, что для его функционирования нужна структура из почти двойного количества дисков, поэтому такой вид массива не получил распространения.

RAID 3

В массиве RAID 3 из дисков данные разбиваются на куски размером меньше сектора (разбиваются на байты) или блока и распределяются по дискам. Ещё один диск используется для хранения блоков чётности. В RAID 2 для этой цели применялся диск, но большая часть информации на контрольных дисках использовалась для коррекции ошибок на лету, в то время как большинство пользователей удовлетворяет простое восстановление информации в случае поломки диска, для чего хватает информации, умещающейся на одном выделенном жёстком диске.

Отличия RAID 3 от RAID 2: невозможность коррекции ошибок на лету и меньшая избыточность.

Достоинства:

  • высокая скорость чтения и записи данных;
  • минимальное количество дисков для создания массива равно трём.

Недостатки:

  • массив этого типа хорош только для однозадачной работы с большими файлами, так как время доступа к отдельному сектору, разбитому по дискам, равно максимальному из интервалов доступа к секторам каждого из дисков. Для блоков малого размера время доступа намного больше времени чтения.
  • большая нагрузка на контрольный диск, и, как следствие, его надёжность сильно падает по сравнению с дисками, хранящими данные.

RAID 4

RAID 4 похож на RAID 3, но отличается от него тем, что данные разбиваются на блоки, а не на байты. Таким образом, удалось отчасти «победить» проблему низкой скорости передачи данных небольшого объёма. Запись же производится медленно из-за того, что чётность для блока генерируется при записи и записывается на единственный диск. Из систем хранения широкого распространения RAID-4 применяется на устройствах хранения компании NetApp (NetApp FAS), где его недостатки успешно устранены за счет работы дисков в специальном режиме групповой записи, определяемом используемой на устройствах внутренней файловой системой WAFL.

RAID 5 (Independent Data Disks with Distributed Parity Blocks)

Самый популярный вид рейд-массива, в целом благодаря экономичности использования носителей данных. Блоки данных и контрольные суммы циклически записываются на все диски массива. При выходе из строя одного из дисков будет заметно снижена производительность, так как придется совершать дополнительные манипуляции для функционирования массива. Сам по себе рейд имеет достаточно хорошую скорость чтения/записи но немного уступает RAID 1. Нужно не менее трех дисков чтобы организовать RAID 5.

Плюсы – экономичное использование носителей, хорошая скорость чтения/записи. Разница в производительности по сравнению с RAID 1 не так сильно видна как экономия дискового пространства. В случае использования трех HDD избыточность составляет всего 33%.

Минусы – сложное восстановление данных и реализация.

RAID 5E

RAID 5E работает так. Из четырех физических дисков собирается массив, в нем создается логический диск. Распределенный резервный диск – это свободное пространство. Данные распределяются по накопителям, создавая блоки на логическом диске. Контрольные суммы также распределяются по дискам массива и записываются со сдвигом от диска к диску, как и в RAID 5. Резервный HDD остается пустым.

«Классический» RAID 5 много лет считается стандартом отказоустойчивости дисковых подсистем. В нем применяется распределение данных (striping) по HDD массива, для каждой из порций (stripe), определенной в нем, вычисляются и записываются контрольные суммы (четность, parity). Соответственно, скорость записи снижается из-за постоянного пересчета КС с поступлением новых данных. Для увеличения производительности записи КС распределяются по всем накопителям массива, чередуясь с данными. Под хранение КС расходуется емкость одного носителя, поэтому RAID 5 утилизирует на один диск меньше их общего количества в массиве. RAID 5 требует минимум трех (и максимум 16) НЖМД, его КПД использования дискового пространства находится в диапазоне 67–94% в зависимости от числа дисков. Очевидно, что это больше, чем у RAID 1, утилизирующего 50% доступной емкости.

Малые накладные расходы для реализации избыточности RAID 5 оборачиваются достаточно сложной реализацией и длительным процессом восстановления данных. Подсчет контрольных сумм и адресов возлагается на аппаратный RAID-контроллер с высокими требованиями к его процессору, логике и кэш-памяти. Производительность массива RAID 5 в его деградированном состоянии крайне низка, а время восстановления измеряется часами. В итоге проблема неполноценности массива усугубляется рисками повторного отказа одного из дисков до того момента, когда RAID будет восстановлен. Это приводит к разрушению тома данных.

Распространен подход c включением в RAID 5 выделенного диска горячего резерва (hot-spare) – для снижения времени простоя до физической замены сбойного диска. После отказа одного из накопителей исходного массива контроллер включает резервный диск в массив и начинает процесс перестройки RAID. Важно уточнить, что до этого первого отказа резервный накопитель работает на холостом ходу, годами может не участвовать в функционировании массива и не проверяться на ошибки поверхности. Равно как и тот, который позже принесут по гарантийной замене вместо сбойного, вставят в дисковую корзину и назначат резервным. Большим сюрпризом может стать его неработоспособность, причем выяснится это в самый неподходящий момент.

RAID 5E – это RAID 5 с включенным в массив резервным диском (hot-spare) постоянного использования, емкость которого добавляется поровну к каждому элементу массива. Для RAID 5E требуется минимум четыре HDD. Как и у RAID 5, данные и контрольные суммы распределяются по дискам массива. Утилизация полезной емкости у RAID 5E несколько ниже, зато производительность выше, чем у RAID 5 c hot-spare.

Емкость логического тома RAID 5E меньше общей емкости на объем двух носителей (емкость одного уходит под контрольные суммы, второго – под hot-spare). Зато чтение и запись на четыре физических устройства RAID 5E быстрее операций с тремя физическими накопителями RAID 5 с классическим hot-spare (в то время как четвертый, hot-spare, участия в работе не принимает). Резервный диск в RAID 5E – полноправный постоянный член массива. Его невозможно назначить резервным двум разным массивам («слугой двух господ» – как это допускается в RAID 5).

При отказе одного из физических дисков данные со сбойного накопителя восстанавливаются. Массив подвергается сжатию, и распределенный резервный диск становится частью массива. Логический диск остается уровня RAID 5E. После замены сбойного диска на новый данные логического диска разворачиваются в исходное состояние схемы распределения по HDD. При использовании логического диска RAID 5E в отказоустойчивых кластерных схемах он не будет выполнять свои функции во время компрессии-декомпрессии данных.

Преимущества:

  • высокая защищенность данных;
  • утилизация полезной емкости выше, чем у RAID 1 или RAID 1E;
  • производительность выше, чем у RAID 5.

Недостатки:

  • производительность ниже, чем у RAID 1E;
  • не может делить резервный диск с другими массивами.

RAID 5EE

Примечание: поддерживается не во всех контроллерах RAID level-5EE подобен массиву RAID-5E, но с более эффективным использованием резервного диска и более коротким временем восстановления. Подобно RAID level-5E, этот уровень RAID-массива создает ряды данных и контрольных сумм во всех дисках массива. Массив RAID-5EE обладает улучшенной защитой и производительностью. При применении RAID level-5E, емкость логического тома ограничивается емкостью двух физических винчестеров массива (один для контроля, один резервный). Резервный диск является частью массива RAID level-5EE. Тем не менее, в отличие от RAID level-5E, использующего неразделенное свободное место для резерва, в RAID level-5EE в резервный диск вставлены блоки контрольных сумм, как показывается далее на примере. Это позволяет быстрее перестраивать данные при поломке физического диска. При такой конфигурации, вы не сможете использовать его с другими массивами. Если вам необходим запасной диск для другого массива, вам следует иметь еще один резервный винчестер. RAID level-5E требует как минимум четырех дисков и, в зависимости от уровня прошивки и их емкости, поддерживает от 8 до 16 дисков. RAID level-5E обладает определенной прошивкой. Примечание: для RAID level-5EЕ, вы можете использовать только один логический том в массиве.

Достоинства:

  • 100% защита данных
  • Большая емкость физических дисков по сравнению с RAID-1 или RAID -1E
  • Большая производительность по сравнению с RAID-5
  • Более быстрое восстановление RAID по сравнению с RAID-5Е

Недостатки:

  • Более низкая производительность, чем в RAID-1 или RAID-1E
  • Поддержка только одного логического тома на массив
  • Невозможность совместного использования резервного диска с другими массивами
  • Поддержка не всех контроллеров

RAID 6

RAID 6 - похож на RAID 5, но имеет более высокую степень надёжности - под контрольные суммы выделяется ёмкость 2-х дисков, рассчитываются 2 суммы по разным алгоритмам. Требует более мощный RAID-контроллер. Обеспечивает работоспособность после одновременного выхода из строя двух дисков - защита от кратного отказа. Для организации массива требуется минимум 4 диска. Обычно использование RAID-6 вызывает примерно 10-15% падение производительности дисковой группы, по сравнению с аналогичными показателями RAID-5, что вызвано большим объёмом обработки для контроллера (необходимость рассчитывать вторую контрольную сумму, а также прочитывать и перезаписывать больше дисковых блоков при записи каждого блока).

RAID 7

RAID 7 — зарегистрированная торговая марка компании Storage Computer Corporation, отдельным уровнем RAID не является. Структура массива такова: на дисках хранятся данные, один диск используется для складирования блоков чётности. Запись на диски кешируется с использованием оперативной памяти, сам массив требует обязательного ИБП; в случае перебоев с питанием происходит повреждение данных.

RAID 10 или RAID 1+0 (Very High Reliability with High Performance)

Сочетание зеркального рейда и рейда с чередованием дисков. В работе этого вида рейда диски объединяются парами в зеркальные рейды (RAID 1) а затем все эти зеркальные пары объединяются в массив с чередованием (RAID 0). В рейд можно объединить только четное количество дисков, минимум – 4, максимум – 16. От RAID 1 мы наследуем надежность, от RAID 0 — скорость.

Плюсы – высокая отказоустойчивость и производительность

Минусы – высокая стоимость

RAID 50 или RAID 5+0 (High I/O Rates & Data Transfer Performance)

Он же RAID 50, это сочетание RAID 5 и RAID 0. Массив объединяет в себе высокую производительность и отказоустойчивость.

Плюсы – высокая отказоустойчивость, скорость передачи данных и выполнение запросов

Минусы – высокая стоимость

RAID 60

RAID-массив уровня 60 объединены характеристики из уровней 6 и 0. RAID 60 массива объединяет прямой уровне блоков чередование RAID 0 с распределенной дважды паритет в RAID 6, а именно: массива RAID 0 распределяются среди RAID 6 элементов. RAID 60 виртуальный диск может выжить о потере двух жестких дисков в каждом из RAID 6 устанавливает без потери данных. Она является наиболее эффективной с данными, нужна высокая надежность, высокая запрос курсы, высокие передачу данных, и средних и крупных емкости. Минимальное количество дисков-8.

Линейный RAID

Линейный RAID представляет собой простое объединение дисков, создающее большой виртуальный диск. В линейном RAID, блоки выделяются сначала на одном диске, включенном в массив, затем, если этот заполнен, на другом и т.д. Такое объединение не даёт выигрыша в производительности, так как скорее всего операции ввода/вывода не будут распределены между дисками. Линейный RAID также не содержит избыточности и, в действительности, увеличивает вероятность сбоя - если всего одни диск откажет, весь массив выйдет из строя. Ёмкость массива равняется суммарной ёмкости всех дисков.

Главный вывод, который можно сделать – у каждого уровня рейда есть свои плюсы и минусы.

Еще главнее вывод – рейд не гарантирует целостности ваших данных. То есть если кто-то удалит файл или он будет поврежден, каким либо процессом, рейд нам не поможет. Поэтому рейд не освобождает нас от необходимости делать бекапы. Но помогает, когда возникают проблемы с дисками на физическом уровне.

(+) : Имеет высокую надёжность - работает до тех пор, пока функционирует хотя бы один диск в массиве. Вероятность выхода из строя сразу двух дисков равна произведению вероятностей отказа каждого диска. На практике при выходе из строя одного из дисков следует срочно принимать меры - вновь восстанавливать избыточность. Для этого с любым уровнем RAID (кроме нулевого) рекомендуют использовать диски горячего резерва . Достоинство такого подхода - поддержание постоянной доступности.

(-) : Недостаток заключается в том, что приходится выплачивать стоимость двух жёстких дисков, получая полезный объём лишь одного жёсткого диска.

RAID 1+0 и RAID 0+1

Зеркало на многих дисках - RAID 1+0 или RAID 0+1 . Под RAID 10 (RAID 1+0) имеют в виду вариант, когда два или более RAID 1 объединяются в RAID 0. Под RAID 0+1 может подразумеваться два варианта:

RAID 2

Массивы такого типа основаны на использовании кода Хемминга . Диски делятся на две группы: для данных и для кодов коррекции ошибок, причём если данные хранятся на дисках, то для хранения кодов коррекции необходимо дисков. Данные распределяются по дискам, предназначенным для хранения информации, так же, как и в RAID 0, т.е. они разбиваются на небольшие блоки по числу дисков. Оставшиеся диски хранят коды коррекции ошибок, по которым в случае выхода какого-либо жёсткого диска из строя возможно восстановление информации. Метод Хемминга давно применяется в памяти типа ECC и позволяет на лету исправлять однократные и обнаруживать двукратные ошибки.

Достоинством массива RAID 2 является повышение скорости дисковых операций по сравнению с производительностью одного диска.

Недостатком массива RAID 2 является то, что минимальное количество дисков, при котором имеет смысл его использовать,- 7. При этом нужна структура из почти двойного количества дисков (для n=3 данные будут храниться на 4 дисках), поэтому такой вид массива не получил распространения. Если же дисков около 30-60, то перерасход получается 11-19%.


RAID 3

В массиве RAID 3 из дисков данные разбиваются на куски размером меньше сектора (разбиваются на байты) или блоки и распределяются по дискам. Ещё один диск используется для хранения блоков чётности. В RAID 2 для этой цели применялся диск, но большая часть информации на контрольных дисках использовалась для коррекции ошибок на лету, в то время как большинство пользователей удовлетворяет простое восстановление информации в случае поломки диска, для чего хватает информации, умещающейся на одном выделенном жёстком диске.

Отличия RAID 3 от RAID 2: невозможность коррекции ошибок на лету и меньшая избыточность.

Достоинства:

  • высокая скорость чтения и записи данных;
  • минимальное количество дисков для создания массива равно трём.

Недостатки:

  • массив этого типа хорош только для однозадачной работы с большими файлами, так как время доступа к отдельному сектору, разбитому по дискам, равно максимальному из интервалов доступа к секторам каждого из дисков. Для блоков малого размера время доступа намного больше времени чтения.
  • большая нагрузка на контрольный диск, и, как следствие, его надёжность сильно падает по сравнению с дисками, хранящими данные.


RAID 4

RAID 4 похож на RAID 3, но отличается от него тем, что данные разбиваются на блоки, а не на байты. Таким образом, удалось отчасти «победить» проблему низкой скорости передачи данных небольшого объёма. Запись же производится медленно из-за того, что чётность для блока генерируется при записи и записывается на единственный диск. Из систем хранения широкого распространения RAID-4 применяется на устройствах хранения компании NetApp (NetApp FAS), где его недостатки успешно устранены за счет работы дисков в специальном режиме групповой записи, определяемом используемой на устройствах внутренней файловой системой WAFL .

RAID 5

Основным недостатком уровней RAID от 2-го до 4-го является невозможность производить параллельные операции записи, так как для хранения информации о чётности используется отдельный контрольный диск. RAID 5 не имеет этого недостатка. Блоки данных и контрольные суммы циклически записываются на все диски массива, нет асимметричности конфигурации дисков. Под контрольными суммами подразумевается результат операции XOR (исключающее или). Xor обладает особенностью, которая применяется в RAID 5, которая даёт возможность заменить любой операнд результатом, и, применив алгоритм xor , получить в результате недостающий операнд. Например: a xor b = c (где a , b , c - три диска рейд-массива), в случае если a откажет, мы можем получить его, поставив на его место c и проведя xor между c и b : c xor b = a. Это применимо вне зависимости от количества операндов: a xor b xor c xor d = e . Если отказывает c тогда e встаёт на его место и проведя xor в результате получаем c : a xor b xor e xor d = c . Этот метод по сути обеспечивает отказоустойчивость 5 версии. Для хранения результата xor требуется всего 1 диск, размер которого равен размеру любого другого диска в raid.

(+) : RAID5 получил широкое распространение, в первую очередь, благодаря своей экономичности. Объём дискового массива RAID5 рассчитывается по формуле (n-1)*hddsize, где n - число дисков в массиве, а hddsize - размер наименьшего диска. Например, для массива из 4-х дисков по 80 гигабайт общий объём будет (4 - 1) * 80 = 240 гигабайт. На запись информации на том RAID 5 тратятся дополнительные ресурсы и падает производительность, так как требуются дополнительные вычисления и операции записи, зато при чтении (по сравнению с отдельным винчестером) имеется выигрыш, потому что потоки данных с нескольких дисков массива могут обрабатываться параллельно.

(-) : Производительность RAID 5 заметно ниже, в особенности на операциях типа Random Write (записи в произвольном порядке), при которых производительность падает на 10-25% от производительности RAID 0 (или RAID 10), так как требует большего количества операций с дисками (каждая операция записи сервера заменяется на контроллере RAID на три - одну операцию чтения и две операции записи). Недостатки RAID 5 проявляются при выходе из строя одного из дисков - весь том переходит в критический режим (degrade), все операции записи и чтения сопровождаются дополнительными манипуляциями, резко падает производительность. При этом уровень надежности снижается до надежности RAID-0 с соответствующим количеством дисков (то есть в n раз ниже надежности одиночного диска). Если до полного восстановления массива произойдет выход из строя, или возникнет невосстановимая ошибка чтения хотя бы на еще одном диске, то массив разрушается, и данные на нем восстановлению обычными методами не подлежат. Следует также принять во внимание, что процесс RAID Reconstruction (восстановления данных RAID за счет избыточности) после выхода из строя диска вызывает интенсивную нагрузку чтения с дисков на протяжении многих часов непрерывно, что может спровоцировать выход какого-либо из оставшихся дисков из строя в этот наименее защищенный период работы RAID, а также выявить ранее необнаруженные сбои чтения в массивах cold data (данных, к которым не обращаются при обычной работе массива, архивные и малоактивные данные), что повышает риск сбоя при восстановлении данных. Минимальное количество используемых дисков равно трём.

RAID 5EE

Примечание: поддерживается не во всех контроллерах RAID level-5EE подобен массиву RAID-5E, но с более эффективным использованием резервного диска и более коротким временем восстановления. Подобно RAID level-5E, этот уровень RAID-массива создает ряды данных и контрольных сумм во всех дисках массива. Массив RAID-5EE обладает улучшенной защитой и производительностью. При применении RAID level-5E, ёмкость логического тома ограничивается ёмкостью двух физических винчестеров массива (один для контроля, один резервный). Резервный диск является частью массива RAID level-5EE. Тем не менее, в отличие от RAID level-5E, использующего неразделенное свободное место для резерва, в RAID level-5EE в резервный диск вставлены блоки контрольных сумм, как показывается далее на примере. Это позволяет быстрее перестраивать данные при поломке физического диска. При такой конфигурации, вы не сможете использовать его с другими массивами. Если вам необходим запасной диск для другого массива, вам следует иметь еще один резервный винчестер. RAID level-5E требует как минимум четырех дисков и, в зависимости от уровня прошивки и их ёмкости, поддерживает от 8 до 16 дисков. RAID level-5E обладает определенной прошивкой. Примечание: для RAID level-5EЕ, вы можете использовать только один логический том в массиве.

Достоинства:

  • 100% защита данных
  • Большая ёмкость физических дисков по сравнению с RAID-1 или RAID -1E
  • Большая производительность по сравнению с RAID-5
  • Более быстрое восстановление RAID по сравнению с RAID-5Е

Недостатки:

  • Более низкая производительность, чем в RAID-1 или RAID-1E
  • Поддержка только одного логического тома на массив
  • Невозможность совместного использования резервного диска с другими массивами
  • Поддержка не всех контроллеров

RAID 6

RAID 6 - похож на RAID 5, но имеет более высокую степень надёжности - под контрольные суммы выделяется ёмкость 2-х дисков, рассчитываются 2 суммы по разным алгоритмам. Требует более мощный RAID-контроллер. Обеспечивает работоспособность после одновременного выхода из строя двух дисков - защита от кратного отказа. Для организации массива требуется минимум 4 диска . Обычно использование RAID-6 вызывает примерно 10-15% падение производительности дисковой группы, по сравнению с аналогичными показателями RAID-5, что вызвано большим объёмом обработки для контроллера (необходимость рассчитывать вторую контрольную сумму, а также прочитывать и перезаписывать больше дисковых блоков при записи каждого блока).

RAID 7

RAID 7 - зарегистрированная торговая марка компании Storage Computer Corporation, отдельным уровнем RAID не является. Структура массива такова: на дисках хранятся данные, один диск используется для складирования блоков чётности. Запись на диски кешируется с использованием оперативной памяти, сам массив требует обязательного ИБП ; в случае перебоев с питанием происходит повреждение данных.

RAID 10

Схема архитектуры RAID 10

RAID 10 - зеркалированный массив, данные в котором записываются последовательно на несколько дисков, как в RAID 0 . Эта архитектура представляет собой массив типа RAID 0, сегментами которого вместо отдельных дисков являются массивы RAID 1. Соответственно, массив этого уровня должен содержать как минимум 4 диска. RAID 10 объединяет в себе высокую отказоустойчивость и производительность.

Нынешние контроллеры используют этот режим по умолчанию для RAID 1+0. То есть, один диск основной, второй - зеркало, считывание данных производится с них поочередно. Сейчас можно считать, что RAID 10 и RAID 1+0 - это просто разное название одного и того же метода зеркалирования дисков. Утверждение, что RAID 10 является самым надёжным вариантом для хранения данных, ошибочно, т.к., несмотря на то, что для данного уровня RAID возможно сохранение целостности данных при выходе из строя половины дисков, необратимое разрушение массива происходит при выходе из строя уже двух дисков, если они находятся в одной зеркальной паре.

Комбинированные уровни

Помимо базовых уровней RAID 0 - RAID 5, описанных в стандарте, существуют комбинированные уровни RAID 1+0, RAID 3+0, RAID 5+0, RAID 1+5, которые различные производители интерпретируют каждый по-своему.

  • RAID 1+0 - это сочетание зеркалирования и чередования (см. выше).
  • RAID 5+0 - это чередование томов 5-го уровня.
  • RAID 1+5 - RAID 5 из зеркалированных пар.

Комбинированные уровни наследуют как преимущества, так и недостатки своих «родителей»: появление чередования в уровне RAID 5+0 нисколько не добавляет ему надёжности, но зато положительно отражается на производительности. Уровень RAID 1+5, наверное, очень надёжный, но не самый быстрый и, к тому же, крайне неэкономичный: полезная ёмкость тома меньше половины суммарной ёмкости дисков…

Стоит отметить, что количество жёстких дисков в комбинированных массивах также изменится. Например для RAID 5+0 используют 6 или 8 жёстких дисков, для RAID 1+0 - 4, 6 или 8.

Сравнение стандартных уровней

Уровень Количество дисков Эффективная ёмкость* Отказоустойчивость Преимущества Недостатки
0 от 2 S * N нет наивысшая производительность очень низкая надёжность
1 2 S 1 диск надёжность
1E от 3 S * N / 2 1 диск** высокая защищённость данных и неплохая производительность двойная стоимость дискового пространства
10 или 01 от 4, чётное S * N / 2 1 диск*** наивысшая производительность и высокая надёжность двойная стоимость дискового пространства
5 от 3 до 16 S * (N - 1) 1 диск экономичность, высокая надёжность, неплохая производительность производительность ниже RAID 0
50 от 6, чётное S * (N - 2) 2 диска** высокая надёжность и производительность высокая стоимость и сложность обслуживания
5E от 4 S * (N - 2) 1 диск экономичность, высокая надёжность, скорость выше RAID 5
5EE от 4 S * (N - 2) 1 диск быстрое реконструирование данных после сбоя, экономичность, высокая надёжность, скорость выше RAID 5 производительность ниже RAID 0 и 1, резервный накопитель работает на холостом ходу и не проверяется
6 от 4 S * (N - 2) 2 диска экономичность, наивысшая надёжность производительность ниже RAID 5
60 от 8, чётное S * (N - 2) 2 диска высокая надёжность, большой объем данных
61 от 8, чётное S * (N - 2) / 2 2 диска** очень высокая надёжность высокая стоимость и сложность организации

* N - количество дисков в массиве, S - объём наименьшего диска. ** Информация не потеряется, если выйдут из строя все диски в пределах одного зеркала. *** Информация не потеряется, если выйдут из строя два диска в пределах разных зеркал.

Matrix RAID

Matrix RAID - это технология, реализованная фирмой Intel в своих чипсетах начиная с ICH6R. Строго говоря, эта технология не является новым уровнем RAID (ее аналог существует в аппаратных RAID-контроллерах высокого уровня), она позволяет, используя небольшое количество дисков организовать одновременно один или несколько массивов уровня RAID 1, RAID 0 и RAID 5. Это позволяет за сравнительно небольшие деньги обеспечить для одних данных повышенную надёжность, а для других высокую скорость доступа и производства.

Дополнительные функции RAID-контроллеров

Многие RAID-контроллеры оснащены набором дополнительных функций:

  • "Горячая замена" (Hot Swap)
  • "Горячий резерв" (Hot Spare)
  • Проверка на стабильность.

Программный (англ. software ) RAID

Для реализации RAID можно применять не только аппаратные средства, но и полностью программные компоненты (драйверы). Например, в системах на ядре Linux существуют специальные модули ядра , а управлять RAID-устройствами можно с помощью утилиты mdadm . Программный RAID имеет свои достоинства и недостатки. С одной стороны, он ничего не стоит (в отличие от аппаратных RAID-контроллеров, цена которых от $250). С другой стороны, программный RAID использует ресурсы центрального процессора , и в моменты пиковой нагрузки на дисковую систему процессор может значительную часть мощности тратить на обслуживание RAID-устройств.

Ядро Linux 2.6.28 (последнее из вышедших в 2008 году) поддерживает программные RAID следующих уровней: 0, 1, 4, 5, 6, 10. Реализация позволяет создавать RAID на отдельных разделах дисков, что аналогично описанному выше Matrix RAID. Поддерживается загрузка с RAID.

Дальнейшее развитие идеи RAID

Идея RAID-массивов - в объединении дисков, каждый из которых рассматривается как набор секторов, и в результате драйвер файловой системы «видит» как бы единый диск и работает с ним, не обращая внимания на его внутреннюю структуру. Однако, можно добиться существенного повышения производительности и надёжности дисковой системы, если драйвер файловой системы будет «знать» о том, что работает не с одним диском, а с набором дисков.

Более того: при разрушении любого из дисков в составе RAID-0 вся информация в массиве окажется потерянной. Но если драйвер файловой системы разместил каждый файл на одном диске, и при этом правильно организована структура директорий, то при разрушении любого из дисков будут потеряны только файлы, находившиеся на этом диске; а файлы, целиком находящиеся на сохранившихся дисках, останутся доступными.

Сотрудник корпорации Y-E Data, которая является крупнейшим в мире производителем USB флоппи-дисководов, Дэниэл Олсон в качестве эксперимента создал RAID-массив из четырех

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то