Каковы этапы построения информационной модели. Этапы создания информационных моделей объекта. Единицы измерения, сетка, привязка к сетке, массивы

Что такое модель объекта и зачем она создается;
- какую роль играет информация при создании модели;
- что такое информационная модель;
- что такое адекватность информационной модели.

Роль цели при разработке информационной модели объекта

Познавая окружающий мир, каждый из нас формирует собственное представление о нем. Одним из способов познания является создание и исследование модели реального объекта, процесса или природного явления. При построении и исследовании модели принято вводить обобщенное понятие объект исследования (оригинал, прототип), понимая под этим любой материальный или нематериальный объект (процесс), а также природное явление.

Под моделью понимают материальный или мысленно представляемый объект, который в процессе исследования замещает объект-оригинал так, что его изучение дает новые знания об объекте-оригинале. Модель выступает как своеобразный инструмент познания, который исследователь ставит между собой и объектом исследования и с помощью которого изучает интересующий его объект. Процесс моделирования представляет собой циклический процесс, в результате которого можно неоднократно изменять саму модель, постоянно совершенствуя и уточняя ее.

При создании модели важным этапом является сбор информации об объекте в том объеме, который требует поставленная цель построения модели. Без такой информации разработка модели невозможна. 

Модель - это объект, отражающий существенные свойства реального объекта исследования, которые отобраны в соответствии с заданной целью моделирования.

Нет строгих правил, как лучше представить модель. Однако человечество накопило огромный опыт в этой сфере деятельности. Модели могут принимать всевозможные виды и формы. Независимо от этого модель может быть отнесена либо к классу материальных, либо к классу нематериальных моделей.

Любая модель создается и изменяется благодаря имеющейся у человека информации о реальных объектах или явлениях. Умение создавать модели, как и в целом возможности в познании окружающего мира, зависит от умения человека правильно понимать и обрабатывать информацию. Для того чтобы изучить реальный объект, мы целенаправленно собираем о нем информацию.

Эта информация может храниться в памяти человека, но если она будет представлена в какой-либо форме на одном из языков кодирования информации, то в этом случае можно говорить о создании и использовании информационной модели объекта исследования (оригинала).

Изучение одних сторон объекта-оригинала осуществляется ценой отказа от отражения других сторон. Поэтому любая информационная модель замещает реально существующий объект лишь в строго ограниченном смысле. Из этого следует, что для одного объекта может быть создано несколько информационных моделей, концентрирующих внимание на определенных сторонах исследуемого объекта и характеризующих объект с разной степенью детализации.

В качестве иллюстрации рассмотрим сферу жилищного строительства. Речь пойдет о строительстве жилого дома. Какова же должна быть информационная модель этого дома? Оказывается, их может быть множество. Их количество определяется целью, стоящей перед тем, кто имеет отношение к данному строительству. Очевидно, что точки зрения покупателя квартиры, архитектора, инвестора и строительной организации при определении цели построения информационной модели существенно разнятся между собой. Таким образом, для рассматриваемого дома может быть создано несколько разных информационных моделей в зависимости от цели, которая ставится перед теми, кто ее создает. Рассмотрим некоторые из них.

Предположим, целью покупателя является приобретение комфортного жилья. Для построения информационной модели следует отобрать наиболее существенную информацию в соответствии с заданной целью. Хотя понятие комфортности неоднозначно - каждый понимает его по-своему, все же попробуем выразить его в одной из возможных интерпретаций. Перечислим основные показатели, которые должны определить комфортность. Дом должен быть расположен в тихом зеленом месте, оснащен современными техническими устройствами, в нем должен быть подземный гараж, в подъезде должна сидеть консьержка или охранник. Для построения информационной модели необходимо отобрать информацию, отражающую все перечисленные выше требования, и представить ее, например, в виде таблицы или списка. В задачу покупателя входит: поиск компаний, которые занимаются строительством подобных домов; построение для каждого варианта соответствующей информационной модели; по результатам анализа - выбор наилучшего варианта с точки зрения поставленной цели. Выбранный вариант и будет являться информационной моделью (табл. 1.1).

Таблица 1.1. Информационные модели строящихся домов с точки зрения покупателя.
Цель - приобрести комфортное жилье

Аналогичной методикой воспользуемся и для построения информационных моделей для других заинтересованных в строительстве лиц, например инвестора и архитектора. Понятно, что цели и в том и другом случае будут совершенно иными по сравнению с покупателем, а значит, и модели будут отличаться.

С точки зрения инвестора, основной целью является получение прибыли, а значит, показатели, которые содержат интересующую его информацию, в основном будут носить финансовый характер (табл. 1.2).

Таблица 1.2. Информационные модели строящихся домов с точки зрения инвестора.
Цель - получить максимальную прибыль

С точки зрения архитектора, основной целью является разработка современного архитектурного проекта с учетом окружающей среды: прилегающей территории со сложившимся стилем близлежащих домов, существующей инфраструктуры, экологии и т. д. Несколько вариантов информационной модели, соответствующей этой цели, приведен в табл. 1.3.

Выделим главное, на что следует обратить внимание при построении информационной модели:

♦ сначала следует четко сформулировать цель построения информационной модели;
♦ затем отобрать соответствующую этой цели информацию для нескольких аналогичных объектов исследования;
♦ затем представить эту информацию с помощью одного из языков кодирования информации, например в виде перечня параметров (показателей) и их значений по каждому объекту в табличной форме (как показано в табл. 1.1-1.3).

Таблица 1.3. Информационные модели строящихся домов с точки зрения архитектора.
Цель - создать архитектурный проект, соответствующий окружающей среде

Информационная модель - это модель, содержащая целенаправленно отобранную и представленную в некоторой форме наиболее существенную информацию об объекте.

Информационные модели играют очень важную роль в жизни человека. Получаемые знания на уроках в школе позволяют вам составить различные информационные модели, которые в совокупности отражают информационную картину окружающего вас мира.

Уроки истории дают возможность построить модель развития общества, а знание этой модели позволяет создавать историю своей жизни, либо повторяя ошибки предков, либо учитывая их.

На уроках астрономии вам доступными средствами рассказывают о Солнечной системе.

На уроках географии вы получаете информацию о географических объектах: горах, реках, городах и странах. Это тоже информационные модели.

На уроках химии информация о химических свойствах и законах взаимодействия разных веществ подкрепляется опытами, которые являются моделями реальных химических процессов.

Прежде чем построить модель, надо собрать информацию об изучаемом предмете или явлении и представить ее в соответствующей форме. Формы представления информационных моделей могут быть различными. Чаще всего используются следующие формы:
♦ устная (словесная);
♦ знаковая: табличная, графическая, символьная (текст, числа, специальные символы);
♦ в виде жестов или сигналов.

Форма представления информации обычно зависит от инструмента, с помощью которого она будет обрабатываться. Сейчас для обработки информации в большинстве случаев используется компьютер. Этот универсальный инструмент позволяет разрабатывать и исследовать модели разнообразных объектов: молекул и атомов, мостов и архитектурных сооружений, самолетов и автомобилей. В памяти компьютера могут храниться большие массивы информации об исследуемом объекте. Это позволяет рассматривать объект с разных сторон, исследовать его форму, состояния, действия, используя для каждого случая конкретную модель и соответствующие методы моделирования.

Одной из наиболее удобных форм представления информационной модели является таблица. Именно эта форма выбрана в качестве основной во всем комплекте учебников. Это связано также и с тем, что моделирование и исследование свойств модели будет производиться на компьютере, где требуется строгая формализация поставленной задачи. В подобной таблице отражаются основные характеристики объекта, отобранные в соответствии с поставленной целью моделирования. Примерами такой формы представления могут служить табл. 1.1-1.3.

Понятие адекватности информационной модели

Любая модель должна отражать наиболее существенные, с точки зрения поставленной цели, свойства объекта исследования (оригинала или прототипа). В качестве объекта исследования может выступать не только материальный предмет, который человек может осязать (дом, дерево, цветок, предмет мебели), но и нематериальный объект, процесс или явление (музыкальное произведение, устный рассказ, явление природы, танец).

Соответствие модели оригиналу может быть достигнуто по внешнему виду, по структуре, по поведению, как по отдельности, так и по совокупности этих признаков в зависимости от поставленной цели исследования. Соответствие по внешнему виду достигается в основном за счет удовлетворения конструктивных, эргономических и эстетических требований. Соответствие по структуре достигается с помощью системного анализа объекта исследования, в результате которого определяется состав его элементов - простых объектов, из которых состоит оригинал, а также связывающие их отношения. Все это в совокупности определяет структуру исследуемого объекта, наиболее существенные черты которой должна отражать модель. Соответствие по поведению достигается путем анализа поведения прототипа, то есть изучения его динамических свойств, и создания такой модели, которая отражала бы наиболее существенные аспекты этого поведения.

Во всех перечисленных случаях встает проблема оценки качества модели. Качество модели зависит от ее способности отражать и воспроизводить предметы и явления объективного мира, их структуру и закономерный порядок. Сколько информации необходимо собрать для того, чтобы полученная информационная модель в полной мере отображала существенные свойства объекта-оригинала? Для ответа на этот вопрос в моделировании вводится понятие адекватности модели.

Адекватность модели - это соответствие модели объекту-оригиналу по тем свойствам, которые считаются существенными для исследования.

Адекватность информационной модели - это соответствие информационной модели объекту-оригиналу по тем свойствам, которые считаются существенными для исследования.

Понятие адекватности в какой-то мере является условным, так как полное соответствие модели реальному объекту не может быть достигнуто. Любая модель имеет отличия от оригинала. Модель утрачивает свой смысл как в случае полной адекватности оригиналу, когда она перестает быть моделью и становится точной копией моделируемого объекта, так и в случае недостаточной адекватности, чрезмерного отличия от оригинала, когда существенные для исследования свойства оказываются не отраженными в модели.

Особую роль в определении степени адекватности играет информационная модель, которая нужна исследователю не только как самостоятельный объект, но и как основа для создания материальной модели. Вспомним, что в информационную модель включаются только те параметры (показатели), которые отражают наиболее существенную с точки зрения поставленной цели информацию. Значит, какая-то информация не будет включена в информационную модель. Как найти золотую середину: что включать, а чем пренебречь? Ответ на этот вопрос может дать проверка адекватности информационной модели оригиналу.

Адекватность информационной модели определяется несколькими способами, но, как правило, это строгие математические методы анализа на основе теории вероятности и математической статистики. Широко распространен метод численного эксперимента на компьютере, где также приходится применять математические методы как инструмент обобщения полученных результатов.

Для более грубой оценки адекватности модели можно воспользоваться более простыми методами: например, наблюдением за состоянием  и поведением объекта-оригинала или сопоставлением с аналогичными реальными или идеальными объектами, существующими только в воображении человека.

Обратимся к предыдущему примеру, связанному со строительством дома. Какова адекватность трех моделей, представленных в табл. 1.1-1.3, реальному объекту? Понимая, что реальный объект еще не построен, говорить о наличии какой-либо адекватности рано. Однако для того модели и существуют, чтобы уже на предварительных стадиях достичь как можно меньших отличий модели от реального объекта. С точки зрения покупателя, большая степень адекватности может быть достигнута, если в выбранном варианте будет перечислено наибольшее количество показателей, значения которых соответствуют заявленной цели - максимальной комфортности. Если проанализировать представленные четыре варианта значений параметров в табл. 1.1, то предпочтение следует отдать компании «Элита», но это будет самое дорогое жилье. Если же покупатель вводит ограничения по стоимости квартиры, то адекватность информационных моделей других компаний меньше. В этом случае надо провести дополнительную работу по осмыслению своих требований, доработке существующих информационных моделей с целью уточнения дополнительных информационных аспектов, а затем вновь оценить адекватность всех трех вариантов моделей. Аналогично следует поступить и для других информационных моделей, для инвестора и архитектора. Проделайте это самостоятельно.

Контрольные вопросы и задания

Задания

1. Рассмотрите различные варианты информационных моделей для приведенного в теме примера строящегося дома. Для каждой модели оцените ее адекватность.

2. В качестве объекта исследования выберите объект «школа» и разработайте информационные модели, отражающие точку зрения ученика, родителя ученика, директора школы. Для каждой модели оцените ее адекватность.

3. В качестве объекта исследования выберите объект «река» и разработайте информационные модели, отражающие точку зрения рыболова и художника. Для каждой модели оцените ее адекватность.

4. В качестве объекта исследования выберите объект «магазин» и разработайте информационные модели, отражающие точку зрения покупателя, продавца и хозяина магазина. Для каждой модели оцените ее адекватность.

5. В качестве объекта исследования выберите процесс создания школьного спектакля. Разработайте несколько информационных моделей. Для каждой модели оцените ее адекватность.

Контрольные вопросы

1. Что такое модель объекта?

2. Что понимается под объектом исследования и какие существуют синонимы этому понятию?

3. Какие виды моделей вы знаете?

4. Что такое информационная модель объекта?

5. Что является самым главным при построении информацион ной модели?

6. Что такое адекватность модели и зачем вводится это понятие^

7. Как убедиться в том, что информационная модель адекватн; оригиналу?

Информационный объект

Изучив эту тему, вы узнаете и повторите:

Что такое информационная картина мира;
- что такое информационный объект;
- как соотносятся между собой информационная модель и информационный объект.

Мы живем в реальном мире, окруженные разнообразными материальными объектами. Наличие информации об объектах реального мира порождает другой мир, неотделимый от сознания конкретных людей, где существует только информация. Этому миру мы даем разнообразные названия. Одно из таких названий - информационная картина мира.

Познание реального мира происходит через информационную картину мира. Человек формирует собственное представление о реальном мире, получая и осмысливая информацию о каждом реальном объекте, процессе или явлении. При этом у каждого человека существует своя информационная картина мира, которая зависит от множества факторов как субъективного, так и объективного порядка. Конечно, большую роль здесь играет уровень образованности человека. Информационные картины мира у школьника, студента и преподавателя будут существенно различаться. Чем объемнее и разнообразнее информация, которую может воспринять человек, тем более красочной получается эта картина. Так, например, информационная картина мира у ребенка совсем не такая, как у его. родителей.

Один из способов познания реального мира - это моделирование, которое прежде всего связано с отбором необходимой информации и построением информационной модели. Однако любая информационная модель отражает реальный объект только в ограниченном аспекте - в соответствии с поставленной человеком целью. Отсюда и возникает определенная «ущербность» восприятия мира, если человек изучает его только с одной стороны, определяемой одной целью. Всестороннее познание окружающего мира возможно только тогда, когда существуют разные информационные модели, соответствующие разным целям.

Предположим, мы создали несколько информационных моделей для одного объекта реального мира (рис. 1.2). Их количество определяется количеством заданных целей. Например, информационные модели нашей планеты у школьника, астронома, метеоролога и геодезиста будут существенно различаться, так как у них разные цели, а значит, и информация, отобранная ими и положенная в основу информационной модели, будет разной.

При разработке модель постоянно сопоставляется с объектом- прототипом для оценки ее соответствия оригиналу. Мерой соответствия служит понятие адекватности, рассмотренное в предыдущей теме.

Рис. 1.2. Соотношение между объектами реального мира и информационными моделями

Что же произойдет, если мы будем иметь дело только с информационными моделями, отстранившись от реального мира? В этом случае отпадает необходимость в понятии адекватности, так как, устранив объект, мы тем самым разорвем виртуальную связь, устанавливающую объектно-модельное отношение. А это значит, что мы полностью погрузимся в виртуальный, несуществующий мир, где циркулирует только информация. Сравнивать модель будет не с чем, а значит, отпадет необходимость в самом моделировании.

Таким образом, модель превращается в некий самостоятельный объект, который представляет собой совокупность информации.

Вспомнив понятие объекта, которое определяется как некоторая часть окружающего мира, рассматриваемая как единое целое, можно высказать предположение, что информационную модель, которая не имеет связи с объектом-оригиналом, тоже можно считать объектом, но не материальным, а информационным. Таким образом, информационный объект получается из информационной модели путем «отчуждения» информации от объекта-оригинала.

Информационный объект - это совокупность логически связанной - информации.

Тогда информационный мир будет представлять собой множество разнообразных информационных объектов (рис. 1.3).

Рис. 1.3. После разрыва связей с объектами реального мира остается совокупность информационных объектов

Информационный объект, «отчужденный» от объекта-оригинала, можно хранить на различных материальных носителях. Простейший материальный носитель информации - это бумага. Есть также магнитные, электронные, лазерные и другие носители информации.

С информационными объектами, зафиксированными на материальном носителе, можно производить те же действия, что и с информацией при работе на компьютере: вводить их, хранить, обрабатывать, передавать. Однако технология работы с информационными объектами будет несколько иная, нежели с информационными моделями. Создавая информационную модель, мы определяли цель моделирования и в соответствии с ней выделяли существенные признаки, делая акцент на исследовании. В случае с информационным объектом мы имеем дело с более простой технологией, так как никакого исследования проводить не надо. Здесь вполне достаточно традиционных этапов переработки информации: ввода, хранения, обработки, передачи.

При работе с информационными объектами большую роль играет компьютер. Используя возможности, которые предоставляют пользователю офисные технологии, можно создавать разнообразные профессиональные компьютерные документы, которые будут являться разновидностями информационных объектов. Все, что создается в компьютерных средах, будет являться информационным объектом.

Литературное произведение, газетная статья, приказ - примеры информационных объектов в виде текстовых документов. Рисунки, чертежи, схемы - это информационные объекты в виде графических документов. Ведомость начисления заработной платы, таблица стоимости произведенных покупок в оптовом магазине, смета на выполнение работ и прочие виды документов в табличной форме, где производятся автоматические вычисления по формулам, связывающим ячейки таблицы, - это примеры информационных объектов в виде электронных таблиц. Результат выборки из базы данных - это тоже информационный объект.

Довольно часто мы имеем дело с составными документами, в которых информация представлена в разных формах. Такие документы могут содержать и текст, и рисунки, и таблицы, и формулы, и многое другое. Школьные учебники, журналы, газеты - это хорошо знакомые всем примеры составных документов, являющихся информационными объектами сложной структуры. Для создания составных документов используются программные среды, в которых предусмотрена возможность представления информации в разных формах.

Другими примерами сложных информационных объектов могут служить создаваемые на компьютере презентации и гипертекстовые документы. Презентацию составляет совокупность компьютерных слайдов, которые обеспечивают не только представление информации, но и ее показ по заранее созданному сценарию. Гипертекстом может быть назван документ, в котором имеются гиперссылки на другие части этого же документа или на другие документы, содержащие дополнительную информацию.

Контрольные вопросы и задания

Задания

1. Приведите примеры информационных объектов, существующих вне компьютерной среды.

2. Приведите примеры информационных объектов, существующих в компьютерной среде.

Контрольные вопросы

1. Что понимается под информационной картиной мира?

2. Какова информационная картина мира ребенка дошкольного возраста?

3. Какова информационная картина мира старшеклассника?

4. Какой способ познания реального мира вам известен?

5. Что такое информационный объект?

6. При каких условиях информационная модель может восприниматься как информационный объект?

7. Что можно делать с информационным объектом?

ЗАПОМНИТЕ! К каждому рабочему месту подведено опасное для жизни напряжение.

Во время работы следует быть предельно внимательным.

Во избежание несчастного случая, поражения электрическим током, поломки оборудования рекомендуется выполнять следующие правила:
Входите в компьютерный класс спокойно, не торопясь, не толкаясь, не задевая мебель и оборудование и только с разрешения преподавателя.
Не включайте и не выключайте компьютеры без разрешения преподавателя.
Не трогайте питающие провода и разъёмы соединительных кабелей.
Не прикасайтесь к экрану и тыльной стороне монитора.
Не размещайте на рабочем месте посторонние предметы.
Не вставайте со своих мест, когда в кабинет входят посетители.
Не пытайтесь самостоятельно устранять неисправности в работе аппаратуры; при неполадках и сбоях в работе компьютера немедленно прекратите работу и сообщите об этом преподавателю.
Работайте на клавиатуре чистыми, сухими руками; легко нажимайте на клавиши, не допуская резких ударов и не задерживая клавиши в нажатом положении.

ЗАПОМНИТЕ! Если не принимать мер предосторожности, работа за компьютером может оказаться вредной для здоровья.

Чтобы не навредить своему здоровью, необходимо соблюдать ряд простых рекомендаций:
Неправильная посадка за компьютером может стать причиной боли в плечах и пояснице. Поэтому садитесь свободно, без напряжения, не сутулясь, не наклоняясь и не наваливаясь на спинку стула. Ноги ставьте прямо на пол, одна возле другой, но вытягивайте их и не подгибайте.
Если стул с регулируемой высотой, то её следует отрегулировать так, чтобы угол между плечом и предплечьем был чуть больше прямого. Туловище должно находиться от стола на расстоянии 15-16 см. Линия взора должна быть направлена в центр экрана. Если вы имеете очки для постоянного ношения, работайте в очках.
Плечи при работе должны быть расслаблены, локти - слегка касаться туловища. Предплечья должны находиться на той же высоте, что и клавиатура.
При напряжённой длительной работе глаза переутомляются, поэтому каждые 5 минут отрывайте взгляд от экрана и смотрите на что-нибудь, находящееся вдали.

Правильная посадка

Самое главное

1. При работе за компьютером необходимо помнить: к каждому рабочему месту подведено опасное для жизни напряжение. Поэтому во время работы надо быть предельно внимательным и соблюдать все требования техники безопасности.

2. Чтобы работа за компьютером не оказалась вредной для здоровья, необходимо принимать меры предосторожности и следить за правильной организацией своего рабочего места.

Плакат «Техника безопасности»

Основные этапы моделирования





Изучив эту тему, вы узнаете:

Что такое моделирование;
- что может служить прототипом для моделирования;
- какое место занимает моделирование в деятельности человека;
- каковы основные этапы моделирования;
- что такое компьютерная модель;
- что такое компьютерный эксперимент.

Место моделирования в деятельности человека

В теме "Представление о модели объекта" мы определили, что такое модель. Моделью может быть абстрактный или физический объект, исследование которого позволяет познавать существенные черты другого объекта - оригинала. Построение и изучение моделей является сферой человеческой деятельности, которая называется моделированием.

Моделирование - исследование объектов путем построения и изучения их моделей.

Почему не исследовать сам оригинал, зачем создавать модель?

Во-первых, оригинала может не существовать в настоящем: это объект прошлого или будущего. Для моделирования время не помеха. На основании известных фактов, методом гипотез и аналогий можно построить модель событий или природных катаклизмов далекого прошлого. Так, к примеру, были созданы теории вымирания динозавров, зарождения жизни на Земле. С помощью такого же метода можно заглянуть в будущее. Ученые-физики построили теоретическую модель «ядерной зимы», которая наступит на нашей планете в случае ядерной войны. Эта модель - предостережение человечеству . 

Во-вторых , оригинал может иметь много свойств и взаимосвязей, На модели, являющейся упрощенным представлением объекта, можно изучать некоторые интересующие исследователя свойства, не учитывая других. Например, при изучении сложнейшего человеческого организма на уроках биологии используются его разнообразные модели.

В-третьих, часто модель является абстрактным обобщением реально существующих объектов. Манекенщица (модель), демонстрирующая новый фасон одежды, представляет не какого-то реального человека с его особенностями и недостатками, а некоторый обобщенный идеальный образ, стандарт. Говоря о природных явлениях на уроках географии, мы имеем в виду не какое-то конкретное природное явление, например землетрясение, а некоторое обобщение, модель этого явления. В таких случаях прототипом модели является целый класс объектов с какими-то общими свойствами.

В-четвертых, оригинал может быть недоступен исследователю по каким-либо причинам: модель атома водорода, рельефа лунной поверхности, парламентской власти в стране.

Что поддается моделированию? Объектом моделирования может быть материальный объект, явление, процесс или система.

Моделями материальных объектов могут служить наглядные пособия в школьном кабинете, чертежи архитектурных сооружений, уменьшенные или увеличенные копии самих объектов.

Для предотвращения катастроф и применения природных сил на благо человека создаются и изучаются модели явлений живой природы. Академик Георг Рихман, сподвижник и друг великого Ломоносова, еще в первой половине XVIII века моделировал магнитные и электрические явления с целью их изучения и дальнейшего применения.

Можно также создавать модели процессов: ход, последовательную смену состояний, стадии развития объекта или системы. Вы, вероятно, слышали о моделях экономических или экологических процессов, модели развития Вселенной, общества и т. п. 

Если объект рассматривается как система, то строится и исследуется модель системы. Перед строительством жилого массива архитекторы создают натурную модель района застройки, учитывающую расположение зданий, скверов, парков и дорог.

Моделирование является одним из ключевых видов деятельности человека и всегда в той или иной форме предшествует другим ее видам.

Прежде чем браться за любую работу, нужно четко представлять себе отправной и конечный пункты деятельности, а также ее примерные этапы. То же можно сказать о моделировании.

Отправной пункт здесь - прототип (рисунок 11.1). Как было сказано ранее, это может быть существующий или проектируемый объект, явление, процесс или система.

Рис. 11.1. Обобщенные этапы деятельности человека при исследовании объекта

Конечный этап моделирования - принятие решения . В результате моделирования приобретается новая информация и принимается решение о создании нового объекта либо о модификации и использовании существующего.

Примером моделирования при создании новых технических средств может служить история развития космической техники. Для реализации космического полета надо было решить две проблемы: преодолеть земное притяжение и обеспечить продвижение в безвоздушном пространстве. О возможности преодоления притяжения Земли говорил еще Ньютон в XVII веке. К. Э. Циолковский предложил для передвижения в пространстве использовать реактивный двигатель. Он составил довольно точную описательную модель будущего межпланетного корабля с чертежами, расчетами и обоснованиями.

Не прошло и полувека, как описательная модель Циолковского стала основой для реального моделирования в конструкторском бюро С. П. Королева. В натурных экспериментах испытывались различные виды жидкого топлива, форма ракеты, системы управления и жизнеобеспечения, приборы для научных исследований и т. п. Результатом разностороннего моделирования стали мощные ракеты, которые вывели на околоземную орбиту искусственные спутники Земли, корабли с космонавтами на борту и космические станции.

Рассмотрим другой пример. Известный химик XVIII века Антуан Лавуазье, изучая процесс горения, проводил многочисленные опыты. Он моделировал процессы горения с различными веществами, которые нагревал и взвешивал до и после опыта. При этом выяснилось, что некоторые вещества после нагревания становятся тяжелее. Лавуазье предположил, что к этим веществам в процессе нагревания что-то добавляется. Так моделирование и последующий анализ результатов привели к определению нового вещества - кислорода, к обобщению понятия «горение». Это дало объяснение многим известным явлениям и открыло новые горизонты в других областях науки, в частности в биологии. Кислород оказался одним из основных компонентов дыхания и энергообмена животных и растений.

Схема, представленная на рисунке 11.1, показывает, что моделирование занимает центральное место в исследовании объекта. Построение модели позволяет обоснованно принимать решения по усовершенствованию имеющихся объектов и созданию новых, изменению процессов управления ими и, в конечном счете, изменению окружающего нас мира в лучшую сторону. 

Моделирование - творческий процесс и поэтому заключить его в формальные рамки очень трудно. В наиболее общем виде его можно представить этапами, как изображено на рисунке 11.2.

Рис. 11.2. Этапы моделирования

Каждый раз при решении конкретной задачи такая схема может подвергаться некоторым изменениям: какой-то блок будет исключен или усовершенствован, какой-то - добавлен. Все этапы определяются поставленной задачей и целями моделирования. 

Постановка задачи

Жизнь постоянно ставит перед человеком проблемы, требующие разрешения. Эти проблемы по своей сложности нельзя сравнить ни с одной, даже самой трудной задачей из школьных учебников. В школьных задачах вам четко указано, что дано и что требуется получить, а в разделе, где приводится задача, рекомендованы возможные методы ее решения. Как правило, в реальной жизни человек имеет дело с задачами (проблемами), где этого в явной форме нет. Поэтому важнейшим признаком грамотного специалиста является умение поставить задачу, то есть сформулировать ее таким образом и на таком языке, чтобы ее однозначно понял любой, кто будет участвовать в ее решении.

Этап постановки задачи характеризуется тремя основными моментами: описание задачи, определение целей моделирования и формализация задачи .

Описание задачи

Постановка задачи, как правило, начинается с ее описания . Делается это на обычном языке, самыми общими фразами. При этом подробно описывается исходный объект, условия, в которых он находится, и желаемый результат, иначе говоря, отправной и конечный пункты моделирования.

По характеру постановки все задачи можно разделить на две основные группы .

К первой группе можно отнести задачи, в которых требуется исследовать, как изменятся характеристики объекта при некотором воздействии на него. Такую постановку задачи принято называть «что будет, если?..». Например, будет ли сладко, если в чай положить две чайные ложки сахара? Или: что будет, если повысить плату за коммунальные услуги в два раза? 

Некоторые задачи формулируются несколько шире. Что будет, если изменять характеристики объекта в заданном диапазоне с некоторым шагом? Такое исследование помогает проследить зависимость параметров объекта от исходных данных. Например, модель информационного взрыва: «Один человек увидел HJIO и рассказал об этом своим знакомым. Те, в свою очередь, распространили новость дальше и т. д.» Необходимо проследить, каково будет количество оповещенных через заданные интервалы времени.

Вторая группа задач имеет такую обобщенную формулировку: какое надо произвести воздействие на объект, чтобы его параметры удовлетворяли некоторому заданному условию? Такая постановка задачи часто называется «как соелатъ, чтооыпа- пример, какого объема должен быть воздушный шар, наполненный гелием, чтобы он мог подняться вверх с грузом 100 кг?

Наибольшее количество задач моделирования, как правило, являются комплексными. Решение таких задач начинается с построения модели для одного набора исходных данных. Иначе говоря, прежде всего решается задача «что будет, если?..». В редких случаях, но все же бывает, что конечная цель достигается после первого же эксперимента. Чаще этого не случается, и тогда проводится исследование объекта при изменении параметров в некотором диапазоне. И наконец, по результатам исследования производится подбор параметров с тем, чтобы модель удовлетворяла некоторым проектируемым свойствам. Важно понимать, что чем опытнее исследователь, тем точнее он выберет диапазон входных данных и шаг, с которым этот диапазон будет проверяться, и, как следствие, тем скорее он достигнет прогнозируемого результата.

Примером такого комплексного подхода может служить решение задачи о получении химического раствора заданной концентрации: «Химический раствор объемом 5 частей имеет начальную концентрацию 70 %. Сколько частей воды надо добавить, чтобы получить раствор заданной концентрации?»

Сначала проводится расчет концентрации при добавлении 1 части воды. Затем строится таблица концентраций при добавлении 2, 3, 4... частей воды. Полученный результат позволяет быстро пересчитывать модель с разными исходными данными. По расчетным таблицам можно дать ответ на поставленный вопрос: сколько частей воды надо добавить для получения требуемой концентрации.

Рассмотрим три простые задачи, на примере которых в дальнейшем проследим этапы моделирования.

Задача 1. Набор текста.

Набрать и подготовить к печати текст.

Такая задача часто возникает при создании составных документов, в которых одним из элементов является текст. Эта задача относится к постановке «что будет, если?..» .

Задача 2. Движение автомобиля.

Как изменяется скорость автомобиля при движении?

В данной задаче предполагается проследить, как будет изменяться скорость автомобиля в некотором диапазоне времени. Это расширенная постановка задачи «что будет, если?..» .

Задача 3. Расстановка мебели.

Найти наиболее удобную расстановку подросткового мебельного гарнитура в комнате.

Эта задача относится к постановке «как сделать, чтобы?..» .

Цель моделирования

Важным моментом на этапе постановки задачи является определение цели моделирования. От выбранной цели зависит, какие характеристики исследуемого объекта считать существенными, а какие отбросить. В соответствии с поставленной целью может быть подобран инструментарий, определены методы решения задачи, формы отображения результатов.

Рассмотрим возможные цели моделирования.

Первобытные люди изучали окружающую природу, чтобы научиться противостоять природным стихиям, пользоваться природными благами, просто выживать.

Накопленные знания передавались из поколения в поколение устно, позже письменно и, наконец, с помощью предметных моделей. Так был создан глобус - модель Земного шара, позволяющая получить наглядное представление о форме нашей планеты, ее вращении вокруг собственной оси и о расположении материков. Такие модели помогают понять, как устроен конкретный объект, узнать его основные свойства, установить законы его развития и взаимодействия с окружающим миром. В этом случае целью построения модели является познание окружающего мира.

Накопив достаточно знаний, человек задал себе вопрос: «Нельзя ли создать объект с заданными свойствами и возможностями, чтобы противодействовать стихиям и ставить себе на службу природные явления?» Человек стал строить модели еще не существующих объектов. Так родились идеи создания ветряных мельниц, различных механизмов, даже обыкновенного зонтика. Многие из этих моделей стали в настоящее время реальностью. Это объекты, созданные руками человека.

Таким образом, другая важная цель моделирования - создание объектов с заданными свойствами. Эта цель соответствует постановке задачи а как сделать, чтобы...».

Цель моделирования задач типа «что будет, если..» - определение последствий воздействия на объект и принятие правильного решения. Подобное моделирование имеет важное значение при рассмотрении социальных и экологических вопросов: что будет, если увеличить плату за проезд в транспорте, или что произойдет, если закопать ядерные отходы в некоторой местности? 

Например, для избавления Санкт-Петербурга от постоянных наводнений, приносящих огромный ущерб, было решено возвести дамбу. При ее проектировании было построено множество моделей, в том числе и натурных, именно с целью предсказания последствий вмешательства в природу.

Нередко целью моделирования является эффективность управления объектом (или процессом). Поскольку критерии управления бывают весьма противоречивыми, то эффективным оно окажется только при условии, что будут «и волки сыты, и овцы целы».

Например, нужно наладить питание в школьной столовой. С одной стороны, питание должно соответствовать возрастным требованиям (калорийное, содержащее витамины и минеральные соли), с другой - нравиться большинству ребят и быть «по карману» их родителям, а с третьей - технология приготовления должна соответствовать возможностям школьной столовой. Как совместить несовместимое? Найти правильное решение помогает построение модели.

Вернемся к ранее описанным задачам и определим цели моделирования.

Задача 1. Набор текста.

Цель: получить грамотный, удобочитаемый документ.

Задача 2. Движение автомобиля.

Цель: исследовать процесс движения.

Задача 3. Расстановка мебели.

Цель: найти наилучший вариант расстановки мебели с точки зрения проживающего.

Определение цели моделирования позволяет четко установить, какие данные являются исходными, какие - несущественны в процессе моделирования и что требуется получить на выходе.

Формализация задачи

В повседневной жизни мы постоянно сталкиваемся с проявлением формализма, означающего строгий порядок. И хотя мы часто говорим о формализме с отрицательной оценкой, в некоторых случаях без него не обойтись. Возможно ли организовать учет и хранение лекарств в больнице или диспетчерское управление в авиации, если не подчинить эти процессы строгой формализации? В таких случаях она означает четкие правила и их одинаковое понимание всеми, строгий учет, единые формы отчетности и т. д.

Обычно о формализации говорят и тогда, когда собранные данные предполагают обрабатывать математическими средствами.

Те из вас, кто участвовал в переписи населения, вероятно, обратили внимание, какие формы заполняли инспекторы по результатам беседы с членами семьи. В этих формах не было выделено места для эмоций, они содержали формализованные данные опроса - единицы в строго определенных графах. Эти данные затем обрабатывались с использованием математических методов. Нельзя не упомянуть и о том, что обработка велась при помощи компьютера. Компьютер является универсальным инструментом для обработки информации, но для решения любой задачи с его использованием надо изложить ее на строгом, формализованном языке. Каким бы чудом техники ни казался компьютер, человеческий язык ему не понятен.

При формализации задачи отталкиваются от ее общего описания. Это позволяет четко выделить прототип моделирования и его основные свойства. Как правило, этих свойств довольно много, причем некоторые невозможно описать количественными соотношениями. Кроме того, в соответствии с поставленной целью необходимо выделить параметры, которые известны (исходные данные) и которые следует найти (результаты).

Как уже упоминалось выше, прототипом моделирования может быть объект, процесс или система. Если моделируется система, производится ее анализ: выявляются составляющие системы (элементарные объекты) и определяются связи между ними. При анализе необходимо также решить вопрос о степени детализации системы.

Формализацию проводят в виде поиска ответов на вопросы, уточняющие общее описание задачи.

Проведем формализацию ранее описанных задач.

Задача 1. Набор текста.

Что моделируется? Объект «текст» Где взять содержание текста? Имеется в виде черновика Каков предполагаемый тип печати? Черно-белая Каковы параметры текста? Абзацный отступ, правая и левая границы, гарнитура, размер и начертание шрифта, цвет (черный) Что надо получить? Набранный, отредактированный и оформленный текст

Задача 2. Движение автомобиля.

Что моделируется? Процесс движения объекта «автомобиль» Вид движения Равноускоренное Что известно о движении? Начальная скорость (V 0), ускорение (∝), максимальная развиваемая автомобилем скорость (V Maкc) Что надо найти? Скорость (V i) в заданные моменты времени (t i) Как задаются моменты времени? От нуля через равные интервалы (A t) Что ограничивает расчеты? V i х V Maкc

Такие характеристики объекта, как цвет, тип кузова, год выпуска и общий пробег, степень изношенности шин и многие другие, в данной постановке учитывать не будем.

Задача 3. Расстановка мебели.

Что моделируется? Система КОМНАТА-МЕБЕЛЬ Комната - рассматривается Система как объект или как система? Какие элементы системы Стены, дверь, окно КОМНАТА важны в данной задаче? Мебель - рассматривается Система как объект или как система? Что входит в состав мебели? Диван, письменный стол, платяной шкаф, шкаф общего назначения (для книг, музыкального центра, игрушек и прочего), настенный спортивный комплекс Какие параметры мебели Длина, ширина, высота заданы? Какие параметры комнаты В виде эскиза заданы: геометрическая заданы? форма, размеры, расположение окна и двери Что надо получить? Вариант наиболее удобной расстановки мебели, представленный в виде чертежа (эскиза)

В данной задаче нецелесообразно деление предметов мебели на составляющие. Например, не имеет смысла вместо стола рассматривать совокупность объектов - столешница, ящики, ножки.

При расстановке мебели надо учитывать следующие отношения:

♦ высота мебели меньше высоты комнаты; ♦ предметы мебели должны располагаться лицевой стороной внутрь комнаты; ♦ предметы мебели не должны заслонять собой дверь и окно; ♦ вокруг спортивного комплекса должно быть достаточно свободного места.

При расстановке мебели надо также учитывать следующие связи:

♦ все предметы мебели должны быть вплотную придвинуты к стене; ♦ письменный стол должен стоять либо у окна, либо недалеко от окна у стены так, чтобы свет падал слева.

Связи между самими предметами мебели учитывать не будем. Это означает, что все предметы могут располагаться по отношению друг к другу как угодно. Это существенно упрощает задачу.

Этап постановки задачи движет исследователя от описания задачи через уяснение целей моделирования к ее формализации. 

Он является основополагающим в моделировании. Этот этап человек проходит самостоятельно, без помощи компьютера. Дальнейшая успешная работа по разработке модели зависит от правильности постановки задачи.

Разработка модели

Этап разработки модели начинается с построения информационной модели в различных знаковых формах, которые на завершающей стадии воплощаются в компьютерную модель. В информационных моделях задача приобретает вид, позволяющий принять решение о выборе программной среды и четко представить алгоритм построения компьютерной модели.

Информационная модель

Выбор наиболее существенных данных при формировании информационной модели и ее сложность определяются целью моделирования. Параметры объектов, определенных при формализации задачи, располагаются в порядке убывания значимости. При моделировании учитываются не все, а лишь некоторые свойства, интересующие исследователя.

Если отбросить существенные факторы, то модель будет неверно отражать оригинал (прототип). Если оставить их слишком много, модель окажется сложна для построения и исследования. Во многих исследованиях создают несколько моделей одного объекта, начиная от простейших, с минимальным набором определяющих параметров. Затем постепенно уточняют модель, добавляя некоторые из отброшенных характеристик.

Иногда задача может быть уже сформулирована в упрощенной форме, цель - четко поставлена, а параметры модели, которые надо учесть, - определены. Задачи такого вида вам приходилось неоднократно решать на уроках математики и физики. Однако в обычной жизни отбор информации приходится проводить самостоятельно. 

Результатом построения информационной модели является хорошо знакомая вам таблица характеристик объекта. В зависимости от типа задачи таблица может видоизменяться.

Рассмотрим информационные модели описанных выше задач.

Задача 1. Набор текста.

Информационная модель

При построении компьютерной образно-знаковой модели (текстовый или графический документ) информационная модель будет описывать объекты, их параметры, а также предварительные исходные значения, которые исследователь определяет в соответствии со своим опытом и представлениями, а затем уточняет в ходе компьютерного эксперимента.

Задача 2. Движение автомобиля.

Информационная модель

В расчетных задачах таблица содержит перечень исходных, расчетных и результирующих параметров.

Задача 3. Расстановка мебели.

Информационная модель

Информационная модель, как правило, представляется в той или иной знаковой форме. Таблица - один из примеров знаковых моделей.

Иногда полезно дополнить представление об объекте и другими знаковыми формами (схемой, чертежом, формулами), если это способствует лучшему пониманию задачи.

Рассмотрим знаковые модели для описанных выше задач.

Задача 1. Набор текста.

Знаковая модель является результатом решения задачи.

Задача 2. Движение автомобиля.

Задача о движении автомобиля становится более понятной, если привести рисунок с указанием обозначений, используемых в задаче (рисунок 11.3). 

Рис. 11.3. Иллюстрация к задаче о движении автомобиля

Математическая модель движения автомобиля имеет вид:

T i + 1 = t 1 + V i + 1 = V 0 + ∝t 1

Правильно составленная математическая модель просто необходима в задачах, где требуется рассчитать значения параметров объекта.

Для систем информационная модель дополняется схемой связей, выявленных при анализе. Примеры таких схем приведены в п. 8.4. Схема связей может иметь вид, представленный на рисунке 11.4. На этой схеме связи изображаются стрелками, направленными от одного объекта к другому. Односторонние стрелки показывают направление действия связи - от определяющего объекта к определяемому. Двухсторонние стрелки указывают, что объекты взаимно влияют друг на друга. Отношения при построении подобных схем изображаются пунктирными стрелками.

Около стрелки можно пояснить характер связи.

Рис. 11.4. Пример схемы связей между объектами системы


Задача 3. Расстановка мебели.

Схема связей и отношений представлена на рисунке 11.5.

Рис. 11.5. Схема связей и отношений к задаче о расстановке мебели


Знаковые формы могут иметь и другой вид.

Например, при создании географических или исторических карт разрабатывается система условных обозначений.

И лишь для простых, знакомых по содержанию задач знаковые модели не требуются.

Процесс творчества и исследования всегда предполагает мучительные поиски знаковой и образной формы представления модели. Раньше этому процессу сопутствовали корзины выброшенных черновиков. В настоящее время, когда компьютер стал основным инструментом исследователя, многие предпочитают составлять и записывать предварительные наброски, формулы сразу на компьютере, экономя при этом время и горы бумаги. 

Компьютерная модель

Теперь, когда сформирована информационная знаковая модель, можно приступать собственно к компьютерному моделированию - созданию компьютерной модели. Сразу возникает вопрос о средствах, которые необходимы для этого, то есть об инструментах моделирования.

Компьютерная модель - это модель, реализованная средствами - программной среды.

Существует множество программных комплексов, которые позволяют проводить построение и исследование моделей (моделирование). Каждая программная среда имеет свой инструментарий и позволяет работать с определенными видами информационных моделей. Поэтому перед исследователем возникает нелегкий вопрос выбора наиболее удобной и эффективной среды для решения поставленной задачи. Надо сказать, что одну и ту же задачу можно решить, используя различные среды.

Первоначально, много лет назад, компьютеры использовались только для решения вычислительных задач. Для этого надо было составлять программы на специальных языках программирования. С развитием программного и аппаратного обеспечения круг задач, которые можно решать при помощи компьютера, существенно расширился.

В среде программирования можно теперь не только провести традиционный расчет параметров объекта, но и построить образную модель (рисунок, схему, анимационный сюжет), используя графические средства языка.

В процессе разработки компьютерной модели исходная информационная знаковая модель будет претерпевать некоторые изменения по форме представления, так как должна ориентироваться на определенную программную среду и инструментарий. Возможности конкретных программных сред вы изучили на практических занятиях. О выборе программной среды в соответствии с видом информации говорилось в темах 9, 10.

От выбора программной среды зависит алгоритм построения компьютерной модели, а также форма его представления. 

Например, это может быть блок-схема. На рисунке 11.6 представлен алгоритм задачи о движении автомобиля в виде блок- схемы. Руководствуясь блок-схемой, задачу можно решить в разных средах. В среде программирования это программа, записанная на алгоритмическом языке. В прикладных средах это последовательность технологических приемов, приводящая к решению задачи.

Рис. 11.6. Представление алгоритма в виде блок-схемы

Например, при моделировании в среде графического редактора или текстового процессора алгоритм может быть представлен в словесной форме, описывающей последовательность действий по созданию объектов и, если требуется, технологических приемов. При разработке алгоритма построения модели в электронных таблицах особое внимание обращается на выделение областей исходных и расчетных данных и правила записи формул, связывающих данные разных областей.

Исходя из вышесказанного, можно сделать вывод, что при моделировании на компьютере необходимо иметь представление о классах программных средств, их назначении, инструментарии и технологических приемах работы. Разнообразное программное обеспечение позволяет преобразовать исходную информационную знаковую модель в компьютерную и провести компьютерный эксперимент.

Рассмотрим возможные варианты выбора компьютерной среды для приведенных выше примеров. Справедливости ради следует заметить, что предложенные в качестве иллюстраций задачи могут быть решены и зачастую решаются без применения компьютера.

Задача 1. Набор текста.

Для моделирования текстовых документов традиционно используется среда текстового процессора.

Задача 2. Движение автомобиля.

Для задач, в которых требуется получить расчетные значения, подходит среда электронных таблиц. В этой среде информационная и математическая модели объединяются в таблицу, содержащую три области: исходные данные, промежуточные расчеты и результаты. Электронная таблица позволяет не только рассчитать требуемые скорости, но и построить график движения автомобиля.

Не менее успешно подобную задачу можно решить в среде программирования. Например, среда ЛогоМиры позволяет рассчитать значения скорости автомобиля через равные промежутки времени, а также создать сопровождающий анимационный сюжет, в котором будет двигаться машина и через равные промежутки будут появляться расчетные значения.

Задача 3. Расстановка мебели.

Результатом решения задачи является наиболее удобный вариант расстановки мебели, представленный в том или ином виде: мысленном, в виде чертежа (эскиза), в форме описания. Очень часто подобная задача решается «в уме». Но если требуется облечь рассуждения в знаковую форму, то подойдет любая среда, позволяющая работать с графикой. Это может быть графический редактор, встроенный инструментарий векторной графики текстового процессора или среда программирования. 

Цель урока: организовать совместную учебную деятельность для формирования и развития исследовательских навыков учащихся; создать условия для освоения технологии моделирования.

Должны знать: основные этапы разработки и исследования моделей на компьютере.

Должны уметь: построить модель объекта или процесса согласно поставленной цели.

План работы

  1. Проверка домашнего задания.
  2. Объяснение новой темы.

Использование компьютера для исследования информационных моделей различных объектов и систем позволяет изучить их изменения в зависимости от значения тех или иных параметров. Процесс разработки моделей и их исследования на компьютере можно разделить на несколько основных этапов.

На первом этапе исследования объекта или процесса обычно строится описательная информационная модель . Такая модель выделяет существенные с точки зрения целей проводимого исследования параметры объекта, а несущественными параметрами пренебрегает.

На втором этапе создается формализованная модель, то есть описательная информационная модель записывается с помощью какого-либо формального языка. В такой модели с помощью формул, уравнений, неравенств и пр. фиксируются формальные соотношения между начальными и конечными значениями свойств объектов, а также накладываются ограничения на допустимые значения этих свойств.

Однако далеко не всегда удается найти формулы, явно выражающие искомые величины через исходные данные. В таких случаях используются приближенные математические методы, позволяющие получать результаты с заданной точностью.

На третьем этапе необходимо формализованную информационную модель преобразовать в компьютерную модель , то есть выразить ее на понятном для компьютера языке. Существуют два принципиально различных пути построения компьютерной модели:

1) построение алгоритма решения задачи и его кодирование на одном из языков программирования;
2) построение компьютерной модели с использованием одного из приложений (электронных таблиц, СУБД и пр.).

В процессе создания компьютерной модели полезно разработать удобный графический интерфейс, который позволит визуализировать формальную модель, а также реализовать интерактивный диалог человека с компьютером на этапе исследования модели.

Четвертый этап исследования информационной модели состоит в проведении компьютерного эксперимента. Если компьютерная модель существует в виде программы на одном из языков программирования, ее нужно запустить на выполнение и получить результаты.

Если компьютерная модель исследуется в приложении, например в электронных таблицах, можно провести сортировку или поиск данных, построить диаграмму или график и так далее.

Пятый этап состоит в анализе полученных результатов и корректировке исследуемой модели. В случае различия результатов, полученных при исследовании информационной модели, с измеряемыми параметрами реальных объектов можно сделать вывод, что на предыдущих этапах построения модели были допущены ошибки или неточности. Например, при построении описательной качественной моделимогут быть неправильно отобраны существенные свойства объектов, в процессе формализации могут быть допущены ошибки в формулах и так далее. В этих случаях необходимо провести корректировку модели, причем уточнение модели может проводиться многократно, пока анализ результатов не покажет их соответствие изучаемому объекту.

Вопросы для размышления

1. В каких случаях могут быть опущены отдельные этапы построения и исследования модели? Приведите примеры создания моделей в процессе обучения.

Практическая работа

На сегодняшнем уроке я предлагаю вам построить информационную модель качеств своей личности и исследовать её с целью определения профессиональных предпочтений.

(Раздаточный материал (Приложение 1) выдан учащимся в начале урока, на “Рабочем столе” компьютера находится Таблица 2)

1. Тип мышления

Все люди делятся на “левополушарных” (Л) и “правополушарных” (П). У “левополушарных” преобладает логический тип мышления. Они, в общем-то, оптимисты и считают, что большую часть своих проблем решат самостоятельно.

Если Вы “левополушарный”, то, как правило, без особого труда вступаете в контакт с людьми. В работе и житейских делах больше полагаетесь на расчет, чем на интуицию. Испытываете больше доверия к информации, полученной из печати, чем к собственным впечатлениям.

Вам легче даются виды деятельности, требующие логического мышления. Если профессия, к которой вы стремитесь, требует именно логических способностей, то вам повезло. Вы можете стать хорошим математиком, преподавателем точных наук, конструктором, организатором производства, программистом ЭВМ, пилотом, водителем, чертежником... продолжите этот список сами.

2. “Правополушарный” – это означает, что вы человек художественного склада. Представитель этого типа склонен к некоторому пессимизму. Предпочитаете полагаться больше на собственные чувства, чем на логический анализ событий, и при этом зачастую не обманывае тесь. Не очень общителны, но зато можете продуктивно работать даже в неблагоприятных условиях (шум, различные помехи и т. п.). Вас ожидает успех в таких областях деятельности, где требуются способности к образному мышлению, – художник, актер, архитектор, врач, воспитатель.

3. Перед человеком, в равной степени сочетающим в себе признаки логического и художественного мышления, открывается широкое поле деятельности. Зоны его успеха там, где требуется умение быть последовательным в работе и одновременно образно, цельно воспринимать события, быстро и тщательно продумывать свои поступки даже в экстремальной ситуации. Управленец и испытатель сложных технических систем, лектор и полководец – все эти профессии требуют гармоничного взаимодействия противоположных типов мышления.

Свою принадлежность к художникам или мыслителям можно выявить и по некоторым биологическим признакам. Проведем несложный экспресс-анал из.

А. Переплетите пальцы рук. Сверху оказался большой палец левой руки (Л) или правой (П)? Запишите результат.

Б. Сделайте в листе бумаги небольшое отверстие и посмотрите сквозь него двумя глазами на какой-либо предмет. Поочередно закрывайте то один, то другой глаз. Предмет смещается, если вы закрываете правый глаз или левый?

В. Станьте в “позу Наполеона”, скрестив руки на груди. Какая рука оказалась сверху?

Г. Попробуйте изобразить “бурные аплодисменты”. Какая ладонь сверху?

Теперь посмотрим, что у вас получилось.

ПППП – обладатель такой характеристики консервативен, предпочитает общепринятые формы поведения.

ПППЛ – темперамент слабый, преобладает нерешительность.

ППЛП – характер сильный, энергичный, артистический. При общении с таким человеком не помешают решительность и чувство юмора.

ППЛЛ – характер близок к предыдущему типу, но более мягок, контактен, медленнее привыкает к новой обстановке. Встречается довольно редко.

ПЛПП – аналитический склад ума, основная черта – мягкость, осторожность. Избегает конфликтов, терпим и расчетлив, в отношениях предпочитает дистанцию.

ПЛПЛ – слабый тип, встречается только среди женщин. Характерны подверженность различным влияниям, беззащитность, но вместе с тем способность идти на конфликт.

ПЛЛП – артистизм, некоторое непостоянство, склонность к новым впечатлениям. В общении смел, умеет избегать конфликтов и переключаться на новый тип поведения, Среди женщин встречается примерно вдвое чаще, чем среди мужчин.

ПЛЛЛ – а этот тип, наоборот, более характерен для мужчин. Отличается независимостью, непостоянством и аналитическим складом ума.

ЛППП – один из наиболее распространенных типов. Он эмоционален, легко контактирует практически со всеми, Однако недостаточно настойчив, подвержен чужому влиянию.

ЛППЛ – похож на предыдущий тип, но еще менее настойчив, мягок и наивен. Требует особо бережного отношения к себе.

ЛПЛП – это самый сильный тип характера. Настойчив, энергичен, трудно поддается убеждению. Несколько консервативен из-за того, что нередко пренебрегает чужим мнением.

ЛПЛЛ – характер сильный, но ненавязчивый. Внутренняя агрессивность прикрыта внешней мягкостью. Способен к быстрому взаимодействию, но взаимопонимание при этом отстает.

ЛЛПП – характерны дружелюбие, простота, некоторая разбросанность интересов.

ЛЛПЛ – простодушие, мягкость, доверчивость – вот его основные черты. Очень редкий тип, у мужчин практически не встречается.

ЛЛЛП – эмоциональность в сочетании с решительностью приводит к непродуманным поступкам. Энергичен.

ЛЛЛЛ – обладает способностью по-новому взглянуть на вещи. Ярко выраженная эмоциональность сочетается с индивидуализмом, упорством и некоторой замкнутостью.

Внесите, пожалуйста, в таблицу №2 , находящуюся на “Рабочем столе” полученные характеристики.

Как вы заметили, сочетание ЛЛЛЛ соответствует художественному типу, а ПППП присуще мыслителям. Но поскольку в чистом виде эти типы встречаются нечасто, то остальные сочетания в какой-то мере отражают существующее многообразие психологических структур. Впрочем, предложенная классификация – лишь первый шаг к познанию самого себя. Сделаем следующий.

2. Контактность

Не так уж много на земле профессий, позволяющих обходиться без общения с людьми. Поэтому вы поступите правильно, если обратите внимание на такие качества, как общительность, контактность. Они полезны не только обаятельным кинозвездам, но и каждому, кто хочет с толком использовать свой дар речи. Поэтому поставим вопрос таким образом: куда вы обращены – к людям или к себе? С кем бы вы предпочли общаться – с самим собой или с другими?

Если хотите определить свой психологический тип по отношению к окружающим, то оцените приведенные высказывания в баллах от 0 до 4, затем подсчитайте сумму.

  1. Я легко сближаюсь с людьми.
  2. У меня много знакомых, с которыми я охотно встречаюсь.
  3. Я разговорчивый человек.
  4. Я непринужденно чувствую себя с незнакомыми людьми
  5. Мне стало бы неприятно, если бы надолго исчезла возможность общения. -
  6. Когда мне надо что-то узнать, я предпочитаю спросить, а не копаться в книгах.
  7. Мне удается оживить скучную компанию.
  8. Я говорю быстро.
  9. Когда я надолго оторван от людей, мне очень хочется поговорить с кем-нибудь.

1–12 баллов. Интроверт. Обращенный в себя, он с трудом вступает в контакт, в компании способен нагнать на всех тоску. Такой человек ориентирован в основном на собственные чувства, сдержан, застенчив, общению предпочитает книгу. В решениях серьезен, эмоциям не доверяет, любит порядок. Пессимистичен, и поэтому вряд ли из него получится хороший педагог или организатор. По темпераменту обычно флегматик или меланхолик.

13–24 балла. Амбаверт. Для него характерны спокойные, ровные отношения с людьми, ответственность за свои поступки. Именно такими качествами обладают, как правило, лучшие руководители, педагоги – словом, все, чья работа требует умения общаться с людьми.

25–36 баллов. Экстраверт. Словоохотливый, общительный оптимист, любит каверзные вопросы, острые шутки. Общение с кем бы то ни было для него не проблема, и тут он прекрасный импровизатор. Все у него получается легко и непринужденно. Но не менее легко относится и к собственным обязательствам, и поэтому хозяином своего слова его можно назвать лишь с иронией. Несдержан, потому что не считает нужным контролировать эмоции и чувства. Такой человек обычно холерик или сангвиник.

Приложение 2 ), находящуюся на “Рабочем столе” полученные характеристики.

3. Склонности и предпочтения

Специальные методики помогают выявлять способности и склонности человека быстро и в широком диапазоне. Таких методик уже сотни, но все равно их недостаточно. Ведь далеко не все области человеческой деятельности настолько простоты, что к ним можно сформулировать четкие, однозначные требования. Тем не менее известный психолог Е. А. Климов разделил все профессии на пять групп: к первой он отнес профессии типа “человек – природа” (например, лесовод, агроном, биолог), ко второй – “человек – техника” (слесарь, механизатор, монтажник), к третьей – “человек – человек” (педагог, медсестра, администратор), к четвертой – “человек – знаковая система” (стенографистка, оператор ЭВМ, математик), к пятой – “человек – художественный образ” (ювелир, фотограф, художник).

Ответив на следующие вопросы, вы можете определить, какой тип профессий предпочитаете. Нравится ли вам занятие, о котором говорится в левой части вопроса (колонка а), или нет? Что для Вас предпочтительнее? Выберите вариант ответа.

Таблица 1

а б
1 Ухаживать за животными Обслуживать машины, приборы
2 Лечить больных Составлять компьютерные программы
3 Следить за качеством книжных иллюстраций, плакатов Следить за состоянием и развитием растений
4 Обрабатывать материалы (дерево, ткань, металл) Рекламировать, продавать товары
5 Обсуждать научно-популярные статьи Обсуждать пьесы, концерты
6 Выращивать животных Помогать товарищам в работе, спорте
7 Настраивать музыкальные инструменты Управлять трактором, тепловозом
8 Давать людям информацию (в справочном бюро, на экскурсии) Оформлять выставки, участвовать в подготовке концертов
9 Ремонтировать вещи, изделия Искать и справлять ошибки в текстах, рисунках
10 Лечить животных Выполнять вычисления, расчеты
11 Выводить новые сорта растений Конструировать машины, проектировать дома
12 Разбирать споры между людьми, убеждать, разъяснять Разбираться в чертежах, схемах
13 Наблюдать за работой художественной самодеятельности Изучать жизнь микробов
14 Налаживать медицинские приборы Оказывать людям медицинскую помощь
15 Составлять отчеты о наблюдаемых явлениях Художественно описывать события
16 Делать лабораторные анализы в больнице Осматривать больных, назначать лечение
17 Красить стены, расписывать изделия Монтировать здания, собирать машины
18 Организовывать культпоходы, экскурсии Участвовать в концертах, спектаклях
19 Изготовлять детали, строить здания Чертить, копировать карты
20 Бороться с болезнями растений Работать на компьютере

Выбранные варианты ответов обведите, пожалуйста, в таблице 3

10б 11а 11б 12а 126 13а 13б 14а 14б 15а 15б 16а 16б 17а 176 18а 186 19а 19б 20а 20б

В двух колонках “попаданий” окажется больше всего, они покажут Ваши предпочтения в деятельности.

Внесите, пожалуйста, в таблицу 2 (см. Приложение 2 ) , находящуюся на “Рабочем столе” полученные характеристики.

Теперь, когда вы более или менее твердо определили, какой тип профессии вам больше по душе, пора подумать и о необходимых качествах, которые понадобятся вам в будущем.

Домашнее задание: выделить в проделанной работе этапы моделирования и на основе полученных данных составить список предпочтительных профессий и смоделировать свой профессиональный образ.

Совет: не относитесь к полученным результатам слишком серьезно.

Используемая литература:

  1. Угринович Н. Информатика и ИКТ. Базовый курс. Учебник для 9 класса. – М.: БИНОМ, 2006.
  2. Жариков Е., Крушельницкий Е. Для тебя и о тебе. – М.: Просвещение,1991.

Основные этапы построения моделей. Формализация моделирования.

П/р 6. Моделирование и формализация.

Цели :

Обучающие: знать основные этапы построения моделей;

сформировать понятие «формализация»; уметь

создавать модель в соответствии с поставленной

Развивающие: развитие познавательных интересов, навыков работы на компьютере, самоконтроля;

Воспитательные: воспитание информационной культуры , внимательности, аккуратности

План урока

Оргмомент Актуализация знаний Изучение нового материала Рефлексия Практическая работа Итог

1. Приветствие. Ознакомление с темой и планом урока. Оглашение оценок за с/р (прошлый урок)

2. тестирование (2 учащихся)

проверка домашнего задания

Фронтальная работа

1. Как называется упрощенное подобие реального объекта?

2. Что вы понимаете под материальной моделью объекта?

3. Приведите пример материальной и информационной моделей земного шара.

4. Может ли один и тот же объект иметь разные информационные модели?

5. Какие свойства реальных объектов воспроизводят муляжи продуктов в витрине магазина?

6. назовите формы представления моделей

7. Что такое информационная модель?

3. Сегодня мы продолжаем знакомиться с одной из важнейших тем информатики - моделированием.

Как использовать алгебраический язык формул для построения моделей?

Как правильно построить модель какого либо объекта, процесса или явления?

Что такое компьютерный эксперимент?

А начнем мы с вами с того, что познакомимся с тем, в какой форме представляют объекты информационные модели

См ПРЕЗЕНТАЦИЮ:

Образная

(зрительные образы зафиксированы на каком-либо носителе информации)

Фото, видео, и т. д

Знаковая

(модели описываются с использованием различных языков)

Текст, формула, таблица и т. д.

Для представления информационных моделей используются естественные и формальные языки.

Одним их наиболее распространенных формальных языков является алгебраический язык формул в математике, который позволяет описывать функциональные зависимости между величинами. Модели, построенные с использованием математических формул и понятий, называются математическими. Математическая модель, как правило, следует за описательной. В компьютерном моделировании для оформления формул используется редактор формул. В приложении MS WORD это Microsoft Equation

Процесс построения информационных моделей с помощью формальных языков называется– формализацией

Формализация является одним из важнейших этапов моделирования.

Задача - это некоторая проблема, которую необходимо решить.

Проблема формируется на обычном языке. Главное - определить объект моделирования и представить результат

Цель моделирования показывает для чего необходимо создать модель. Первобытные люди изучали окружающий мир с целью познания. Накопив достаточно знаний, человечество поставило сл. Цель - создание объектов с заданными свойствами.(идеи создания различ. механизмов). И, наконец, человек стал думать о том, какие последствия будут иметь те или иные воздействия на объект и как принять правильное решение. Например, как наладить управление в школе, чтобы учителя и ученики чувствовали себя в ее стенах комфортно?

Анализ объекта подразумевает четкое выделение моделируемого объекта и его свойств. Этот процесс называется системным анализом

(описание элементов системы и указание их взаимосвязей.)

Например, сист. анализ системы самолет:

Элементы системы: корпус, хвост, крылья и т. д.;

Свойства компонентов: форма, размер,…

Все компоненты связаны строго определенным образом.

2этап - разработка модели. Одно из основных действий - сбор информации - зависит от цели моделирования. Например, объект «растение» с точки зрения биолога, медика и ученика:

биолог сравнит растение с другими, изучит корневую систему и т. д.; медик изучит химич. состав;

ученик зарисует внеш. вид,

выбор информации зависит от цели. Построение информ. модели-отправной пункт разработки модели. Когда собрали необх. данные, определили все связи между компонентами системы, можно представить инф. модель в знаковой форме. Знаковая форма может быть компьютерной и некомпьютерной. При построении компьютерной модели необх. правильно выбрать программную среду.

3 этап - компьютерный эксперимент. После того, как модель создана, необходимо выяснить ее работоспособность. Для этого необх. провести компьютерный эксперимент. До появления ПК эксперименты проводились либо в лабораториях, либо на настоящем образце изделия. Большие затраты средств и времени. Нередко образцы разрушались –а если это самолет? С развитием вычислительной техникиновый метод исследования_ компьютерный эксперимент. Он основан на тестировании модели.

Тестирование - процесс проверки правильности построения и функционирования моделей.

4 этап –принятие решения. Либо вы заканчиваете исследование, либо продолжаете. Основа для принятия решения - результаты тестирования

4 . Назови формы представления информационных моделей

К каким языкам относится математический язык?

Как называется процесс построения информационных моделей с помощью формальных языков?

Перечисли этапы создания модели

5 . Практическая работа

Постройте формализованную информационную модель решения квадратного уравнения. При выполнении используйте редактор формул Microsoft Equation

6. Оценить работу класса и назвать учащихся, отличившихся на уроке.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то