Назначение системного блока. Цп автоматизированные системы управления и промышленная безопасность

Лекция 1. Начальные сведения о ЭВМ.

История развития вычислительной техники и программирования.

Основные сведения о компьютере. Устройства, входящие в состав компьютера.

Известно, что необходимость вычисления возникло очень давно, и потребность вычисления всегда была неразрывно связано с практической деятельностью человека. Наряду с непрерывным ростом потребностей в вычислениях и с ростом методов вычислений, возникло и развивалась вычислительная техника.

Идея создания простейших ЭВМ возникла еще в Древне Греции, но только в 1642 году она частично была воплощена в механизме, сконструированном французским физиком Блезом Паскалем. При помощи этого механизма можно было складывать многозначные числа, передаваемые поразрядно.

В 1673 году Гойфрид Вильгельм Лейбниц сконструировал арифмометр, позволяющий механически выполнять четыре арифметических действия. Начиная с XIX века, арифмометры получили широкое применение. Но многие расчеты производились очень медленно. Причина проста – при таких расчетах выбор выполняемых действий и запись результатов производилось человеком, а его скорость работы ограничена.

В первой половине XIX века английский математик Чарльз Бэббидж попытался построить универсальное вычислительное устройство – Аналитическую машину, которая должна была выполнять вычисления без участия человека. Бэббидж не смог довести до конца работу по созданию машины – она оказалась слишком сложной для техники того времени. Однако он разработал все основные идеи, и в 1943 году американец Говард Эйкен на основе электромеханических реле смог построить на одном из предприятий фирмы IBM такую машину под названием «Марк-1». Быстродействие ее было 0.3 сек на одну операцию.

Начиная с 1943 года, группа специалистов под руководством Жанна Мочли и Проспера Экерта в США начала конструировать подобную машину уже на основе электронных ламп. Их машина называлась «ENIAC» и работа в 1000 раз быстрее.

Важное значение для развития ЭВМ имела, сформулированная в 1945 году американским ученым Джоном фон Нейманом, концепция запоминаемой программы. Неймон предложил помещать программу вычислений в запоминающее устройство ЭВМ, что давало возможность легко преобразовывать программы и обрабатывать их.

Первый компьютер, в котором были воплощены принципы фон Неймана, был построен в 1949 году английским исследователем Морисом Уилксом.

Компьютеры 40-х 50-х годов были очень большими – огромные залы были заставлены шкафами с электронным оборудованием. Все это стоило очень дорого, поэтому компьютеры были доступны только крупным фирмам. Однако в борьбе за покупателя фирмы, производящие ЭВМ, стремились сделать свою продукцию дешевле и компактнее.

Первый шаг к уменьшению размеров компьютера стал возможен с появлением в 1948 году транзисторов. И в 1965 году первый мини-компьютер PDP-8 имел размеры холодильника и стоил 20 тыс. долларов. Но к тому времени были изобретены интегральные схемы – еще один шаг к миниатюризации компьютера.

В 1968 году был выпущен первый компьютер на интегральных схемах, а в 1970 году фирма INTEL начала продавать интегральные схемы памяти.

В этом же году появился первый микропроцессор INTEL–4004. Конечно, его возможности были скромнее, чем у центрального процессора большой ЭВМ. Он работал гораздо медленнее и мог одновременно обрабатывать только 4 бита информации.

Но в 1973 году фирма INTEL выпустила 8-битовый микропроцессор INTEL–8008, а в 1974 году его усовершенствованную версию INTEL-8080.

В конце 1975 года Пол Ален и Билл Гейтс создали для первого коммерчески распространяемого компьютера «Альтаир – 8800» интерпретатор языка Бэйсик, что позволило пользователям достаточно просто общаться с компьютером и легко писать для него программы.

Распространение персональных компьютеров в конце 70-х годах привело к некоторому снижению спроса на большие ЭВМ и мини ЭВМ это стало предметом серьезного беспокойства фирмы IBM – ведущей компании по производству больших ЭВМ, и в 1979 году IBM – решила попробовать свои силы на рынке персональных компьютеров.

В августе 1981 года был представлен новый компьютер IBM PC с 16 разрядным процессором, позволяющий работать с 1 М байтом памяти. Программное обеспечение было разработано небольшой фирмой Microsoft.

Сейчас компьютеры IBM PC практически являются стандартом персонального компьютера и составляют около 90% всех производимых в мире персональных компьютеров.

Создатели IBM PC заложили возможность усовершенствовать его отдельные части и использовать новые устройства. Фирма сделала компьютер не единым целым, а обеспечила возможность его сборки из независимо изготовленных частей. Этот принцип называется открытой архитектурой .

Наибольшую выгоду от открытой архитектуры получили пользователи. Они смогли самостоятельно расширять возможности своих компьютеров, покупая соответствующие устройства и подсоединяя их к компьютеру.

Но несмотря на то, что область применения персональных компьютеров очень широка, имеются задачи, которые лучше решать на более мощных ЭВМ.

Обычно персональный компьютер IBM PC состоит из трех частей (блоков):

§ Системного блока;

§ Клавиатуры, позволяющей вводить информацию в компьютер;

§ Монитора (дисплея) – для изображения текстовой и графической информации.

В системном блоке располагаются все основные узлы компьютера:

§ Электронные схемы, управляющие работой компьютера (микропроцессор, оперативная память, контроллеры устройств, шины, электронные платы);

§ Блок питания;

§ Накопители (дисководы) на дискеты;

§ Накопитель на жестком магнитном диске.

К системному блоку компьютера можно подключать различные устройства ввода-вывода;

§ Принтер – для вывода на печать информации;

§ Мышь – устройство, облегчающее ввод информации;

§ Джойстик – манипулятор и др.

Подключение выполняется с помощью специальных проводов (кабелей).

Некоторые устройства могут вставляться внутрь системного блока компьютера:

§ Модем – для обмена информацией с другими компьютерами через телефонную сеть;

§ Факс–модем – сочетает возможности модема и телефакса;

Логические устройства компьютера

1. Микропроцессор. Самый главный элемент в компьютере. Микропроцессор производит сотни различных операций и делает это со скоростью сотен миллионов операций в секунду.

2. Оперативная память (ОП). Из нее процессор берет программы и исходные данные для обработки, в нее записывает полученные результаты. Однако, содержащиеся в ней данные сохраняются только пока компьютер включен, при выключении компьютера содержимое оперативной памяти стирается.

3. Контроллеры и шины. Служат для обмена информацией между ОП и внешними устройствами. Для каждого внешнего устройства в компьютере имеется электронная схема (контроллер ) которая им управляет. Все контроллеры взаимодействуют с процессором и ОП через системную магистраль передачи данных – шину.

4. Электронные платы . Для упрощения подключения устройств компьютера, электронные схемы состоят из нескольких модулей – электронных плат. На основной плате системной , или материнской – располагаются микропроцессор, ОП и шина. Схемы, управляющие внешними устройствами компьютера (адаптеры ) находятся на отдельных платах, вставляющиеся в разъемы на материнской плате.

Накопители на дискетах

В компьютере используются накопители для дискет размером 3.5 дюйма и емкостью 1.4 Мб. Эти дискеты заключены в жесткий пластиковый конверт, что значительно повышает их надежность и долговечность.

Защита дискет от записи

На дискетах 3,5 дюйма имеется переключатель-защелка (это черный квадрат в левом нижнем углу дискеты). Если отверстие открыто – запись запрещена.

Накопители на жестком магнитном диске

Предназначены для постоянного хранения используемой информации, используемой при работе с компьютером: программ операционной системы, часто используемых пакетов программ, документов и т.д. Накопители на жестком диске отличаются друг от друга прежде всего своей емкостью, т.е., сколько информации помещается на диске.

Для пользователя накопители на жестком диске отличаются друг от друга прежде всего своей емкостью, т.е. тем, сколько информации помещается на диске.

Мониторы.

Предназначены для вывода на экран тестовой и графической информации. Могут работать о одном из двух режимов: текстовом или графическом.

Текстовый режим: Экран содержит 25 строк и 80 символов в строке и предназначен для вывода текста.

Графический режим: монитора предназначен для вывода на экран графиков и рисунков. В этом режиме экран монитора состоит из точек. Количество точек по вертикали и горизонтали называется разрешающей способностью монитора. Чем меньше размер точки (зерна), тем более четкий получается изображение.

Принтеры .

Предназначены для вывода информации на бумагу. Все принтеры могут выводить текстовую информацию, многие могут выводить рисунки и цветные изображения. Применяются принтеры следующих типов: матричные, струйные и лазерные.

Матричные принтеры. Принцип печати этих принципов таков: печатающая головка принтера содержит вертикальный ряд тонких металлических стержней (иголок). Головка движется вдоль печатаемой строки, а стержни в нужный момент ударяют по бумаге через красящую ленту. Это и обеспечивает формирование на бумаге символов и изображение.

Струйные принтеры. В этих принтерах изображение формируется микрокаплями специальных чернил, выдавливаемых на бумагу с помощью сопел. Этот способ обеспечивает более высокое качество печати по сравнению с матричным принтером, он очень удобен для цветной печати.

Лазерные принтеры. Обеспечивают наилучшее качество печати. В этих принтерах для печати используется принцип ксерокопии.

Понятие базовой аппаратной конфигурации. Назначение системного блока, краткая характеристика входящих в него устройств

Вы можете узнать стоимость помощи в написании студенческой работы.

Помощь в написании работы, которую точно примут!

Понятие базовой аппаратной конфигурации. Назначение системного блока, краткая характеристика входящих в него устройств

Введение

В наше время трудно представить себе, что без компьютеров можно обойтись. А ведь не так давно, до начала 70-х годов вычислительные машины были доступны весьма ограниченному кругу специалистов, а их применение, как правило, оставалось окутанным завесой секретности и мало известным широкой публике. Однако в1971 г. произошло событие, которое в корне изменило ситуацию и с фантастической скоростью превратило компьютер в повседневный рабочий инструмент десятков миллионов людей. В том вне всякого сомнения знаменательном году еще почти никому не известная фирма Intel из небольшого американского городка с красивым названием Санта-Клара (шт. Калифорния), выпустила первый микропроцессор. Именно ему мы обязаны появлением нового класса вычислительных систем - персональных компьютеров, которыми теперь пользуются, по существу, все, от учащихся начальных классов и бухгалтеров до маститых ученых и инженеров. Этим машинам, не занимающим и половины поверхности обычного письменного стола, покоряются все новые и новые классы задач, которые ранее были доступны (а по экономическим соображениям часто и недоступны - слишком дорого тогда стоило машинное время мэйнфреймов и мини-ЭВМ) лишь системам, занимавшим не одну сотню квадратных метров. Наверное, никогда прежде человек не имел в своих руках инструмента, обладающего столь колоссальной мощью при столь микроскопических размерах.

У персонального компьютера есть два важных преимущества по сравнению со всеми другими видами компьютеров: он имеет относительно простое управление и может решать достаточно широкий класс задач.

Если ранее на ЭВМ могли в основном работать только профессиональные программисты (практически для любой задачи приходилось создавать свою программу), то теперь ситуация коренным образом изменилась. В настоящее время разработаны десятки тысяч программ по всем областям знаний. С ними работают десятки миллионов квалифицированных пользователей.

Под термином «конфигурация» компьютера понимают список устройств, входящих в его состав. В соответствие с принципом открытой архитектуры аппаратное обеспечение компьютеров (Hardware) может быть весьма различным. Но любой персональный компьютер имеет обязательный и дополнительный набор устройств, которые будут перечислены ниже.

1. Понятие базовой аппаратной конфигурации

Персональный компьютер - универсальная техническая система. Его конфигурацию (состав оборудования) можно гибко изменять по мере необходимости. Тем не менее, существует понятие базовой конфигурации, которую считают типовой. В таком комплекте компьютер обычно поставляется. Понятие базовой конфигурации может меняться. В настоящее время в базовой конфигурации рассматривают четыре устройства:

* системный блок;

* монитор;

* клавиатуру;

Системный блок

Системный блок представляет собой основной узел, внутри которого установлены наиболее важные компоненты. Устройства, находящиеся внутри системного блока, называют внутренними, а устройства, подключаемые к нему снаружи, называют внешними. Внешние дополнительные устройства, предназначенные для ввода, вывода и длительного хранения данных, также называют периферийными.

По внешнему виду системные блоки различаются формой корпуса. Корпуса персональных компьютеров выпускают в горизонтальном (desktop) и вертикальном (tower) исполнении. Корпуса, имеющие вертикальное исполнение, различают по габаритам: полноразмерный (big tower), среднеразмерный (midi tower) и малоразмерный (mini tower). Среди корпусов, имеющих горизонтальное исполнение, выделяют плоские и особо плоские (slim).

Кроме формы, для корпуса важен параметр, называемый форм-фактором. От него зависят требования к размещаемым устройствам. В настоящее время в основном используются корпуса двух форм-факторов: АТ и АТХ. Форм-фактор корпуса должен быть обязательно согласован с форм-фактором главной (системной) платы компьютера, так называемой материнской платы (см. ниже).

Корпуса персональных компьютеров поставляются вместе с блоком питания и, таким образом, мощность блока питания также является одним из параметров корпуса. Для массовых моделей достаточной является мощность блока питания 200-250 Вт.

Монитор

Монитор - устройство визуального представления данных. Это не единственно возможное, но главное устройство вывода. Его основными потребительскими параметрами являются: размер и шаг маски экрана, максимальная частота регенерации изображения, класс защиты.

Размер монитора измеряется между противоположными углами трубки кинескопа по диагонали. Единица измерения - дюймы. Стандартные размеры: 14»; 15»; 17»; 19»; 20; 21».

В настоящее время наиболее универсальными являются мониторы размером 15 и 17 дюймов, а для операций с графикой желательны мониторы размером 19-21 дюйм.

Изображение на экране монитора получается в результате облучения люминофорного покрытия остронаправленным пучком электронов, разогнанных в вакуумной колбе. Для получения цветного изображения люминофорное покрытие имеет точки или полоски трех типов, светящиеся красным, зеленым и синим цветом. Чтобы на экране все три луча сходились строго в одну точку и изображение было четким, "" перед люминофором ставят маску - панель с регулярно расположенными отверстиями или щелями. Часть мониторов оснащена маской из вертикальных проволочек, что усиливает яркость и насыщенность изображения. Чем меньше шаг между отверстиями или щелями (шаг маски), тем четче и точнее полученное изображение. Шаг маски измеряют в долях миллиметра. В настоящее время наиболее распространены мониторы с шагом маски 0,25-0,27 мм. Устаревшие мониторы могут иметь шаг до 0,43 мм, что негативно сказывается на органах зрения при работе с компьютером. Модели повышенной стоимости могут иметь значение менее 0,25 мм.

Частота регенерации (обновления) изображения показывает, сколько раз в течение секунды монитор может полностью сменить изображение (поэтому ее также называют частотой кадров). Этот параметр зависит не только от монитора, но и от свойств и настроек видеоадаптера (см. ниже), хотя предельные возможности определяет все-таки монитор.

Частоту регенерации изображения измеряют в герцах (Гц). Чем она выше, тем четче и устойчивее изображение, тем меньше утомление глаз, тем больше времени можно работать с компьютером непрерывно. При частоте регенерации порядка 60 Гц мелкое мерцание изображения заметно невооруженным глазом. Сегодня такое значение считается недопустимым. Минимальным считают значение 75 Гц, нормативным - 85 Гц и комфортным - 100 Гц и более.

Класс защиты монитора определяется стандартом, которому соответствует монитор с точки зрения требований техники безопасности. В настоящее время общепризнанными считаются следующие международные стандарты: MPR-II, ТСО-92, ТСО-95, ТСО-99 (приведены в хронологическом порядке). Стандарт MPR - // ограничил уровни электромагнитного излучения пределами, безопасными для человека. В стандарте ТСО-92 эти нормы были сохранены, а в стандартах ТСО-95 и ГСО-99 ужесточены. Эргономические и экологические нормы впервые появились в стандарте ТСО-95, а стандарт ГСО-99 установил самые жесткие нормы по параметрам, определяющим качество изображения (яркость, контрастность, мерцание, антибликовые свойства покрытия).

Большинством параметров изображения, полученного на экране монитора, можно управлять программно. Программные средства, предназначенные для этой цели, обычно входят в системный комплект программного обеспечения - мы рассмотрим их при изучении операционной системы компьютера.

Клавиатура

Клавиатура - клавишное устройство управления персональным компьютером. Служит для ввода алфавитно-цифровых (знаковых) данных, а также команд управления. Комбинация монитора и клавиатуры обеспечивает простейший интерфейс пользователя. С помощью клавиатуры управляют компьютерной системой, а с помощью монитора получают от нее отклик.

Принцип действия . Клавиатура относится к стандартным средствам персонального компьютера. Ее основные функции не нуждаются в поддержке специальными системными программами (драйверами). Необходимое программное обеспечение для начала работы с компьютером уже имеется в микросхеме ПЗУ в составе базовой системы ввода-вывода (BIOS), и потому компьютер реагирует на нажатия клавиш сразу после включения.

Принцип действия клавиатуры заключается в следующем:

При нажатии на клавишу (или комбинацию клавиш) специальная микросхема, встроенная в клавиатуру, выдает так называемый скан-код.

Скан-код поступает в микросхему, выполняющую функции порта клавиатуры. (Порты - специальные аппаратно-логические устройства, отвечающие за связь процессора с другими устройствами.) Данная микросхема находится на основной плате компьютера внутри системного блока.

Порт клавиатуры выдает процессору прерывание с фиксированным номером. Для клавиатуры номер прерывания - 9 (Interrupt 9, Int 9).

Получив прерывание, процессор откладывает текущую работу и по номеру прерывания обращается в специальную область оперативной памяти, в которой находится так называемый вектор прерываний. Вектор прерываний - это список адресных данных с фиксированной длиной записи. Каждая запись содержит адрес программы, которая должна обслужить прерывание с номером, совпадающим с номером записи.

Определив адрес начала программы, обрабатывающей возникшее прерывание, процессор переходит к ее исполнению. Простейшая программа обработки клавиатурного прерывания «зашита» в микросхему ПЗУ, но программисты могут «подставить» вместо нее свою программу, если изменят данные в векторе прерываний.

Программа-обработчик прерывания направляет процессор к порту клавиатуры, где он находит скан-код, загружает его в свои регистры, потом под управлением обработчика определяет, какой код символа соответствует данному скан-коду.

Процессор прекращает обработку прерывания и возвращается к отложенной задаче.

Введенный символ хранится в буфере клавиатуры до тех пор, пока его не заберет оттуда та программа, для которой он и предназначался, например текстовый редактор или текстовый процессор. Если символы поступают в буфер чаще, чем забираются оттуда, наступает эффект переполнения буфера. В этом случае ввод новых символов на некоторое время прекращается. На практике в этот момент при нажатии на клавишу мы слышим предупреждающий звуковой сигнал и не наблюдаем ввода данных.

Состав клавиатуры . Стандартная клавиатура имеет более 100 клавиш, функционально распределенных по нескольким группам.

Группа алфавитно-цифровых клавиш предназначена для ввода знаковой информации и команд, набираемых по буквам. Каждая клавиша может работать в нескольких режимах (регистрах) и, соответственно, может использоваться для ввода нескольких символов. Переключение между нижним регистром (для ввода строчных символов) и верхним регистром (для ввода прописных символов) выполняют удержанием клавиши SHIFT (нефиксированное переключение). При необходимости жестко переключить регистр используют клавишу CAPS LOCK (фиксированное переключение). Если клавиатура используется для ввода данных, абзац закрывают нажатием клавиши ENTER. При этом автоматически начинается ввод текста с новой строки. Если клавиатуру используют для ввода команд, клавишей ENTER завершают ввод команды и начинают ее исполнение.

Для разных языков существуют различные схемы закрепления символов национальных алфавитов за конкретными алфавитно-цифровыми клавишами. Такие схемы называются раскладками клавиатуры. Переключения между различными раскладками выполняются программным образом - это одна из функций операционной системы. Соответственно, способ переключения зависит от того, в какой операционной системе работает компьютер. Например, в системе Windows 98 для этой цели могут использоваться следующие комбинации: левая клавиша ALT+SHIFT или CTRL+SHIFT. При работе с другой операционной системой способ переключения можно установить по справочной системе той программы, которая выполняет переключение.

Общепринятые раскладки клавиатуры имеют свои корни в раскладках клавиатур пишущих машинок. Для персональных компьютеров IBM PC типовыми считаются раскладки QWERTY (английская) и ЙЦУКЕНГ (русская). Раскладки принято именовать по символам, закрепленным за первыми клавишами верхней строки алфавитной группы.

Группа функциональных клавиш включает двенадцать клавиш (от F1 до F12), размещенных в верхней части клавиатуры. Функции, закрепленные за данными клавишами, зависят от свойств конкретной работающей в данный момент программы, а в некоторых случаях и от свойств операционной системы. Общеприняты для большинства программ является соглашение о том, что клавиша F1 вызывает справочную систему, в которой можно найти справку о действии прочих клавиш.

Служебные клавиши располагаются рядом с клавишами алфавитно-цифровой группы. В связи с тем, что ими приходится пользоваться особенно часто, они имеют увеличенный размер. К ним относятся рассмотренные выше клавиши SHIFT и ENTE, регистровые клавиши ALT и CTRL (их используют в комбинации с другими клавишами для формирования команд), клавиша TAB (для ввода позиций табуляции при наборе текста),

клавиша ESC (от английского слова Escape) для отказа от исполнения последней введенной команды и клавиша BACKSPACE для удаления только что введенных знаков (она находится над клавишей ENTER и часто маркируется стрелкой, направленной влево).

Служебные клавиши PRINT SCREEN, SCROLL LOCK и PAUSE/BREAK размещаются справа от группы функциональных клавиш и выполняют специфические функции зависящие от действующей операционной системы. Общепринятыми являются следующие действия:SCREEN - печать текущего состояния экрана на принтере (для MS-DOS) и сохранение его в специальной области оперативной памяти, называемой буфером обмена (для Windows).LOCK - переключение режима работы в некоторых (как правило, устаревших) программах./BREAK - приостановка / прерывание текущего процесса.

Две группы клавиш управления курсором расположены справа от алфавитно-цифровой панели. Курсором называется экранный элемент, указывающий место ввода знаковой информации. Курсор используется при работе с программами, выполняющими ввод данных и команд с клавиатуры. Клавиши управления курсором позволяют управлять позицией ввода.

Четыре клавиши со стрелками выполняют смещение курсора в направлении, указанном стрелкой. Действие прочих клавиш описано ниже.UP/PAGE DOWN - перевод курсора на одну страницу вверх или вниз. Понятие «страница» обычно относится к фрагменту документа, видимому на экране. В графических операционных системах (например Windows) этими клавишами выполняют «прокрутку» содержимого в текущем окне. Действие этих клавиш многих программах может быть модифицировано с помощью служебных регистровых клавиш, в первую очередь SHIFT и CTRL Конкретный результат модификации зависит от конкретной программы и / или операционной системы.

Клавиши HOME и END переводят курсор в начало или конец текущей строки, соответственно. Их действие также модифицируется регистровыми клавишами.

Традиционное назначение клавиши INSERT состоит в переключении режима ввода данных (переключение между режимами вставки и замены). Если текстовый курсор находится внутри существующего текста, то в режиме вставки происходит ввод новых знаков без замены существующих символов (текст как бы раздвигается). В режиме замены новые знаки заменяют текст, имевшийся ранее в позиции ввода.

В современных программах действие клавиши INSERT может быть иным. Конкретную информацию следует получить в справочной системе программы. Возможно, что действие этой клавиши является настраиваемым, - это также зависит от свойств конкретной программы.

Клавиша DELETE предназначена для удаления знаков, находящихся справа от текущего положения курсора. При этом положение позиции ввода остается неизменным.

Сравните действие клавиши DELETE с действием служебной клавиши BACKSPACE. Последняя служит для удаления знаков, но при ее использовании позиция ввода смещается влево, и, соответственно, удаляются символы, находящиеся не справа, а слева от курсора.

Группа клавиш дополнительной панели дублирует действие цифровых и некоторых знаковых клавиш основной панели. Во многих случаях для использования этой группы клавиш следует предварительно включать клавишу-переключатель NUM LOCK (о состоянии переключателей NUM LOCK, CAPS LOCK и SCROLL LOCK можно судить по светодиодным индикаторам, обычно расположенным в правом верхнем углу клавиатуры).

Появление дополнительной панели клавиатуры относится к началу 80-х годов. В то время клавиатуры были относительно дорогостоящими устройствами. Первоначальное назначение дополнительной панели состояло в снижении износа основной панели при проведении расчетно-кассовых вычислений, а также при управлении компьютерными играми (при выключенном переключателе NUM LOCK клавиши дополнительной панели могут использоваться в качестве клавиш управления курсором),

В наши дни клавиатуры относят к малоценным быстроизнашивающимся устройствам и приспособлениям, и существенной необходимости оберегать их от износа нет. Тем не менее, за дополнительной клавиатурой сохраняется важная функция ввода символов, для которых известен расширенный код ASCII (см. выше), но неизвестно закрепление за клавишей клавиатуры. Так, например, известно, что символ <§> (параграф) имеет код 0167, а символ <°> (угловой градус) имеет код 0176, но соответствующих им клавиш на клавиатуре нет. В таких случаях для их ввода используют дополнительную панель.

Порядок ввода символов по известному ALT-коду:

Нажать и удержать клавишу ALT.

Убедиться в том, что включен переключатель NUM LOCK.

Не отпуская клавиши ALT, набрать последовательно на дополнительной панели alt - код вводимого символа, например: 0167.

Отпустить клавишу ALT. Символ, имеющий код 0167, появится на экране в позиции ввода.

Настройка клавиатуры . Клавиатуры персональных компьютеров обладают свойством повтора знаков, которое используется для автоматизации процесса ввода. Оно состоит в том, что при длительном удержании клавиши начинается автоматический ввод связанного с ней кода. При этом настраиваемыми параметрами являются:

* интервал времени после нажатия, по истечении которого начнется автоматический повтор кода;

* темп повтора (количество знаков в секунду).

Средства настройки клавиатуры относятся к системным и обычно входят в состава операционной системы. Кроме параметров режима повтора настройке подлежат также используемые раскладки и органы управления, используемые для переключения раскладок.

Со средствами настройки клавиатуры мы познакомимся при изучении функций операционной системы,

Мышь

Мышь - устройство управления манипуляторного типа. Представляет собой плоскую коробочку с двумя-тремя кнопками. Перемещение мыши по плоской поверхности синхронизировано с перемещением графического объекта (указателя мыши) на экране монитора.

Принцип действия . В отличие от рассмотренной ранее клавиатуры, мышь не является стандартным органом управления, и персональный компьютер не имеет для нее выделенного порта. Для мыши нет и постоянного выделенного прерывания, а базовые средства ввода и вывода (BIOS) компьютера, размещенные в постоянном запоминающем устройстве (ПЗУ), не содержат программных средств для обработки прерываний мыши.

Компьютером управляют перемещением мыши по плоскости и кратковременными нажатиями правой и левой кнопок. (Эти нажатия называются щетками.) В отличие, от клавиатуры мышь не может напрямую использоваться для ввода знаковой информации - ее принцип управления является событийным. Перемещения мыши и щелчки ее кнопок являются событиями с точки зрения ее программы-драйвера. Анализируя эти события, драйвер устанавливает, когда произошло событие и в каком месте экрана в этот момент находился указатель. Эти данные передаются в прикладную программу, с которой работает пользователь в данный момент. По ним программа может определить команду, которую имел в виду пользователь, и приступить к ее исполнению.

Комбинация монитора и мыши обеспечивает наиболее современный тип интерфейса пользователя, который называется графическим. Пользователь наблюдает на экране графические объекты и элементы управления. С помощью мыши он изменяет свойства объектов и приводит в действие элементы управления компьютерной системой, а с помощью монитора получает от нее отклик в графическом виде.

Стандартная мышь имеет только две кнопки, хотя существуют нестандартные мыши с тремя кнопками или с двумя кнопками и одним вращающимся регулятором. Функции нестандартных органов управления определяются тем программным обеспечением, которое поставляется вместе с устройством.

К числу регулируемых параметров мыши относятся: чувствительность (выражает величину перемещения указателя на экране при заданном линейном перемещении мыши), функции левой и правой кнопок, а также чувствительность к двойному нажатию (максимальный интервал времени, при котором два щелчка кнопкой мыши расцениваются как один двойной щелчок). Программные средства, предназначенные для этих регулировок, обычно входят в системный комплект программного обеспечения - мы рассмотрим их при изучении операционной системы.

2. Назначение системного блока, краткая характеристика входящих в него устройств

Системный блок предназначен для использования в составе персонального компьютера и к нему уже подключаются монитор, устройства ввода и периферийные устройства. Архитектура системного блока модульная, что позволяет, при необходимости, переконфигурировать компьютер добавлять или усиливать компоненты. Внешне все системные блоки похожи, основное отличие это их дизайн и начинка.

На передней панели корпуса расположена кнопка «Power», которая предназначена для включения и выключения компьютера. Эта кнопка не отключает системный блок от сети переменного питания, а лишь подает сигнал на материнскую плату. Ошибки про¬граммного обеспечения могут привести к тому, что компьютер перестанет реаги¬ровать на однократное нажатие кнопки «Power», то есть, «зависнет». В этом случае следует нажать и удерживать эту кнопку более 4 с. При однократном нажатии данной кнопки, при запущенной операционной системе, происходит закрытие активных приложений и завершение работы.

На большинстве блоков имеется кнопка «Reset» (Перезагрузка), которая также служит для перезагрузки компьютера в случае «зависания» операционной системы. Кроме того, на передней панели расположены индика¬тор включения (горит при подаче электропитания), индикатор доступа к жесткому диску (горит при обращении к HDD или оп¬тическому приводу), а также передние панели FDD (дисковода гибких дисков) и оптического привода.

Установленный блок питания обеспечивает преобразование переменного тока сети электропитания напряжением 220В в постоянный ток, необходимый для питания всех компонентов компьютера. Блоки питания, устанавливаемые в компьютеры, могут иметь различные значения мощности (300, 350, 400Вт и более), в зависимости от конфигурации компьютера. В любом случае, запаса мощности должно хватать не только на питания устройств, входящих в комплект при покупке, но и для тех, которые Вы можете добавить впоследствии. При установке компонентов с повышенным энергопотреблением следует проконсультироваться со специалистами.

Для того, чтобы избежать повреждений системного блока или его частей из-за нестабильного электропитания, рекомендуется подключать компьютер через сетевой фильтр, который подавляет кратковременные скачки напряжения, или через источник бесперебойного питания, который обеспечивает работу компьютера в течение некоторого времени даже при полном отключении от электрической сети.

Внутри системного блока размещаются основные внутренние компоненты компьютера:

Материнская плата

платы адаптеров (звуковая, видео, сетевая карты)

процессор

дисковые накопители

блок питания

соединительные шлейфы, шнуры и кабели

вентилятор системы охлаждения внутренних элементов

вентилятор и радиатор системы охлаждения процессора

слоты системной шины

Так как многие компоненты могут быть интегрированы на материнской плате, то не все они могут быть представлены как отдельные комплектующие элемен-ты. Задняя панель, как правило, содержит панели плат расширений с разъемами, заглушки разъемов, вентиляционное отверстие вентилятора блока питания.

Это, так сказать, общий вид. Рассмотрим поближе эти комплектующие.

Материнская плата

Материнская плата является своеобразным «фундаментом» для всех комплектующих компьютера. Именно в нее втыкаются все основные устройства. Такие, как видеокарта, оперативная память, процессор, жесткие диски и т.д. Другими словами, это платформа, на которой строится вся остальная конфигурация компьютера.

На материнских платах также встречаются интегрированные устройства, т.е. встроенные. Материнские платы подобного типа уже продолжительное время фигурируют на компьютерном рынке. Примером могут служить материнские платы со встроенной звуковой видеокартами.

Материнские платы подобного типа, конечно, хороши, но имеют один недостаток Материнские платы с интегрированными устройствами чаще выходят из строя или начинают работать некорректно, чем их аналоги без интегрированных устройств. Почему так происходит? Точно сказать не могу. Вполне возможно, что кто-то знает точный ответ на этот вопрос. Но то, в чем я не уверен, я не собираюсь излагать вам.

Зачем интегрируются устройства на материнскую плату? Ответ прост. Дешевизна. Материнские платы с интегрированными устройствами дешевле Но, как уже точно известно, скупой платит дважды.

Но дешевизна - не единственная причина интеграции устройств на материнскую плату производителями. Подобные платы часто применяются на переносных компьютерах. Примером может служить ноутбук.

Тип и характеристики различных элементов и устройств материнской платы, как правило, определяется типом и архитектурой процессора (материнские платы на базе процессоров фирм Intel, AMD, Cyrix и др. - 8086/8088/80188, 286, 386, 486/586/686, Pentium, Pentium pro). Как правило, именно процессор или процессоры, их семейство, тип, архитектура и исполнение определяют тот или иной вариант архитектурного исполнения материнской платы. Т.е. материнские платы изготавливаются в расчете на наилучшую совместимость с теми или иными устройствами. Чаще всего материнские платы изготавливают, делая главный упор на наилучшую совместимость именно с процессорами, но это не обязательный фактор.

По числу процессоров, составляющих центральный процессор, различают однопроцессорные и многопроцессорные (мультипроцессорные) материнские платы. Большинство персональных компьютеров являются однопроцессорными системами и комплектуются однопроцессорными материнскими платами. На вид и комплектацию материнских плат влияют, также, требуемые эксплуатационные характеристики и будущее назначение компьютера.

Например, для ноутбуков интегрируется все, что только можно интегрировать для его компактности. Но ведь подобная повальная интеграция имеет свои недостатки. О них читайте выше.

А вот, например, для компьютеров, на которых ведется бухгалтерия предприятия или фирмы, подбираются комплектующие с минимальной интеграцией устройств или же вовсе без оной. Конечно, такой компьютер будет громоздким, но ведь он и не предназначен для ежедневной переноски из угла в угол. А надежность и «выносливость» компьютера повышается на порядок.

Процессор

Что же такое процессор? Процессор - это «мозг» компьютера. Процессором называется устройство, способное обрабатывать программный код и определяющее основные функции компьютера по обработке информации.

Т.е. процессор выполняет основные процессы на компьютере. Вот такой вот каламбур.

Конструктивно, процессоры могут выполняться как в виде одной большой монокристальной интегральной микросхемы - чипа, так и в виде нескольких микросхем, блоков электронных плат и устройств.

Чаще всего процессор представлен в виде чипа, расположенного на материнской плате. На самом чипе написана его марка, его тактовая частота (число возможных операций, которые он может выполнить в единицу времени) и изготовитель.

В настоящее время, микропроцессоры и процессоры вмещают в себе миллионы транзисторов и других элементов электронной логики и представляют сложнейшие высокотехнологичные электронные устройства. Персональный компьютер содержит в своем составе довольно много различных процессоров. Они входят в состав систем ввода / вывода контроллеров устройств. Каждое устройство, будь то видеокарта, системная шина или еще что-либо, обслуживается своим собственным процессором или процессорами. Однако, архитектуру и конструктивное исполнение персонального компьютера определяет процессор или процессоры, контролирующие и обслуживающие системную шину и оперативную память, и, что более важно, выполняющие объектный код программ. Такие процессоры принято называть центральными или главными процессорами (Central Point Unit - CPU). На основе архитектуры центральных процессоров строится архитектура материнских плат, и проектируется архитектура и конструкция компьютера.

Основные характеристики центрального процессора:

1.тип архитектуры или серия (Intel x86, Intel Pentium, Pentium overdrive, RISC…)

2.система поддерживаемых команд (standard 86/88, 286, 386, 486, Pentium, MMX) и адресации (real mode, protected mode, virtual mode, EMS, paging).

3.разрядность (бит)

Тактовая частота (МГц)

Величина питающего напряжения (Вольт)

Тип архитектуры, как правило, определяется фирмой производителем оборудования. Все крупнейшие фирмы, производящие электронное оборудование для IBM-PC-совместимых компьютеров и выпускающие свои типы центральных процессоров вносят изменения в базовую архитектуру процессоров серии Intel x86 или разрабатывают свою. С типом архитектуры тесно связан набор поддерживаемых команд или инструкций, и их расширений. Эти два параметра, в основном, определяют качественный уровень возможностей персонального компьютера и в большой степени уровень его производительности.

Разрядность центрального процессора определяет его поколение и принципиально влияет на скорость передачи информации между другими устройствами и процессором. Первые процессоры серии Intel x86 имели разрядность 8 бит и могли передавать и принимать информацию по одному байту. Современные микропроцессоры персональных компьютеров IBM-PC имеют разрядность 32 бита для передачи информации внешним устройствам и 64 бита - для внутренних операций с информацией. Для конвейерной архитектуры современных процессоров характерно повышение разрядности с развитием технологии производства и удешевлением современных технологий передачи информации и производства однокристальных микрочипов.

Тактовая частота процессора определяет минимальный квант времени, за который процессор выполняет некоторую условную элементарную операцию. Тактовые частоты измеряются в мегагерцах и определяют количественные характеристики производительности компьютерных систем в целом. Чем больше (выше) тактовая частота, тем быстрее работает центральный процессор.

В настоящее время технология производства центральных процессоров с высокой производительностью предусматривает их работу на очень высоких тактовых частотах (до 200 МГц и более), вследствие чего, устройства необходимо принудительно охлаждать. Для принудительного охлаждения процессоров используются пассивные системы - в виде радиаторов и активные системы - в виде радиаторов с вентиляторами. Многие процессоры оснащаются внутренними схемами умножения базовой тактовой частоты материнской платы. Такие процессоры имеют маркировку DX2 - удваивают DX4 - утраивают исходную тактовую частоту и, тем самым, работают в два и три раза быстрее.

Однако, все остальные устройства работают на базовой тактовой частоте. Необходимо понимать, что тактирующий генератор расположен на материнской плате, а тактовая

частота центрального процессора определяет его максимальные возможности работать на соответствующей частоте.

Т.е. тактовая частота процессора - это еще не все. Существует еще тактовая частота системной шины, которая отвечает за передачу информации от одного устройства к другому. Естественно, что чем выше тактовая частота системной шины, тем быстрее будет передаваться информация между устройствами. К устройствам также относится и процессор. Часто бывает так, что все возможности процессора так и не остаются раскрытыми до конца, т.к. многие просто при одном слове «разгон» шарахаются в сторону. Их опасения понятны. Но в большинстве своем беспочвенны и основаны на «страшных сказках» «знающих» людей, которые, сами, мало что умея, пытаются отгородить остальных от того, что они не понимают или же не хотят понимать.

Материнские платы могут содержать один, два, четыре и более центральных процессоров, что определяет их производительность и область использования. В настоящее время, наиболее распространены процессоры серии Intel 80х86 с тактовыми частотами от 100 до 230 МГц большинство из которых поддерживают специальные системы команд обработки графической и видео информации (например MMX) и другие расширенные инструкции защищенного режима.

Большое значение в общей технологии производства компьютерных систем имеет вопрос согласования возможностей и внутренних интерфейсов центрального процессора и набора интегральных микросхем - чипа на базе которого построена материнская плата. Правильное их сочетание может резко повысить общую производительность, и наоборот. Поэтому, рекомендуется устанавливать на материнские платы процессоры, указанные в руководстве фирмы производителя платы.

Технологии производства центральных процессоров постоянно совершенствуются.

Системная шина

Системная шина - это «паутина», которая соединяет между собой ВСЕ устройства и отвечает за передачу информации между ними. Расположена она на материнской плате и внешне, как таковая не видна. Подробнее об этом - ниже.

Чем выше тактовая частота системной шины, тем быстрее будет осуществляться передача информации между устройствами и, как следствие, увеличится общая производительность компьютера, т.е. поднимется скорость компьютера.

В настоящее время, чаще всего, в персональных компьютерах используются системные шины стандартов ISA, EISA, VESA, VLB и PSI. ISA, EISA, VESA и VLB в настоящее время являются морально устаревшими и не выпускаются на современных материнских платах. В настоящий момент нашли широкое применение шины PSI и, последняя разработка в области системных шин, AGP.

Все стандарты различаются как по числу и использованию сигналов, так и по протоколам их обслуживания.

Шина входит в состав материнской платы, на которой располагаются ее проводники и разъемы (слоты) для подключения плат адаптеров устройств (видеокарты, звуковые карты, внутренние модемы, накопители информации, устройства ввода / вывода и т.д.) и расширений базовой конфигурации (дополнительные пустующие разъемы).

Существуют 16-ти и 32-х разрядные, высокопроизводительные (VESA, VLB, AGP и PSI с тактовой частотой более 16 МГц.) и низкопроизводительные (ISA и EISA с тактовой частотой 8 и 16 МГц) системные шины. Также, шины, разработанные по современным стандартам (VESA, VLB и PSI) допускают подключение нескольких одинаковых устройств, т.е., например, несколько жестких дисков, а шина PSI обеспечивает самоконфигурируемость периферийного (дополнительного) оборудования - поддержку стандарта Plug and Play исключающего ручную конфигурацию аппаратных параметров периферийного оборудования при его изменении или наращивании. Т.е. шина PSI, как, впрочем, и AGP сама настраивает оборудование без вмешательства пользователя.

Порты

Порты предназначены для соединения периферийных устройств с материнской платой. Существует два основных вида портов. Параллельные и последовательные. Рассмотрим оба типа.

Параллельные порты (LPT)

Чаще всего параллельные порты LPT используются для подключения к компьютеру печатающих устройств (принтеры).

Параллельные порты получили свое название благодаря методу передачи данных, т.к. они имеют восемь разрядов шины данных и способны передавать информацию байтами синхронно по восьми проводникам. Чаще всего, в параллельных интерфейсах используются следующие сигналы:

Автоподача (AUTOFEED)Строб передачи данных (STROBE)

Инициализация устройства (INITIALIZE)

Данные 1 - данные 8 (DATA1-DATA8)

Устройство занято (BUSY)

Ошибка на устройстве (ERROR)

Конец бумаги (PAPER END)

Устройство выбрано (SELECT INPUT)

Устройство готово (SELECT)

Земля (GND)

Сигналы данных могут дополнительно обеспечиваться собственными сигнальными линиями заземления - по одному на каждый канал данных. В таком случае, число сигналов возрастает до 25. Для соединения компьютера с устройством при помощи параллельного интерфейса используется 25-ти контактный разъем Centronics.

Параллельные интерфейсы имеют высокую скорость передачи данных (до 150 К/сек) и низкую помехоустойчивость, что позволяет использовать кабель длинною не более трех метров.

Последовательные порты (COM1 COM2 COM3)

Последовательные порты передают данные последовательно по одному биту. Для передачи и приема в них используется два канала - один для передачи и один - для приема, и несколько дополнительных сигнальных линий.

Для соединения при помощи последовательных портов используются 9-ти и 25-ти контактные соединительные разъемы. Последовательные коммуникационные порты имеют достаточно низкие скорости работы (50, 75, 100, 110, 200, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57000 и 115000 бит/сек) и высокую помехоустойчивость, что позволяет использовать соединительный кабель до 75 метров и более.

Последовательные порты имеют разнообразное использование. Они применяются как для соединения компьютера с принтерами, модемами, мышами, ручными сканерами и т.п., так и для соединения двух компьютеров.

Видеокарта

Видеокарта, видеоадаптер, видеоконтроллер или адаптер дисплея является устройством непосредственно формирующим изображение на - мониторе. Как и любой другой контроллер устройства, видеокарта может быть выполнена как внешнее или внутреннее - интегрированное (встроенное) на материнскую оборудование. Тип видеоконтроллера и его возможности определяют, в конечном виде, аппаратно достижимые и поддерживаемые режимы работы всей графической системы, скорость и качество формируемого на экране мониторов изображения.

Видеокарта, выполненная как внешнее устройство - требует подключения к материнской плате в определенный слот.

Интегрированная видеокарта на материнскую плату - не требует подключения вообще, но может быть отключена в случае необходимости подключения внешней.

Все видеокарты содержат видеобуфер, физические адреса которой находятся на плате адаптера, но входят в общее адресное пространство оперативной памяти компьютера. В нем хранится текстовая или графическая информация выводимая на экран. Тип микросхем видеопамяти значительно влияет на производительность всей видеосистемы в целом. Так, обычные чипы динамической памяти DRAM не позволяют делать одновременно операции чтения и записи в область видеопамяти, а микросхемы VRAM (Video Random Access Memory) - позволяют, что значительно ускоряет работу устройства. Основная функция видеокарты заключается в преобразовании цифровых данных видеобуфера в те

сигналы, которые управляют монитором и формируют, видимое пользователем, изображение на экране.

Графические режимы допускают отрисовку на экране монитора объектов произвольной формы и сложности. Общим принципом графических режимов является кодирования изображения как набора элементарных точек - пикселов, определяющих максимальное разрешение экрана. Выпускаются видеокарты с самыми различными графическими режимами (320х200, 640х480, 800х600, 1024х768, 1280х1024, 1600х1200:)

В зависимости от числа бит на пиксел различают монохромные и цветные графические режимы с числом цветов 16 (4 бита на пиксел), 256 (8 бит на пиксел), 32000 (12 бит на пиксел), 64000 (16 бит на пиксел), 16 млн (32 бита на пиксел) - режим True color . В зависимости от используемого графического режима и типа адаптера дисплея, цвета пикселей могут кодироваться разным количеством бит, что в конечном итоге, определяет число одновременно отображаемых на экране цветов - цветовую палитру и объем видеопамяти необходимый для хранения картинки изображения.

Современные видеокарты могут иметь до 32 Мбайт видеопамяти и более, что дает им возможность использовать графические видеорежимы с 16 млн цветов - True color и разрешением экрана до 1024х768 пикселов и выше.

Скорость работы видеоадаптера - скорость отрисовки пикселов на экране весьма разнообразна и зависит от его типа, видеорежима, используемой в адаптере видеопамяти и скорости работы и типа всей системы в целом

Современные видеоадаптеры в своем составе имеют, как правило, контроллер и процессор - графический сопроцессор системы. Разрядность контроллера и шины данных между контроллером и видеопамятью может составлять 32 и 64 бита, что в первую очередь влияет на производительность устройства. Однако, разрядность - признак, характеризующий четыре компоненты видеосистемы - процессора, контроллера микросхем памяти и соединяющей их шины данных. Теоретически, конечно, наивысшая производительность достигается при 64-х разрядности всех четырех компонент, однако, столь крутые видеорежимы сказываются на производительности всей системы и, следовательно забирают часть ресурсов компьютера, если у ней не хватает видеопамяти. Для того, чтобы видеокарта не забирала под свою работу системные ресурсы, нужно, чтобы у видеокарты имелось в наличии не менее 8 мегабайт видеопамяти.

К важнейшим характеристикам видеокарты относят его тип, вид, поддерживаемые видеорежимы (допустимые разрешения экрана, максимально возможное количество цветов), поддерживаемые режимы энергетического сохранения и управления монитором, поддержку аппаратных систем ускорения и акселерации вывода в текстовых и графических режимах, акселерации отрисовки двухмерных 2D и трехмерных 3D изображений, заполнения фоном (текстурой) графических примитивов, буферизации вывода растровых и др. шрифтов, разрядность контроллера и шины данных между контроллером и видеопамятью и др. Большинство указанных параметров зависят от типа и вида устройства.

Звуковая карта

Звуковые адаптеры или карты представляют устройства, позволяющие воспроизводить и записывать звук. Стандартные звуковые карты обычно бывают внутренние, вставляемые в разъем системной шины на материнской плате. К звуковым картам обычно можно подключить колонки, микрофон и игровой джойстик. Основными характеристиками звуковых адаптеров являются: качество звука (частотный диапазон воспроизведения и записи, стерео или моно звучание, наличие систем цифровой фильтрации), количество каналов воспроизведения и записи, разрядность шины данных, наличие синтезатора и число его голосов и др. Чем шире частотный диапазон звукового сигнала, тем чище и качественнее воспроизводимый и записываемый звук устройства. Наиболее распространены карты с диапазоном от 20 Гц до 25 кГц. Системы цифровой фильтрации позволяют достаточно существенно улучшить качество звучания и записи. Они могут быть одно и многоканальными и иметь или не иметь программный интерфейс управления.

Обычные звуковые карты, применяемые в домашних и офисных компьютерах имеют один канал воспроизведения и один канал записи звука. Более мощные и дорогие устройства имеют несколько (2, 4, 6, 10 и более) каналов и позволяют производить независимое воспроизведение, запись и наложение нескольких звуковых источников, а также полное раздельное управление каналов.

Разрядность внутренней и внешней шин данных имеет прямое отношение к производительности и возможностям устройства. Выпускаются 8-ми, 16-ти и 32-х разрядные карты, обеспечивающие возможности от примитивного монофонического до многоканального стерео звука и записи.

Синтезатор представляет дополнительную систему создания звуковых эффектов. При помощи программируемых голосов синтезатора можно синтезировать звук при помощи специальных цифровых команд, что значительно снижает объем информации, необходимый для воспроизведения звука. Многие звуковые карты содержат звуковой вход аналогового сигнала, для подключения выходного звукового CD_ROM для обеспечения возможности проигрывания музыкальных компактдисков. Также, они могут иметь слоты для подключения игровых адаптеров, позволяющие подключать джойстики и другие игровые манипуляторы.

Заключение

компьютер системный технический

Мы можем подвести итог.

Что касается аппаратной конфигурации ПК (состав ПК принято называть аппаратной конфигурацией), то он состоит из следующих основных частей:

системного блока;

клавиатуры, позволяющей вводить информацию в компьютер;

мыши - устройства, для ввода информации в компьютер;

монитора, предназначенного для изображения текстовой и графической информации.

Системный блок является основным устройством ПК, содержащим в себеаппаратные части (процессор, винчестер, ОЗУ, ПЗУ, дисководы, блок питания) компьютера, которые соединены шинами (многожильными кабелями). Современные ПК имеют блочно - модульную конструкцию. Требуемую аппаратную конфигурацию можно собирать из готовых узлов и блоков.

Клавиатура и манипулятор мышь - это устройства, предназначенные для ввода пользователем информации в компьютер. К системному блоку компьютера IBM PC можно подключать различные периферийные устройства ввода-вывода информации, расширяя тем самым его функциональные возможности.

Состав программного обеспечения ПК называют программной конфигурацией. Между программами, ПК существует взаимосвязь, т.е. программы более высокого уровня работают, опираясь на программы более низкого уровня. Уровни программного обеспечения представляют собой пирамидальную конструкцию. Каждый следующий уровень опирается на программное обеспечение предшествующих уровней.

Список использованной литературы

1. Колмыкова Е.А., Кумскова И.А. Информатика: учебной пособие для студ. сред. проф. образования. - 2-е изд., стер. - М.: Издательский центр «Академия», 2009. - 416 с.

Михеева Е.В., Практикум по информатике. - М.: Издательский центр «Академия», 2008.

Михеева Е.В., Информационные технологии в профессиональной деятельности. - М.: Издательский центр «Академия», 2008.

Безручко В.Т. Информатика (курс лекций): учебное пособие. - М.: ИД «Форум»: ИНФРА-М, 2007. - 432.: ил.

Симонович С.В., Евсеев Г.А. Алексеев А.Н. Общая информатика. Учебное пособие для средней школы. - М.: АСТ-Пресс: Инфорком-Пресс, 2007

Компьютер - это многофункциональное электронное устройство, предназначенное для накопления, обработки и передач» информации. Под архитектурой персонального компьютера понимается его логическая организация, структура и ресурсы, т.е. средства вычислительной системы, которые могут быть выделены процессу обработки данных на определенный интервал времени.

В основу построения большинства компьютеров положены принципы, сформулированные Джоном фон Нейманом:

· Принцип программного управления - программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.

· Принцип однородности памяти - программы и иные хранятся в одной и той же памяти; над командами можно выполнять те же действия, что и над данными!

· Принцип адресности - основная память структурно состоит из пронумерованных ячеек.

Компьютеры, построенные на этих принципах, имеют классическую архитектуру.

Архитектура компьютера определяет принцип действия, информационные связи и взаимное соединение основных логических узлов компьютера, к которым относятся: центральный процессор; основная память; внешняя память; периферийные устройства.

Конструктивно персональные компьютеры выполнены в виде центрального системного блока, к которому через специальные разъемы присоединяются другие устройства. В состав системного блока входят все основные узлы компьютера: системная плата; блок питания; накопитель на жестком магнитном диске; накопитель на оптическом диске; разъемы для дополнительных устройств.

На системной (материнской) плате в свою очередь размещаются: микропроцессор; математический сопроцессор; генератор тактовых импульсов; микросхемы памяти; контроллеры внешних устройств; звуковая и видеокарты и другие устройства.

Основными функциональными характеристиками персонального компьютера являются:

· производительность, быстродействие, тактовая частота;

· разрядность микропроцессора и кодовых шин интерфейса.;

· типы системного и локальных интерфейсов;

· емкость оперативной памяти;

· емкость накопителя на жестких магнитных дисках;

· наличие и тип накопителя на оптических дисках;

· наличие и тип модема;

· наличие и виды мультимедийных средств;

· имеющееся программное обеспечение и вид операционной системы;

· аппаратная и программная совместимость с другими типами ЭВМ;

· возможность работы в вычислительной сети;

· надежность;

· стоимость;

· габариты и вес.

Центральный процессор

Центральный процессор (ЦП) - это центральный блок персонального компьютера, предназначенный для управления работой всех остальных блоков и выполнения арифметических и логических операций над информацией.



Рисунок 16 - Процессор Intel Core i 7

ЦП выполняет следующие основные функции:

· чтение и дешифрацию команд из основной памяти;

· чтение данных из основной памяти и регистров адаптеров внешних устройств;

· прием и обработку запросов и команд от адаптеров на обслуживание внешних устройств;

· обработку данных и их запись в основную память и регистры адаптеров внешних устройств;

· выработку управляющих сигналов для всех прочих узлов и блоков компьютера.

В состав микропроцессора входят следующие устройства.

1. Арифметико-логическое устройство - предназначено для выполнения всех арифметических и логических операций над числовой и символьной информацией.

2. Устройство управления - координирует взаимодействие различных частей компьютера. Выполняет следующие основные функции:

· формирует и подает во все блоки машины в нужные моменты времени определенные сигналы управления (управляющие импульсы), обусловленные спецификой выполнения различных операций;

· формирует адреса ячеек памяти, используемых выполняемой операцией, и передает эти адреса в соответствующие блоки компьютера;

· получает от генератора тактовых импульсов обратную последовательность импульсов.

3. Микропроцессорная память - предназначена для кратковременного хранения, записи и выдачи информации, используемой в вычислениях непосредственно в ближайшие такты работы машины. Микропроцессорная память строится на регистрах и используется для обеспечения высокого быстродействия компьютера, так как основная память не всегда обеспечивает скорость записи, поиска и считывания информации, необходимую для эффективной работы быстродействующего микропроцессора.

Регистр представляет собой цифровую электронную схему, служащую для временного хранения двоичных чисел. В процессоре имеется значительное количество регистров, большая часть которых используется самим процессором и недоступна программисту. Например, при выборке из памяти очередной команды она помещается в регистр команд. Программист обратиться к этому регистру не может. Имеются также регистры, которые в принципе программно доступны, но обращение к ним осуществляется из программ операционной системы (например, управляющие регистры и теневые регистры дескрипторов сегментов). Этими регистрами пользуются в основном разработчики операционных систем.

Доступ к значениям, хранящимся в регистрах, как правило, в несколько раз быстрее, чем доступ к ячейкам оперативной памяти (даже если кеш-память содержит нужные данные), но объём оперативной памяти намного превосходит суммарный объём регистров (объём среднего модуля оперативной памяти сегодня составляет 1-4 Гб, суммарная «ёмкость» регистров общего назначения/данных для процессора Intel 80x86 16 битов * 4 = 64 бита (8 байт)).

4. Интерфейсная система микропроцессора предназначена для связи с другими устройствами компьютера. Включает в себя: внутренний интерфейс микропроцессора; буферные запоминающие регистры; схемы управления портами ввода-вывода и системной шиной.

Основные характеристики процессора:

1. Тактовая частота. Измеряется в гигагерцах (ГГц) и указывает на количество выполняемых процессором операций за секунду.

2. Кэш процессора - встроенная в процессор оперативная память. Кэш центрального процессора разделён на несколько уровней. Для универсальных процессоров - до 3. Кэш-память уровня N+1 как правило больше по размеру и медленнее по скорости доступа и передаче данных, чем кэш-память уровня N.

3. Разрядность процессора - это число бит, одновременно хранимых, обрабатываемых или передаваемых в другое устройство.

4. Сокет - разъем на материнской плате, который предназначено для подключения ЦП. Для процессоров Intel требуется сокеты, которые маркируются следующим образом: LGA, а далее идет трех- или четырехзначное число (775, 1366 или 1156). С процессорами от AMD ситуация другая - здесь используется маркировка "Socket AM2", "Socket AM2+" или "Socket AM3". Отличие Intel"овских сокетов от AMD в том, что первые для крепления процессора используют контактные ножки, а вторые - контактные отверстия.

Большинство современных процессоров для персональных компьютеров в общем основаны на той или иной версии циклического процесса последовательной обработки информации, изобретённого Джоном фон Нейманом .

Важнейшие этапы этого процесса приведены ниже. В различных архитектурах и для различных команд могут потребоваться дополнительные этапы. Например, для арифметических команд могут потребоваться дополнительные обращения к памяти, во время которых производится считывание операндов и запись результатов. Отличительной особенностью архитектуры фон Неймана является то, что инструкции и данные хранятся в одной и той же памяти.

Этапы цикла выполнения:

1. Процессор выставляет число, хранящееся в регистре счётчика команд , на шину адреса и отдаёт памяти команду чтения;

2. Выставленное число является для памяти адресом; память, получив адрес и команду чтения, выставляет содержимое, хранящееся по этому адресу, на шину данных , и сообщает о готовности;

3. Процессор получает число с шины данных, интерпретирует его как команду (машинную инструкцию ) из своей системы команд и исполняет её;

4. Если последняя команда не является командой перехода , процессор увеличивает на единицу (в предположении, что длина каждой команды равна единице) число, хранящееся в счётчике команд; в результате там образуется адрес следующей команды;

5. Снова выполняется п. 1.

Данный цикл выполняется неизменно, и именно он называется процессом (откуда и произошло название устройства).

Во время процесса процессор считывает последовательность команд, содержащихся в памяти, и исполняет их. Такая последовательность команд называется программой и представляет алгоритм работы процессора. Очерёдность считывания команд изменяется в случае, если процессор считывает команду перехода - тогда адрес следующей команды может оказаться другим. Другим примером изменения процесса может служить случай получения команды останова или переключение в режим обработки прерывания .

Команды центрального процессора являются самым нижним уровнем управления компьютером, поэтому выполнение каждой команды неизбежно и безусловно. Не производится никакой проверки на допустимость выполняемых действий, в частности, не проверяется возможная потеря ценных данных. Чтобы компьютер выполнял только допустимые действия, команды должны быть соответствующим образом организованы в виде необходимой программы.

Скорость перехода от одного этапа цикла к другому определяется тактовым генератором. Тактовый генератор вырабатывает импульсы, служащие ритмом для центрального процессора. Частота тактовых импульсов называется тактовой частотой .

Микропроцессоры можно разделить на группы:

· микропроцессоры типа CISC с полным набором системы команд;

· микропроцессоры типа RISC с усеченным набором системы команд;

· микропроцессоры типа MISC с минимальным набором системы команд и весьма высоким быстродействием и др.

CISC (англ. Complex Instruction Set Computing) - концепция проектирования процессоров , которая характеризуется следующим набором свойств:

· нефиксированным значением длины команды.

· арифметические действия кодируются в одной инструкции.

· небольшим числом регистров, каждый из которых выполняет строго определённую функцию.

Типичными представителями являются процессоры на основе x86 команд (исключая современные Intel Pentium 4 , Pentium D , Core , AMD Athlon , Phenom , которые являются гибридными.

Наиболее распространённая архитектура современных настольных, серверных и мобильных процессоров построена по архитектуре Intel x86 (или х86-64 в случае 64-разрядных процессоров). Формально, все х86-процессоры являлись CISC-процессорами, однако новые процессоры, начиная с Intel486DX, являются CISC-процессорами с RISC-ядром.

RISC (англ . Reduced Instruction Set Computer; неправильно - Reduced Instruction Set Computing) - компьютер с сокращённым набором команд .

Это концепция проектирования процессоров (ЦПУ), которая во главу ставит следующий принцип: более компактные и простые инструкции выполняются быстрее. Простая архитектура позволяет удешевить процессор, поднять тактовую частоту , а также распараллелить исполнение команд между несколькими блоками исполнения (т. н. суперскалярные архитектуры процессоров). Многие ранние RISC-процессоры даже не имели команд умножения и деления. Идея создания RISC процессоров пришла после того, как в 1970-х годах ученые из IBM обнаружили, что многие из функциональных особенностей традиционных ЦПУ игнорировались программистами . Отчасти это был побочный эффект сложности компиляторов . В то время компиляторы могли использовать лишь часть из набора команд процессора. Следующее открытие заключалось в том, что, поскольку некоторые сложные операции использовались редко, они как правило были медленнее, чем те же действия, выполняемые набором простых команд. Это происходило из-за того, что создатели процессоров тратили гораздо меньше времени на улучшение сложных команд, чем на улучшение простых.

Характерные особенности RISC-процессоров:

· фиксированная длина машинных инструкций (например, 32 бита) и простой формат команды.

· специализированные команды для операций с памятью - чтения или записи. Операции вида «прочитать-изменить-записать» отсутствуют. Любые операции «изменить» выполняются только над содержимым регистров (т. н. load-and-store архитектура).

· большое количество регистров общего назначения (32 и более).

· отсутствие поддержки операций вида «изменить» над укороченными типами данных - байт, 16-битное слово. Так, например, система команд DEC Alpha содержала только операции над 64-битными словами, и требовала разработки и последующего вызова процедур для выполнения операций над байтами, 16- и 32-битными словами.

· отсутствие микропрограмм внутри самого процессора. То, что в CISC процессоре исполняется микропрограммами, в RISC процессоре исполняется как обыкновенный (хотя и помещенный в специальное хранилище) машинный код, не отличающийся принципиально от кода ядра ОС и приложений.

MISC (англ. Minimal Instruction Set Computer) - процессор , работающий с минимальным набором длинных команд. Увеличение разрядности процессоров привело к идее укладки нескольких команд в одно большое слово. Это позволило использовать возросшую производительность компьютера и его возможность обрабатывать одновременно несколько потоков данных. MISC принцип может лежать в основе микропрограммы выполнения Java и. Net программ, хотя по количеству используемых команд они нарушают принцип MISC

Материнская плата

Материнская плата (англ. motherboard) - это сложная многослойная печатная плата , на которой устанавливаются основные компоненты персонального компьютера (рисунок 17) . Как правило, материнская плата содержит разъёмы (слоты) для подключения различных видов памяти, а также дополнительных контроллеров , для подключения которых обычно используются шины USB , PCI и PCI-Express



Внешний вид материнский платы

Компьютерная шина (от англ. computer bus) - в архитектуре компьютера подсистема, которая передаёт данные между функциональными блоками компьютера. Обычно шина управляется драйвером . В отличие от связи точка-точка, к шине можно подключить несколько устройств по одному набору проводников. Каждая шина определяет свой набор коннекторов (соединений) для физического подключения устройств, карт и кабелей.



Компоненты материнской платы

Шина адреса - компьютерная шина , используемая центральным процессором или устройствами для указания физического адреса слова ОЗУ (или начала блока слов), к которому устройство может обратиться для проведения операции чтения или записи.

Основной характеристикой шины адреса является её ширина в битах . Ширина шины адреса определяет объём адресуемой памяти. Например, если ширина адресной шины составляет 16 бит, и размер слова памяти равен одному байту (минимальный адресуемый объём данных), то объём памяти, который можно адресовать, составляет 216 = 65536 байтов (64 КБ).

Если рассматривать структурную схему микро-ЭВМ, то адресная шина активизирует работу всех внешних устройств по команде, которая поступает с микропроцессора.

Шина данных - в компьютерной технике принято различать выводы устройств по назначению: одни для передачи информации (например, в виде сигналов низкого или высокого уровня), другие для сообщения всем устройствам - кому эти данные предназначены.

На материнской плате шина может также состоять из множества параллельно идущих через всех потребителей данных проводников (например, в архитектуре IBM PC ).

Основной характеристикой шины данных является её ширина в битах. Ширина шины данных определяет количество информации, которое можно передать за один такт.

Основным компонентом материнской платы является чипсет (англ. chipset) центрального процессора - набор микросхем, обеспечивающих подключение ЦПУ к оперативному ПАМЯТИ (ОЗУ) и контроллерам периферийных устройств. Как правило, современные наборы системной логики строятся на базе двух микросхем: «северного» и «южного мостов».

Северный мост (англ. Northbridge), MCH (Memory controller hub), системный контроллер - обеспечивает подключение ЦПУ к узлам, использующим высокопроизводительные шины: ОЗУ, графический контроллер.

Для подключения ЦПУ к системному контроллеру могут использоваться такие FSB-шины, как Hyper-Transport и SCI .

Обычно к системному контроллеру подключается ОЗУ. В таком случае он содержит в себе контроллер памяти. Таким образом, от типа применённого системного контроллера обычно зависит максимальный объём ОЗУ, а также пропускная способность шины памяти персонального компьютера. Но в настоящее время имеется тенденция встраивания контроллера ОЗУ непосредственно в ЦПУ (например, контроллер памяти встроен в процессор в AMD K8 и Intel Core i7 ), что упрощает функции системного контроллера и снижает тепловыделение.

В качестве шины для подключения графического контроллера на современных материнских платах используется PCI Express . Ранее использовались общие шины (ISA , VLB, PCI ) и шина AGP .

Южный мост (англ. Southbridge), ICH (I/O controller hub), периферийный контроллер - содержит контроллеры периферийных устройств (жёсткого диска , Ethernet , аудио), контроллеры шин для подключения периферийных устройств (шины PCI , PCI-Express и USB ), а также контроллеры шин, к которым подключаются устройства, не требующие высокой пропускной способности (LPC - используется для подключения загрузочного ПЗУ; также шина LPC используется для подключения мультиконтроллера (англ. Super I/O) - микросхемы, беспечивающей поддержку «устаревших» низкопроизводительных интерфейсов передачи данных: последовательного и параллельного интерфейсов, контроллера клавиатуры и мыши).

Как правило, северный и южный мосты реализуются в виде отдельных микросхем, однако существуют и одночиповые решения. Именно набор системной логики определяет все ключевые особенности материнской платы и то, какие устройства могут подключаться к ней.

Форм-фактор материнской платы - стандарт, определяющий размеры материнской платы для персонального компьютера , места ее крепления к корпусу ; расположение на ней интерфейсов шин, портов ввода/вывода , сокета центрального процессора (если он есть) и слотов для оперативной памяти , а также тип разъема для подключения блока питания .

Форм-фактор (как и любые другие стандарты) носит рекомендательный характер. Спецификация форм-фактора определяет обязательные и опциональные компоненты. Однако подавляющее большинство производителей предпочитают соблюдать спецификацию, поскольку ценой соответствия существующим стандартам является совместимость материнской платы и стандартизированного оборудования (периферии, карт расширения) других производителей.

Устаревшие: Baby-AT ; Mini-ATX ; полноразмерная плата AT ; LPX .

Современные: АТХ; microATX ; Flex-АТХ; NLX ; WTX , CEB .

Внедряемые: Mini-ITX и Nano-ITX ; Pico-ITX ; BTX , MicroBTX и PicoBTX .

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то