Гис решения. Географические информационные системы. Ключевые преимущества ГИС

ГИС (расшифровывается как «Географические Информационные Системы») - компьютерные системы, дающие возможность вывода данных на экран в электронном виде. Изображения, получаемые посредством ГИС, относятся к картам нового поколения.

География на экране

Такие карты могут быть снабжены помимо географических и другими данными из области статистики, демографии и т. п. С ними возможны разные виды аналитических операций, недоступные для старых бумажных носителей.

Техническая поддержка электронных карт существует в виде огромного количества аналитики, инструментов редактирования, обширных баз данных. При их создании и использовании задействовано множество современных средств - от сканеров до космических спутников, делающих снимки земной поверхности.

Полученная с помощью новых технологий информация находит применение не только у географов, но и в среде бизнеса, строительства, маркетинга, государственного управления. Даже домохозяйкам известно, что такое геоинформационные системы. И они вполне успешно пользуются электронными картами!

ГИС - определение и основные понятия

Что же конкретно обозначает этот термин? Геоинформационные системы (ГИС) - название систем, назначением которых является сбор, хранение и анализ данных пространственного характера, а также их графическая визуализация. ГИС относится к компьютерным технологиям нового поколения. Наука, изучающая прикладные и технические аспекты работы с ГИС, - геоинформатика.

ГИС - это удачное сочетание возможности работы с базами данных (запросы, аналитика) и пространственной визуализации, характерной для карт. Хранение данных в такой системе ведется по тематическим слоям, привязанным к географическому местоположению. ГИС работают и с растровыми, и с векторными данными, благодаря чему любая задача, связанная с пространственной информацией, может быть с их помощью эффективно решена.

Что их отличает

К характерным особенностям, которыми обладает геоинформационная система, можно отнести развитую аналитику, работу с огромными массивами сведений, наличие специальных инструментов для обработки данных пространственного характера.

Их основные преимущества - удобство для пользователя (данные в трехмерном измерении наиболее легки для восприятия), возможность интегрировать информацию, накопленную различными источниками, создавать единый массив для коллективного использования.

Затем - автоматический анализ геопространственных данных и отчет, использование расшифровки аэро- и космической съемки, ранее созданных схем и планов местности, что на порядок повышает эффективность применения. Значительная экономия временных ресурсов и возможность создания трехмерных моделей географических объектов.

Главные задачи

Функции ГИС - это ряд операций по:

  • вводу данных (цифровые карты создаются в автоматическом режиме),
  • управлению данными (все они сохраняются с возможностью последующей обработки и использования),
  • их запросу и анализу путем сопоставления множества параметров,
  • визуализации полученных и обработанных данных в форме интерактивных карт.

Отчеты о каждом объекте могут принимать вид графика, диаграммы или трехмерного изображения.

Возможности ГИС

С помощью системы ГИС становится возможным определение на заданной территории наличия, количества и взаимного расположения всех имеющихся объектов. Кроме того, с ее помощью проводят, например, анализ геопространственных данных, характеризующих плотность расселения и т. п. и определяют различные изменения во времени.

С помощью систем ГИС стало возможным смоделировать предполагаемую ситуацию, касающуюся, например, добавления нового объекта - дороги, жилого массива и т. п.

ГИС - классификация

Классификаций этих систем существует несколько. Если делить их по принципу охвата территории, то каждую ГИС можно будет отнести к глобальным, субконтинентальным, национальным, региональным, субрегиональным, а также местным или локальным системам.

Если отталкиваться от уровня управления, то данные системы состоят из федеральных, региональных, муниципальных и корпоративных.

Различают их и по функционалу. ГИС (расшифровка аббревиатуры понятна большому числу пользователей) могут быть как полнофункциональными, так и специализированными, предназначенными для решения определенных задач - например, просмотра данных, их ввода и обработки.

В зависимости от предметной области ГИС можно отнести к картографическим, геологическим, природоохранным, а также муниципальным или городским.

Интегрированные географические информационные системы - те, в которых, помимо стандартного функционала, имеется возможность подвергать изображения цифровой обработке. Полномасштабные ГИС воспроизводят данные в любом выбранном масштабе. Пространственно-временные системы дают возможность оперировать информацией в прошлом или будущем времени.

Где применяются ГИС

ГИС - это универсальный инструмент с обширной сферой применения. Какой же именно?

  • Типичная область их использования - управление земельными ресурсами, составление кадастров, вычисление площадей и установка границ земельных участков. Как раз для решения таких проблем и создавались первые подобные системы.
  • Другая сфера - управление объектами инфраструктуры производственного характера, их учет, планирование, инвентаризация. Создание и размещение сети объектов определенного назначения - магазинов, заправочных станций и т. п.
  • Инженерные изыскания и планирование в сфере архитектуры и строительства, решение задач по развитию территории и оптимизации ее инфраструктуры.
  • Создание тематических карт.
  • Управление всеми видами транспорта - от наземного до водного и воздушного.

Иные сферы

Деятельность по охране природы, экологические мероприятия, планирование и управление природными ресурсами, экологический мониторинг, моделирование процессов окружающей среды.

Сфера геологии и горнодобывающей промышленности. С помощью ГИС стало возможным подсчитать запас полезных ископаемых на основе проб разведочного бурения и моделирования структуры месторождения.

Дальнейшее развитие

С 70-х гг. благодаря государственной поддержке появились экспериментальные проекты по применению ГИС в системах навигации и вывоза мусора, транспортном движении и пр.

С 80-х гг. начался период развития на коммерческой основе. Рынок наполнился массой программных средств, появились всевозможные приложения, количество пользователей, узнавших, что такое ГИС-технологии, превысило число специалистов-профессионалов.

В настоящий период, который можно назвать пользовательским, благодаря высокой конкуренции в среде производителей стало возможным создание тематических групп потребителей, проведение телеконференций, формирование единой мировой геоструктуры.

О перспективах ГИС

Новым этапом эволюции в развитии ГИС можно считать появление геодизайна, который требуется сейчас везде - от сферы землепользования и природной охраны до планирования новой инфраструктуры и объектов строительства, а также при обслуживании коммунальных сетей и т. д.

Будущее принадлежит ГИС-технологиям, содержащим начала искусственного интеллекта. Современные ГИС - это новейшие компьютерные разработки, основанные на применении космической и аэрофотосъемки, служащие для реализации глобальных государственных программ.

Сейчас ГИС-системы развиваются невиданными темпами и относятся к числу наиболее интересных в коммерческом плане решений. В России в наши дни их разработкой и внедрением заняты около 200 различных организаций, что позволяет говорить о конкуренции с западными производителями. Уже ни для кого не секрет, что за новыми технологиями - огромные перспективы, основанные на дальнейшем развитии компьютерных средств обработки информации.

ГИС (ДубльГИС Барнаул)

Однозначное краткое определение этому явлению дать достаточно сложно. Географическая информационная система (ГИС) - это возможность нового взгляда на окружающий нас мир. Если обойтись без обобщений и образов, то ГИС - это современная компьютерная технология для картирования и анализа объектов реального мира, также событий, происходящих на нашей планете. Эта технология объединяет традиционные операции работы с базами данных, такими как запрос и статистический анализ, с преимуществами полноценной визуализации и географического (пространственного) анализа, которые предоставляет карта. Эти возможности отличают ГИС от других информационных систем и обеспечивают уникальные возможности для ее применения в широком спектре задач, связанных с анализом и прогнозом явлений и событий окружающего мира, с осмыслением и выделением главных факторов и причин, а также их возможных последствий, с планированием стратегических решений и текущих последствий предпринимаемых действий. Создание карт и географический анализ не являются чем-то абсолютно новым. Однако технология ГИС предоставляет новый, более соответствующий современности, более эффективный, удобный и быстрый подход к анализу проблем и решению задач, стоящих перед человечеством в целом, и конкретной организацией или группой людей, в частности. Она автоматизирует процедуру анализа и прогноза. До начала применения ГИС лишь немногие обладали искусством обобщения и полноценного анализа географической информации с целью обоснованного принятия оптимальных решений, основанных на современных подходах и средствах. В настоящее время ГИС - это многомиллионная индустрия, в которую вовлечены сотни тысяч людей во всем мире. ГИС изучают в школах, колледжах и университетах. Эту технологию применяют практически во всех сферах человеческой деятельности - будь то анализ таких глобальных проблем как перенаселение, загрязнение территории, сокращение лесных угодий, природные катастрофы, так и решение частных задач, таких как поиск наилучшего маршрута между пунктами, подбор оптимального расположения нового офиса, поиск дома по его адресу, прокладка трубопровода на местности, различные муниципальные задачи. По территориальному охвату различают глобальные ГИС (global GIS), субконтинентальные ГИС, национальные ГИС, зачастую имеющие статус государственных, региональные ГИС (regional GIS), субрегиональные ГИС и локальные, или местные ГИС (local GIS).

ГИС различаются предметной областью информационного моделирования, к примеру, городские ГИС, или муниципальные ГИС, МГИС (urban GIS), природоохранные ГИС (environmental GIS) и т. п.; среди них особое наименование, как особо широко распространённые, получили земельные информационные системы. Проблемная ориентация ГИС определяется решаемыми в ней задачами (научными и прикладными), среди них инвентаризация ресурсов (в том числе кадастр), анализ, оценка, мониторинг, управление и планирование, поддержка принятия решений. Интегрированные ГИС, ИГИС (integrated GIS, IGIS) совмещают функциональные возможности ГИС и систем цифровой обработки изображений (данных дистанционного зондирования) в единой интегрированной среде.

Полимасштабные, или масштабно-независимые ГИС (multiscale GIS) основаны на множественных, или полимасштабных представлениях пространственных объектов (multiple representation, multiscale representation), обеспечивая графическое или картографическое воспроизведение данных на любом из избранных уровней масштабного ряда на основе единственного набора данных с наибольшим пространственным разрешением. Пространственно-временные ГИС (spatio-temporal GIS) оперируют пространственно-временными данными. Реализация геоинформационных проектов (GIS project), создание ГИС в широком смысле слова, включает этапы: предпроектных исследований (feasibility study), в том числе изучение требований пользователя (user requirements) и функциональных возможностей используемых программных средств ГИС, технико-экономическое обоснование, оценку соотношения «затраты/прибыль» (costs/benefits); системное проектирование ГИС (GIS designing), включая стадию пилот-проекта (pilot-project), разработку ГИС (GIS development); её тестирование на небольшом территориальном фрагменте, или тестовом участке (test area), прототипирование, или создание опытного образца, или прототипа (prototype); внедрение ГИС (GIS implementation); эксплуатацию и использование. Научные, технические, технологические и прикладные аспекты проектирования, создания и использования ГИС изучаются геоинформатикой.

История ГИС

Начальный период (поздние 1950е - ранние 1970е гг.)

Исследование принципиальных возможностей, пограничных областей знаний и технологий, наработка эмпирического опыта, первые крупные проекты и теоретические работы.

  • Появление электронных вычислительных машин (ЭВМ) в 50-х годах.
  • Появление цифрователей, плоттеров, графических дисплеев и других периферийных устройств в 60-х.
  • Создание программных алгоритмов и процедур графического отображения информации на дисплеях и с помощью плоттеров.
  • Создание формальных методов пространственного анализа.
  • Создание программных средств управления базами данных.

Период государственных инициатив (нач. 1970е - нач. 1980е гг.)

Государственная поддержка ГИС стимулировала развитие экспериментальных работ в области ГИС, основанных на использовании баз данных по уличным сетям:

  • Автоматизированные системы навигации.
  • Системы вывоза городских отходов и мусора.
  • Движение транспортных средств в чрезвычайных ситуациях и т. д.

Период коммерческого развития (ранние 1980е - настоящее время)

Широкий рынок разнообразных программных средств, развитие настольных ГИС, расширение области их применения за счет интеграции с базами непространственных данных, появление сетевых приложений, появление значительного числа непрофессиональных пользователей, системы, поддерживающие индивидуальные наборы данных на отдельных компьютерах, открывают путь системам, поддерживающим корпоративные и распределенные базы геоданных.

Пользовательский период (поздние 1980е - настоящее время)

Повышенная конкуренция среди коммерческих производителей геоинформационных технологий услуг дает преимущества пользователям ГИС, доступность и «открытость» программных средств позволяет использовать и даже модифицировать программы, появление пользовательских «клубов», телеконференций, территориально разобщенных, но связанных единой тематикой пользовательских групп, возросшая потребность в геоданных, начало формирования мировой геоинформационной инфраструктуры.

Принцип работы ГИС

ГИС хранит информацию о реальном мире в виде набора тематических слоев, которые объединены на основе географического положения. Этот простой, но очень гибкий подход доказал свою ценность при решении разнообразных реальных задач: для отслеживания передвижения транспортных средств и материалов, детального отображения реальной обстановки и планируемых мероприятий, моделирования глобальной циркуляции атмосферы. Любая географическая информация содержит сведения о пространственном положении, будь то привязка к географическим или другим координатам, или ссылки на адрес, почтовый индекс, избирательный округ или округ переписи населения, идентификатор земельного или лесного участка, название дороги и т.п. При использовании подобных ссылок для автоматического определения местоположения или местоположений объекта (объектов) применяется процедура, называемая геокодированием. С ее помощью можно быстро определить и посмотреть на карте где находится интересующий вас объект или явление, такие как дом, в котором проживает ваш знакомый или находится нужная вам организация, где произошло землетрясение или наводнение, по какому маршруту проще и быстрее добраться до нужного вам пункта или дома.

Векторная и растровая модели

ГИС может работать с двумя существенно отличающимися типами данных - векторными и растровыми. В векторной модели информация о точках, линиях и полигонах кодируется и хранится в виде набора координат X,Y. Местоположение точки (точечного объекта), например буровой скважины, описывается парой координат (X,Y). Линейные объекты, такие как дороги, реки или трубопроводы, сохраняются как наборы координат X,Y. Полигональные объекты, типа речных водосборов, земельных участков или областей обслуживания, хранятся в виде замкнутого набора координат. Векторная модель особенно удобна для описания дискретных объектов и меньше подходит для описания непрерывно меняющихся свойств, таких как типы почв или доступность объектов. Растровая модель оптимальна для работы с непрерывными свойствами. Растровое изображение представляет собой набор значений для отдельных элементарных составляющих (ячеек), оно подобно отсканированной карте или картинке. Обе модели имеют свои преимущества и недостатки. Современные ГИС могут работать как с векторными, так и с растровыми моделями.

Слои ГИС

Вся картографическая информация в ГИС организована в виде слоев. Слои, это самый первый уровень абстракции в ГИС. Работая с ГИС, мы обязаны разделить существующие у нас данные на слои. Каждый слой содержит объекты определенного вида, объединенные общими характеристиками. Работая в ГИС, мы можем подключать и отключать интересующие нас слои, или менять порядок их отображения. Слои бывают следующих типов:

Точечные

Точечные слои содержат объекты, которые можно абстрагировать до точки, например скважины или города. Ради ясности понимания даже город можно представить точкой.

Линейные

Эти объекты можно абстрагировать до ломаной или гладкой линии, например реки, дороги, или трубопроводы.

Полигональные или площадные

Объекты этого типа представляются как находящиеся в пределах некоторого полигона, например лицензионные участки.

Площадные объекты могут состоять из нескольких контуров. Это необходимо если требуется представить полигон с дыркой внутри. На рисунке представлен пример обычного полигона и полигона, состоящего из двух контуров.

Последняя точка полигона всегда должна совпадать с первой точкой. Правильно это или нет, но так уж повелось в геоинформационных системах. Таким образом, полигон не может иметь менее четырех точек. Если полигон имеет нулевую площадь, то есть вырождается, то его необходимо удалить. Полигон также не должен иметь самопересечений. Подобные недочеты позже могут привести к серьезным ошибкам в расчетах, и потому их следует избегать.

Изображения

Растровые графические изображения, привязанные к географическим координатам, например космоснимки или отсканированые карты.

Сеточные модели

Это структурные карты и карты параметров. Первоначально такие модели основывались на прямоугольной сетке, где в узлах сетки указано значение Z (параметра).

Теперь строение подобных моделей зачастую боле сложное, но по традиции их продолжают называть сетками или гридами. Современные гриды могут содержать разломы, области уточнения или быть основаны на сплайнах. Смысл сеточных моделей остается прежним: непрерывное представление параметра на определенной площади.

Сетка сплайнов отличается от обычной сетки тем, что ее поверхность является идеально гладкой, что более естественно для большинсва моделей. Сетки с разломами содержат дополнительные сегменты для моделирования ровного разрыва. На обычной сеточной модели разрыв получается ступенчатым. Сеточные модели, также называют картами в изолиниях.

Специальные виды слоев

Эти пять типов слоев стандартны для любой профессиональной ГИС, но кроме них могут существовать и другие, специальные типы данных, обусловленые областью применения данной системы. Например, это могут быть разломы (для моделирования сеток с разломами), растровые карты (для представления очень больших растровых изображений), 3D модели (для трехмерных моделей пластов).

Таблицы данных ГИС

Точки линии и полигоны имеют таблицы аттрибутивных данных для своих объектов.

Каждому объекту на карте соответствует строка в таблице данных. Используя таблицу данных можно находить и сортировать объекты, выделять их на карте по аттрибутам или смотреть атрибуты выделенных объектов. Атрибутивная таблица позволяет искать объекты, сортировать их, выделять по условиям, группировать, создавать фильтры, проводить вычисления. Таблица аттрибутов превращает ГИС в базу данных, в которой вы можете проводить анализ данных или управление данными при помощи развитых инструментов ГИС. Без таблиц аттрибутов геоинформационные системы не имели бы смысла, а карты в них не были бы картами, а были просто рисунками, как рисунки в CorelDraw или Paint.

Точки в составе линий и полигонов также имеют свои аттрибутивные таблицы. Так, например, сейсмопрофили можно загрузить вместе с данными по отпикированным горизонтам и использовать их для построения карт в изолиниях. Таблица данных поддерживает понятие выделенных объектов, такие строки в таблице помечены другим цветом. Выделенные объекты также, несколько иначе отображаются и на карте. Выделение объектов очень часто используется при анализе данных. Выделять объекты можно как в таблице, так и на карте, а также по заданным условиям.

Формирование слоев

Очень важной темой является правильное формирование структуры слоев. Полезность любой базы данных, и ГИС в том числе, сильно зависит от правильной структуры данных. Даже можно сформулировать следующее: полезность базы прямо пропорциональна ее правильной организации и порядку в данных. Если данные в базе содержат большое количество ошибок или неправильно организованы, то это может свести на нет все достоинтва базы данных как таковой. По этой причине важным является умение правильно структурировать информацию. Например, если вы загружаете данные сейсморазведки, то правильно будет объединить все сейсмопартии в одном слое, а не создавать несколько слоев групируя их по районам или площадям. Лучше придерживаться такого правила: один тип данных - одна таблица (или один слой). С другой стороны разнородные объекты лучше помещать в разные слои, даже если они объеденены общей тематикой. Так автодороги и железные дороги лучше разделить на два слоя, а потом поместить их в группу "Транспортные пути".

Координаты

Всем известно, что земля круглая, а карта плоская, и поверхность шара невозможно развернуть на плоскость без деформаций. По этой причине в картографии используют проекции. Поекции это правила и формулы преобразования одних координат в другие. Обычно используется преобразование из сферических (географических) координат в прамоугольные координаты (координаты карты). Проекции бывают равноплощадными или равноугольными, то есть сохраняют площадь объектов или углы. Иногда проекция может искажать и то и другое, минимизируя искажения вобщем. Для нашей страны стандартной сиситемой преобразования является система координат "42-ого года". Система "42-ого года" делит территорию земного шара на 60 зон, по 6 градусов. Тюменская область, например, находится в пределах 12-ой, 13-ой и 14-ой зон. "42-ой год" это равноплощадная проекция. ГИС устроены так, что могут хранить данные в одной системе координат, а отображать в другой. Поэтому необходимо не запутаться с тем, в какой системе координат хранятся данные, и в какой они отображены на карте. Чтобы уменьшить путаницу с проекциями Isoline поддерживает только два варианта исходных данных:

  • Прямогугольные координаты (любые произвольные координаты, к которым не применяется никаких преобразований).
  • Географические координаты (градусы, минуты, секунды, которые при отображении на карте пересчитываются в какую либо проекцию).

Вот варианты отображения одного и того же участка в разных системах координат и проекциях.

Проекция "поликоническая". Реальные координаты - градусы, отображаемые кординаты - градусы.

Проекция не установлена. Реальные координаты - "поликонические", отображаемые кординаты - прямоугольные.

Проекция не установлена. Реальные координаты - градусы, отображаемые кординаты - прямоугольные.

Проекция "поликоническая". Реальные координаты - "поликонические", отображаемые кординаты - прямоугольные.

Как видно из рисунков два верхних нас вполне устраивают, а третий и четвертый нет. Третий рисунок, на самом деле, вполне корректен, но проекция не указана, и поэтому мы видим изображение "как есть", в градусах. На четвертом рисунке мы попытались отобразить полигон, данные которого не градусы, в проекции "поликонической" и система нас не поняла. Из этого можно сделать следующее заключение: для прямоугольных координат устанавливать проекцию нельзя, так как в этом случае формулы преобразования применяются к ним второй раз, и изображение получается неверным.

Также необходимо принимать во внимание такой факт, что прямая проведенная в одной системе координат не является прямой в другой системе, а площади объектов могут отличаться, даже если проекции равноплощадные.

Прямоугольные координаты

"поликонические", без корректировки отображения.

Координатная сиситема Мольвейде.

поликонические", с корректировкой отображения.

Поэтому если вам нужны точные длины линий, точные площади, и точное отображение, то необходимо воспользоваться специальными средствами системы.

Задачи, которые решает ГИС

ГИС общего назначения, в числе прочего, обычно выполняет пять процедур (задач) с данными: ввод, манипулирование, управление, запрос и анализ, визуализацию.

Ввод

Для использования в ГИС данные должны быть преобразованы в подходящий цифровой формат. Процесс преобразования данных с бумажных карт в компьютерные файлы называется оцифровкой. В современных ГИС этот процесс может быть автоматизирован с применением сканерной технологии, что особенно важно при выполнении крупных проектов, либо, при небольшом объеме работ, данные можно вводить с помощью дигитайзера. Многие данные уже переведены в форматы, напрямую воспринимаемые ГИС-пакетами.

Манипулирование

Часто для выполнения конкретного проекта имеющиеся данные нужно дополнительно видоизменить в соответствии с требованиями вашей системы. Например, географическая информация может быть в разных масштабах (осевые линии улиц имеются в масштабе 1: 100 000, границы округов переписи населения - в масштабе 1: 50 000, а жилые объекты - в масштабе 1: 10 000). Для совместной обработки и визуализации все данные удобнее представить в едином масштабе. ГИС-технология предоставляет разные способы манипулирования пространственными данными и выделения данных, нужных для конкретной задачи.

Управление

В небольших проектах географическая информация может храниться в виде обычных файлов. Но при увеличении объема информации и росте числа пользователей для хранения, структурирования и управления данными эффективнее применять системы управления базами данных (СУБД), то специальными компьютерными средствами для работы с интегрированными наборами данных (базами данных). В ГИС наиболее удобно использовать реляционную структуру, при которой данные хранятся в табличной форме. При этом для связывания таблиц применяются общие поля. Этот простой подход достаточно гибок и широко используется во многих, как ГИС, так и не ГИС приложениях.

Запрос и анализ

При наличии ГИС и географической информации Вы сможете получать ответы простые вопросы (Кто владелец данного земельного участка? На каком расстоянии друг от друга расположены эти объекты? Где расположена данная промзона?) и более сложные, требующие дополнительного анализа, запросы (Где есть места для строительства нового дома? Каков основный тип почв под еловыми лесами? Как повлияет на движение транспорта строительство новой дороги?). Запросы можно задавать как простым щелчком мышью на определенном объекте, так и с посредством развитых аналитических средств. С помощью ГИС можно выявлять и задавать шаблоны для поиска, проигрывать сценарии по типу “что будет, если…”. Современные ГИС имеют множество мощных инструментов для анализа, среди них наиболее значимы два: анализ близости и анализ наложения. Для проведения анализа близости объектов относительно друг друга в ГИС применяется процесс, называемый буферизацией. Он помогает ответить на вопросы типа: Сколько домов находится в пределах 100 м от этого водоема? Сколько покупателей живет не далее 1 км от данного магазина? Какова доля добытой нефти из скважин, находящихся в пределах 10 км от здания руководства данного НГДУ? Процесс наложения включает интеграцию данных, расположенных в разных тематических слоях. В простейшем случае это операция отображения, но при ряде аналитических операций данные из разных слоев объединяются физически. Наложение, или пространственное объединение, позволяет, например, интегрировать данные о почвах, уклоне, растительности и землевладении со ставками земельного налога.

Визуализация

Для многих типов пространственных операций конечным результатом является представление данных в виде карты или графика. Карта - это очень эффективный и информативный способ хранения, представления и передачи географической (имеющей пространственную привязку) информации. Раньше карты создавались на столетия. ГИС предоставляет новые удивительные инструменты, расширяющие и развивающие искусство и научные основы картографии. С ее помощью визуализация самих карт может быть легко дополнена отчетными документами, трехмерными изображениями, графиками и таблицами, фотографиями и другими средствами, например, мультимедийными.

Технологии, связанные с ГИС

ГИС тесно связана рядом других типов информационных систем. Ее основное отличие заключается в способности манипулировать и проводить анализ пространственных данных. Хотя и не существует единой общепринятой классификации информационных систем, приведенное ниже описание должно помочь дистанциировать ГИС от настольных картографических систем (desktop mapping), систем САПР (CAD), дистанционного зондирования (remote sensing), систем управления базами данных (СУБД или DBMS) и технологии глобального позиционирования (GPS).

Системы настольного картографирования используют картографическое представление для организации взаимодействия пользователя с данными. В таких системах все основано на картах, карта является базой данных. Большинство систем настольного картографирования имеет ограниченные возможности управления данными, пространственного анализа и настройки. Соответствующие пакеты работают на настольных компьютерах - PC, Macintosh и младших моделях UNIX рабочих станций.

Системы САПР

Системы САПР способны чертежи проектов и планы зданий и инфраструктуры. Для объединения в единую структуру они используют набор компонентов с фиксированными параметрами. Они основываются на небольшом числе правил объединения компонентов и имеют весьма ограниченные аналитические функции. Некоторые системы САПР расширены до поддержки картографического представления данных, но, как правило, имеющиеся в них утилиты не позволяют эффективно управлять и анализировать большие базы пространственных данных.

Дистанционное зондирование и GPS

Методы дистанционного зондирования - это искусство и научное направление для проведения измерений земной поверхности с использованием сенсоров, таких как различные камеры на борту летательных аппаратов, приемники системы глобального позиционирования или других устройств. Эти датчики собирают данные в виде изображений и обеспечивают специализированные возможности обработки, анализа и визуализации полученных изображений. Ввиду отсутствия достаточно мощных средств управления данными и их анализа, соответствующие системы вряд ли можно отнести к настоящим ГИС.

Системы управления базами данных предназначены для хранения и управления всеми типами данных, включая географические (пространственные) данные. СУБД оптимизированы для подобных задач, поэтому во многие ГИС встроена поддержка СУБД. Эти системы не имеют сходных с ГИС инструментов для анализа и визуализации.

Что ГИС могут сделать для Вас

Делать пространственные запросы и проводить анализ

Способность ГИС проводить поиск в базах данных и осуществлять пространственные запросы позволила многим компаниях сэкономить миллионы долларов. ГИС помогает сократить время получения ответов на запросы клиентов; выявлять территории подходящие для требуемых мероприятий; выявлять взаимосвязи между различными параметрами (например, почвами, климатом и урожайностью с/х культур); выявлять места разрывов электросетей. Риэлторы используют ГИС для поиска, к примеру, всех домов на определенной территории, имеющих шиферные крыши, три комнаты и 10-метровые кухни, а затем выдать более подробное описание этих строений. Запрос может быть уточнен введением дополнительных параметров, например стоимостных. Можно получить список всех домов, находящих на определенном расстоянии от определенной магистрали, лесопаркового массива или места работы.

Улучшить интеграцию внутри организации

Многие применяющие ГИС организации обнаружили, что одно из основных ее преимуществ заключается в новых возможностях улучшения управления собственной организацией и ее ресурсами на основе географического объединения имеющихся данных и возможности их совместного использования и согласованной модификации разными подразделениями. Возможность совместного использования и постоянно наращиваемая и исправляемая разными структурными подразделениями база данных позволяет повысить эффективность работы как каждого подразделения, так и организации в целом. Так, компания, занимающаяся инженерными коммуникациями, может четко спланировать ремонтные или профилактические работы, начиная с получения полной информации и отображения на экране компьютера (или на бумажных копиях) соответствующих участков, например водопровода, и заканчивая автоматическим определением жителей, на которых эти работы повлияют, и уведомлением их о сроках предполагаемого отключения или перебоев с водоснабжением.

Принятие более обоснованных решений

ГИС, как и другие информационные технологии, подтверждает известную поговорку о том, что лучшая информированность помогает принять лучшее решение. Однако, ГИС - это не инструмент для выдачи решений, а средство, помогающее ускорить и повысить эффективность процедуры принятия решений, обеспечивающее ответы на запросы и функции анализа пространственных данных, представления результатов анализа в наглядном и удобном для восприятия виде. ГИС помогает, например, в решении таких задач, как предоставление разнообразной информации по запросам органов планирования, разрешение территориальных конфликтов, выбор оптимальных (с разных точек зрения и по разным критериям) мест для размещения объектов и т. д. Требуемая для принятия решений информация может быть представлена в лаконичной картографической форме с дополнительными текстовыми пояснениями, графиками и диаграммами. Наличие доступной для восприятия и обобщения информации позволяет ответственным работникам сосредоточить свои усилия на поиске решения, не тратя значительного времени на сбор и обмысливание доступных разнородных данных. Можно достаточно быстро рассмотреть несколько вариантов решения и выбрать наиболее эффектный и эффективный.

Создание карт

Картам в ГИС отведено особое место. Процесс создания карт в ГИС намного более прост и гибок, чем в традиционных методах ручного или автоматического картографирования. Он начинается с создания базы данных. В качестве источника получения исходных данных можно пользоваться и оцифровкой обычных бумажных карт. Основанные на ГИС картографические базы данных могут быть непрерывными (без деления на отдельные листы и регионы) и не связанными с конкретным масштабом. На основе таких баз данных можно создавать карты (в электронном виде или как твердые копии) на любую территорию, любого масштаба, с нужной нагрузкой, с ее выделением и отображением требуемыми символами. В любое время база данных может пополняться новыми данными (например, из других баз данных), а имеющиеся в ней данные можно корректировать по мере необходимости. В крупных организациях созданная топографическая база данных может использоваться в качестве основы другими отделами и подразделениями, при этом возможно быстрое копирование данных и их пересылка по локальным и глобальным сетям.

ГИС в России

Наибольшее распространение в России из зарубежных систем имеют: программный продукт ArcGIS компании ESRI , семейство продуктов GeoMedia корпорации Intergraph и MapInfo Professional компании Pitney Bowes MapInfo .

Из отечественных разработок широкое распространение получила программа ГИС Карта 2008 компании ЗАО КБ "Панорама" .

Используются также и другие программные продукты отечественной и зарубежной разработки: ГИС ИНТЕГРО , MGE корпорации Intergraph (использует MicroStation в качестве графического ядра), IndorGIS , STAR-APIC , ДубльГИС , Mappl , ГеоГраф ГИС , 4geo и пр.

Географическая информационная система (ГИС) (англ. Geographic Information System, GIS) - это информационная система, обеспечивающая сбор, хранение, обработку, доступ, отображение и распространение пространственных данных.

Пространственные данные представляют собой данные о пространственных объектах в цифровой форме.

По территориальному охвату различают глобальные (планетарные) ГИС (global GIS), субконтинентальные ГИС, национальные ГИС, зачастую имеющие статус государственных, региональные ГИС (regional GIS), субрегиональные ГИС и локальные, или местные ГИС (local GIS).

ГИС различаются предметной областью информационного моделирования: городские ГИС, или муниципальные ГИС (urban GIS), природоохранные ГИС (environmental GIS), туристические и т.д.

Интегрированные ГИС (integrated GIS, IGIS) совмещают функциональные возможности ГИС и систем цифровой обработки изображений данных дистанционного зондирования в единой интегрированной среде.Технология ГИС объединяет традиционные операции при работе с базами данных, такими, как запрос и статистический анализ, с преимуществами полноценной визуализации и географического (пространственного) анализа, которые предоставляет карта. Эти возможности отличают ГИС от других информационных систем и обеспечивают уникальные возможности для ее применения в широком спектре задач.Создание карт и географический анализ не являются чем-то абсолютно новым. Однако технология ГИС автоматизирует процедуру анализа и прогноза.

ГИС включает в себя основные составляющих: аппаратные средства, программное обеспечение, данные

Аппаратные средства в общем случае представляют собой персональный компьютер либо отдельный, либо включенный в компьютерную сеть.

Программное обеспечение ГИС содержит функции и инструменты, необходимые для хранения, анализа и визуализации географической (пространственной) информации. Основными компонентами программного обеспечения являются: средства для ввода и географической информацией, СУБД, инструменты поддержки пространственных запросов, анализа и визуализации; графический пользовательский

Данные о пространственном положении (географические данные) и связанные с ними табличные данные могут собираться и подготавливаться самим пользователем, либо приобретаться у поставщиков на коммерческой или другой основе. В процессе управления пространственными данными ГИС интегрирует пространственные данные с другими типами и источниками данных.

ГИС может работать с двумя существенно отличающимися типами данных - векторными и растровыми.

В векторной модели информация о точках, линиях кодируется и хранится в виде набора координат X,Y (в современных ГИС часто добавляется третья пространственная координата Z и четвертая, например, временная). Местоположение точки (точечного объекта), например, Приметного камня, описывается парой координат (X,Y). Линейные объекты, такие как дороги, реки или трубопроводы, сохраняются как наборы координат X,Y. Полигональные объекты, типа речных водосборов, земельных участков или областей обслуживания, хранятся в виде замкнутого набора координат.


Векторная модель особенно удобна для описания дискретных объектов и меньше подходит для описания непрерывно меняющихся свойств, таких как плотность населения или доступность объектов.

Растровая модель оптимальна для работы с непрерывными свойствами. Растровое изображение представляет собой набор значений для отдельных элементарных составляющих (ячеек), оно подобно отсканированной карте или картинке. Современные ГИС могут работать как с векторными, так и с растровыми моделями данных.

ГИС хранит информацию о реальном мире в виде набора тематических слоев, которые объединены на основе географического положения. Этот простой, но очень гибкий подход доказал свою ценность при решении разнообразных реальных задач: для отслеживания передвижения транспортных средств и материалов, детального отображения реальной обстановки и планируемых мероприятий, моделирования глобальной циркуляции атмосферы.

Любая географическая информация содержит сведения о пространственном положении, будь то привязка к географическим или другим координатам, или ссылки на адрес, почтовый индекс, идентификатор земельного или лесного участка, название дороги или километровый столб на магистрали и т.п.

При использовании подобных ссылок для автоматического определения местоположения или местоположений объекта (объектов) применяется процедура, называемая геокодированием.

С ее помощью можно быстро определить и посмотреть на карте где находится интересующий вас объект или явление, такие как дом, в котором проживает клиент туристической компании или находится нужная вам организация, памятное место где произошло историческое событие и имеющуюся об этом информацию, по какому аршруту проще и быстрее добраться до нужного вам пункта или дома и т.д.

Для многих типов пространственных операций конечным результатом является представление данных в виде карты или графика. Карта - это очень эффективный и информативный способ хранения, представления и передачи географической (имеющей пространственную привязку) информации. Раньше карты создавались на столетия. ГИС предоставляет новые удивительные инструменты, расширяющие и развивающие искусство и научные основы картографии. С ее помощью визуализация самих карт может быть легко дополнена отчетными документами, трехмерными изображениями, графиками, таблицами, диаграммами, фотографиями и другими средствами, например, мультимедийными.

Способность ГИС проводить поиск в базах данных и осуществлять пространственные запросы позволила многим компаниях заработать миллионы долларов.

Пример

На создание туристско-ориентированной геоинформационной системы города Пинава (Pinawa) и окружающих его территорий (Канада) было затрачено $82 500. За 3 года система принесла $5 000 000 дохода.

На сегодняшний день туристический бизнес стран СНГ не может похвастаться огромными успехами области ГИС, некоторые результаты имеют центральные города Москва и Санкт-Петербург.

Информация, однако, там представлена в одном ракурсе – электронная карта без привязки к реальному времени, то есть нельзя найдя на карте Большой театр тут же получить список сегодняшних спектаклей, фотографию фасада или, хотя бы, ссылки на его официальный сайт.

В настоящее время в мире ГИС тесно связываются со спутниковыми технологиями для навигации (определение местоположения пользователя на электронной карте).

Подобные системы за рубежом устанавливаются для туристических операторов экстремального туризма.

Пример использования

В ГИС можно ввести карту на которой будут нанесены самые крупные курорты, с которыми сотрудничает фирма, ввести планы этих территорий, здания, информацию о качестве обслуживания, фотографии номеров, пляжей, названия оригинальных блюд местной колоритной кухни и др. Обеспечив через Интернет доступ к такой ГИС турфирма, либо курортный город будут иметь огромное преимущество перед другими продавцами этого вида услуг. Или можно разместить фрагмент аэорофотоснимка исторической местности, на котором отмечены интересные места. При клике мышкой по отмеченным местам пользователь имеет возможность получить исчерпывающую информацию по данному объекту с текстом и фотографиями.

, экономике , обороне .

По территориальному охвату различают глобальные ГИС (global GIS), субконтинентальные ГИС, национальные ГИС, зачастую имеющие статус государственных, региональные ГИС (regional GIS), субрегиональные ГИС и локальные, или местные ГИС (local GIS).

ГИС различаются предметной областью информационного моделирования, к примеру, городские ГИС, или муниципальные ГИС, МГИС (urban GIS), природоохранные ГИС (environmental GIS) Шаблон:Nobr ; среди них особое наименование, как особо широко распространённые, получили земельные информационные системы. Проблемная ориентация ГИС определяется решаемыми в ней задачами (научными и прикладными), среди них инвентаризация ресурсов (в том числе кадастр), анализ, оценка, мониторинг, управление и планирование, поддержка принятия решений. Интегрированные ГИС, ИГИС (integrated GIS, IGIS) совмещают функциональные возможности ГИС и систем цифровой обработки изображений (данных дистанционного зондирования) в единой интегрированной среде.

Полимасштабные, или масштабно-независимые ГИС (multiscale GIS) основаны на множественных, или полимасштабных представлениях пространственных объектов (multiple representation, multiscale representation), обеспечивая графическое или картографическое воспроизведение данных на любом из избранных уровней масштабного ряда на основе единственного набора данных с наибольшим пространственным разрешением. Пространственно-временные ГИС (spatio-temporal GIS) оперируют пространственно-временными данными. Реализация геоинформационных проектов (GIS project), создание ГИС в широком смысле слова, включает этапы: предпроектных исследований (feasibility study), в том числе изучение требований пользователя (user requirements) и функциональных возможностей используемых программных средств ГИС, технико-экономическое обоснование, оценку соотношения «затраты/прибыль» (costs/benefits); системное проектирование ГИС (GIS designing), включая стадию пилот-проекта (pilot-project), разработку ГИС (GIS development); её тестирование на небольшом территориальном фрагменте, или тестовом участке (test area), прототипирование, или создание опытного образца, или прототипа (prototype); внедрение ГИС (GIS implementation); эксплуатацию и использование. Научные, технические, технологические и прикладные аспекты проектирования, создания и использования ГИС изучаются геоинформатикой .

Задачи ГИС

  • Ввод данных. Для использования в ГИС данные должны быть преобразованы в подходящий цифровой формат (оцифрованы). В современных ГИС этот процесс может быть автоматизирован с применением сканерной технологии, либо, при небольшом объеме работ, данные можно вводить с помощью дигитайзера .
  • Манипулирование данными (например, масштабирование).
  • Управление данными. В небольших проектах географическая информация может храниться в виде обычных файлов, а при увеличении объема информации и росте числа пользователей для хранения, структурирования и управления данными применяются СУБД .
  • Запрос и анализ данных - получение ответов на различные вопросы (например, кто владелец данного земельного участка? На каком расстоянии друг от друга расположены эти объекты? Где расположена данная промышленная зона? Где есть места для строительства нового дома? Каков основный тип почв под еловыми лесами? Как повлияет на движение транспорта строительство новой дороги?).
  • Визуализация данных. Например, представление данных в виде карты или графика.

Возможности ГИС

ГИС включают в себя возможности СУБД , редакторов растровой и векторной графики и аналитических средств и применяются в картографии, геологии, метеорологии, землеустройстве, экологии, муниципальном управлении, транспорте, экономике, обороне. ГИС позволяют решать широкий спектр задач - будь то анализ таких глобальных проблем как перенаселение, загрязнение территории, сокращение лесных угодий, природные катастрофы, так и решение частных задач, таких как поиск наилучшего маршрута между пунктами, подбор оптимального расположения нового офиса, поиск дома по его адресу, прокладка трубопровода на местности, различные муниципальные задачи.

ГИС-система позволяет:

  • определить какие объекты располагаются на заданной территории;
  • определить местоположение объекта (пространственный анализ);
  • дать анализ плотности распределения по территории како-то явления(например плотность расселения);
  • определить временные изменения на определенной площади);
  • смоделировать, что произойдет при внесении изменений в расположение объектов (например, если добавить новую дорогу).

Классификация ГИС

По территориальному охвату:

  • глобальные ГИС;
  • субконтинентальные ГИС;
  • национальные ГИС;
  • региональные ГИС;
  • субрегиональные ГИС;
  • локальные или местные ГИС.

По уровню управления:

  • федеральные ГИС;
  • региональные ГИС;
  • муниципальные ГИС;
  • корпоративные ГИС.

По функциональности:

  • полнофункциональные;
  • ГИС для просмотра данных;
  • ГИС для ввода и обработки данных;
  • специализированные ГИС.

По предметной области:

  • картографические;
  • геологические;
  • городские или муниципальные ГИС;
  • природоохранные ГИС и т. п.

Если помимо функциональных возможностей ГИС в системе присутствуют возможности цифровой обработки изображений, то такие системы называются интегрированными ГИС (ИГИС). Полимасштабные, или масштабно-независимые ГИС основаны на множественных, или полимасштабных представлениях пространственных объектов, обеспечивая графическое или картографическое воспроизведение данных на любом из избранных уровней масштабного ряда на основе единственного набора данных с наибольшим пространственным разрешением. Пространственно-временные ГИС оперируют пространственно-временными данными.

Области применения ГИС

  • Управление земельными ресурсами, земельные кадастры. Для решения проблем, имеющих пространственную привязку и начали создавать ГИС. Типичные задачи - составление кадастров, классификационных карт, определение площадей участков и границ между ними и т. д.
  • Инвентаризация, учет, планирование размещения объектов распределенной производственной инфраструктуры и управление ими. Например, нефтегазодобывающие компании или компании, управляющие энергетической сетью, системой бензоколонок, магазинов и т. п.
  • Проектирование, инженерные изыскания, планировка в строительстве, архитектуре. Такие ГИС позволяют решать полный комплекс задач по развитию территории, оптимизации инфраструктуры строящегося района, требующегося количества техники, сил и средств.
  • Тематическое картографирование.
  • Управление наземным, воздушным и водным транспортом. ГИС позволяет решать задачи управления движущимися объектами при условии выполнения заданной системы отношений между ними и неподвижными объектами. В любой момент можно узнать, где находится транспортное средство, рассчитать загрузку, оптимальную траекторию движения, время прибытия и т. п.
  • Управление природными ресурсами, природоохранная деятельность и экология. ГИС помогает определить текущее состояние и запасы наблюдаемых ресурсов, моделирует процессы в природной среде, осуществляет экологический мониторинг местности.
  • Геология, минерально-сырьевые ресурсы, горнодобывающая промышленность. ГИС осуществляет расчеты запасов полезных ископаемых по результатам проб (разведочное бурение, пробные шурфы) при известной модели процесса образования месторождения.
  • Чрезвычайные ситуации. С помощью ГИС производится прогнозирование чрезвычайных ситуаций (пожаров, наводнений, землетрясений, селей, ураганов), расчет степени потенциальной опасности и принятие решений об оказании помощи, расчет требуемого количества сил и средств для ликвидации чрезвычайных ситуаций, расчет оптимальных маршрутов движения к месту бедствия, оценка нанесенного ущерба.
  • Военное дело. Решение широкого круга специфических задач, связанных с расчетом зон видимости, оптимальных маршрутов движения по пересеченной местности с учетом противодействия и т. п.
  • Сельское хозяйство. Прогнозирование урожайности и увеличения производства сельскохозяйственной продукции, оптимизация ее транспортировки и сбыта.

Сельское хозяйство

Перед началом каждого сельскохозяйственного сезона фермеры должны принять 50 важнейших решений: что выращивать, когда сеять, использовать ли удобрения и т. д. Любое из них может отразиться на урожайности и на конечном результате. Прежде фермеры принимали такие решения, основываясь на прошлом опыте, традиции или даже разговорах с соседями и другими знакомыми. Сегодня сельское хозяйство порождает больше данных с географической привязкой, чем большинство других отраслей. Данные поступают из различных источников: телеметрии машин, метеорологических станций, наземных датчиков, образцов почвы, наземного наблюдения, спутников и беспилотников. С помощью ГИС сельскохозяйственные компании могут собирать, обрабатывать и анализировать данные для максимизации ресурсов, мониторинга сохранности урожая и повышения урожайности .

Перевозки и логистика

Перемещение людей и вещей часто сопряжено с огромными логистическими трудностями. Представьте себе больницу, которая хочет предоставить своим пациентам в определенное время лучший и самый быстрый маршрут до дома, или орган местного самоуправления, который хочет организовать оптимальные маршруты автобусов и скоростных трамваев, или производителя, который хочет как можно эффективнее и экономичнее доставлять свои продукты, или нефтяную компанию, которая планирует прокладку трубопроводов. В каждом из этих случаев для принятия бизнес-решений на основе полной информации необходим анализ данных о местополождении.

Энергетика

В разведке запасов энергоносителей для определения экономической целесообразности добычи в той или иной местности используются спутниковые фотографии, геологические карты поверхности земли и дистанционное зондирование пластов. Энергетические компании используют огромный объем географических данных, поскольку промышленные сенсоры сейчас устанавливаются везде: лазерные сенсоры на самолетах, датчики на поверхности земли при бурении скважин, мониторы трубопроводов и т. д. Картографирование и пространственный анализ дают необходимые знания для принятия решений с соблюдением требований регуляторов о выборе площадок и локализации ресурсов.

Розничная торговля

В связи с тем, что потребители все шире используют смартфоны и носимые устройства, традиционные продавцы могут использовать геопространственную технологию для получения более полной картины поведения покупателей в прошлом и настоящем. Потому что геопространственные данные не сводятся к определению местоположения, а охватывают связанные с этим положением данные, такие как демографические характеристики покупателей или информацию о том, где в магазине люди проводят больше всего времени. Все эти данные можно использовать при выборе места для магазина, определении набора товаров и их размещении и т. д.

Оборона и разведка

Геопространственная технология изменила военные и разведывательные операции в любой части мира, где размещены воинские контингенты. Командование, аналитики и другие специалисты нуждаются в точных данных ГИС для решения своих задач. ГИС помогает оценивать ситуацию (создает полное визуальное представление тактической информации), проводить операции на суше (показывает условия местности, высоты, маршруты, растительный покров, объекты и населенные пункты), в воздухе (передает данные о погоде и видимости пилотам; направляет войска и снабжение, дает целеуказание) и на море (показывает течения, высоту волн, приливы и погоду).

Федеральное правительство

Своевременная и точная геопространственная разведка имеет важнейшее значение для принятия решений федеральными агентствами, которые отвечают за охрану и безопасность, инфраструктуру, управление ресурсами и качество жизни. ГИС позволяет организовать охрану и безопасность с операционной поддержкой, координировать оборону, реагирование на природные катастрофы, действия правоохранительных органов, органов национальной безопасности и экстренных служб. Что касается инфраструктуры, то ГИС помогает управлять ресурсами и активами, предназначенными для автомагистралей, портов, общественного транспорта и аэропортов. Федеральные агентства также используют ГИС для лучшего понимания актуальных и исторических данных, необходимых для управления сельским и лесным хозяйством, горнодобывающей промышленностью, водными и другими природными ресурсами.

Местные органы власти

Местные органы ежедневно принимают решения, напрямую затрагивающие жителей и приезжих. Начиная с ремонта дорог и коммунальных услуг и заканчивая оценкой стоимости земли и развитием территорий - везде картографические приложения применяются для анализа и интерпретации данных ГИС. Кроме того, население и ландшафт городов и поселков может сильно измениться за сравнительно короткое время. Чтобы адаптироваться к этим изменениям и обеспечить людям тот уровень обслуживания, которого они ожидают, местные органы власти широко применяют современную технологию ГИС для наблюдения за дорожным движением и дорожными условиями, качеством окружающей среды, распространением заболеваний, распределением предприятий коммунального хозяйства (например, электро- и водоснабжения и канализации), для управления парками и другими общественными участками земли, а также для выдачи разрешений на создание кемпингов, на охоту, рыбалку и т. д.

Структура ГИС

Состав ГИС.

ГИС-система включает в себя пять ключевых составляющих:

  • аппаратные средства. Это компьютер, на котором запущена ГИС. В настоящее время ГИС работают на различных типах компьютерных платформ, от централизованных серверов до отдельных или связанных сетью настольных компьютеров;
  • программное обеспечение. Cодержит функции и инструменты, необходимые для хранения, анализа и визуализации географической информации. К таким программным продуктам относятся: инструменты для ввода и оперирования географической информацией; система управления базой данных (DBMS или СУБД); инструменты поддержки пространственных запросов, анализа и визуализации;
  • данные. Данные о пространственном положении (географические данные) и связанные с ними табличные данные могут собираться и подготавливаться самим пользователем, либо приобретаться у поставщиков на коммерческой или другой основе. В процессе управления пространственными данными ГИС интегрирует пространственные данные с другими типами и источниками данных, а также может использовать СУБД , применяемые многими организациями для упорядочивания и поддержки имеющихся в их распоряжении данных;
  • исполнители. Пользователями ГИС могут быть как технические специалисты, разрабатывающие и поддерживающие систему, так и обычные сотрудники, которым ГИС помогает решать текущие каждодневные дела и проблемы;
  • методы.

История ГИС

Пионерский период (поздние 1950е - ранние 1970е гг.)

Исследование принципиальных возможностей, пограничных областей знаний и технологий, наработка эмпирического опыта, первые крупные проекты и теоретические работы.

  • Появление электронных вычислительных машин (ЭВМ) в 50-х годах.
  • Появление цифрователей, плоттеров, графических дисплеев и других периферийных устройств в 60-х.
  • Создание программных алгоритмов и процедур графического отображения информации на дисплеях и с помощью плоттеров.
  • Создание формальных методов пространственного анализа.
  • Создание программных средств управления базами данных.

Период государственных инициатив (нач. 1970е - нач. 1980е гг.)

Государственная поддержка ГИС стимулировала развитие экспериментальных работ в области ГИС, основанных на использовании баз данных по уличным сетям:

  • Автоматизированные системы навигации.
  • Системы вывоза городских отходов и мусора.
  • Движение транспортных средств в чрезвычайных ситуациях и т. д.

Период коммерческого развития (ранние 1980е - настоящее время)

Широкий рынок разнообразных программных средств, развитие настольных ГИС, расширение области их применения за счет интеграции с базами непространственных данных, появление сетевых приложений, появление значительного числа непрофессиональных пользователей, системы, поддерживающие индивидуальные наборы данных на отдельных компьютерах, открывают путь системам, поддерживающим корпоративные и распределенные базы геоданных.

Пользовательский период (поздние 1980е - настоящее время)

Повышенная конкуренция среди коммерческих производителей геоинформационных технологий услуг дает преимущества пользователям ГИС, доступность и «открытость» программных средств позволяет использовать и даже модифицировать программы, появление пользовательских «клубов», телеконференций, территориально разобщенных, но связанных единой тематикой пользовательских групп, возросшая потребность в геоданных, начало формирования мировой геоинформационной инфраструктуры.

Структура ГИС

  1. Данные (пространственные данные):
    • позиционные (географические): местоположение объекта на земной поверхности.
    • непозиционные (атрибутивные): описательные.
  2. Аппаратное обеспечение (ЭВМ, сети, накопители, сканер, дигитайзеры и т. д.).
  3. Программное обеспечение (ПО).
  4. Технологии (методы, порядок действий и т. д.).

ГИС среди информационных технологий

Первым вопросом человека, не знакомого с географическими информационными системами (ГИС), будет, конечно: «А зачем мне это нужно?» Действительно, атласами и картами мы пользуемся в нашей жизни нечасто. И вообще, географию, как известно из произведений классиков, тоже изучать не обязательно - для этого извозчики есть. К тому же информации, причем не всегда приятной, из разных источников мы и так получаем больше, чем иногда хотелось бы. И нужно ли ее еще и систематизировать? Тут есть о чем задуматься. Но, если разобраться, ГИС - это нечто большее, чем карта, перенесенная на компьютер. Так что же это такое и с чем его «едят»?

Но, к сожалению, с кратким, понятным каждому и, как говорил профессор Преображенский из «Собачьего сердца», «фактическим» определением все не так просто. Дело, видимо, в том, что эта технология, во-первых, в значительной степени универсальная, а во-вторых, она так быстро развивается и захватывает новые сферы жизни и деятельности, что, как в анекдоте времен развитого социализма, продукты (то есть определения) подвозить не успевают. Авторы каждой новой основополагающей книги по ГИС (а такие книги постоянно издаются) и тем более многочисленных монографий, касающихся какой-то одной из бесчисленного множества областей их применения, стараются внести свой посильный вклад в создание такого определения. К этим книгам мы вас и отсылаем, если вы хотите найти наиболее приемлемое для вас определение. Каждый, окунувшийся в этот мир, волен дать свое. Мы же, ни в коей мере не претендуя на оригинальность, возьмем уже имеющиеся.

Вот, например, два определения: одно «лирическое», другое «практическое». Первое: «Это возможность нового взгляда на окружающий нас мир». Второе: «ГИС - это современная компьютерная технология для картографирования и анализа объектов реального мира, а также событий, происходящих на нашей планете, в нашей жизни и деятельности».

Если обойтись без определений, а ограничиться описанием, то эта технология объединяет традиционные операции при работе с базами данных, такими как запрос и статистический анализ, с преимуществами полноценной визуализации и географического (пространственного) анализа, которые предоставляет карта. Эти возможности отличают ГИС от других информационных систем и обеспечивают уникальные перспективы для ее применения в широком спектре задач, связанных с анализом и прогнозом явлений и событий окружающего мира, с осмыслением и выделением главных факторов и причин, а также их возможных последствий, с планированием стратегических решений и текущих последствий предпринимаемых действий.

Один из лучших способов узнать, что такое ГИС, - посмотреть, как другие люди используют эту технологию. Ну а затем, не откладывая в долгий ящик, начать работу с ГИС и продемонстрировать свои достижения окружающим. У любого человека с творческим отношением к делу при виде возможностей ГИС сразу начинают чесаться руки… Ведь ГИС - это также и инструментарий, с помощью которого вы сможете решить задачи, для который порой не существует готовых законченных решений.

Но вернемся к началу. На первый взгляд, достаточно очевидным является только применение ГИС в подготовке и распечатке карт и, может быть, в обработке аэро- и космических снимков. Реальный же спектр применений ГИС гораздо шире, и чтобы оценить его, нам стоит взглянуть на применение компьютеров вообще: тогда место ГИС будет представляться гораздо яснее.

Компьютеры не только обеспечивают большое удобство выполнения известных операций с документами - они являются носителям нового направления человеческой деятельности. Это направление - информационные технологии, и именно на них в значительной степени основано современное общество. Что же это такое - информационные технологии?

Термин «информация» зачастую понимается слишком узко (вроде тех «информаций», что сообщают журналисты). Реально же информацией следует называть все, что может быть представлено в виде букв, цифр и изображений. Так вот, все методы, техники, приемы, средства, системы, теории, направления и т.д. и т.п., которые нацелены на сбор, переработку и использование информации, вместе называются информационными технологиями. И ГИС - одна из них.

В настоящее время ГИС - это многомиллионная индустрия, в которую вовлечены миллионы людей во всем мире. Так, по данным компании Dataquest, в 1997 году общие продажи программного обеспечения ГИС превысили 1 млрд. долл., а с учетом сопутствующих программных и аппаратных средств рынок ГИС приближается к 10 млрд. ГИС изучают в школах, колледжах и университетах. Эту технологию применяют практически во всех сферах человеческой деятельности - будь то анализ таких глобальных проблем, как перенаселение, загрязнение территории, голод и перепроизводство сельскохозяйственной продукции, сокращение лесных угодий, природные катастрофы, либо решение частных задач, таких как поиск наилучшего маршрута движения между пунктами, подбор оптимального расположения нового офиса, поиск дома по его адресу, прокладка трубопровода или линии электропередачи на местности, различные муниципальные задачи типа регистрации земельной собственности. Как же удается с помощью одной технологии решать столь разные задачи? Чтобы понять это, рассмотрим последовательно устройство, работу и примеры применения ГИС.

Составные части ГИС

Работающая ГИС включает в себя пять ключевых составляющих: аппаратные средства, программное обеспечение, данные, исполнители и методы.

Аппаратные средства. Это компьютер, на котором запущена ГИС. В настоящее время ГИС работают на различных типах компьютерных платформ - от централизованных серверов до отдельных или связанных сетью настольных компьютеров.

Программное обеспечение ГИС содержит функции и инструменты, необходимые для хранения, анализа и визуализации географической (пространственной) информации. Ключевыми компонентами программных продуктов являются: инструменты для ввода и оперирования географической информацией; система управления базой данных (DBMS или СУБД); инструменты поддержки пространственных запросов, анализа и визуализации (отображения); графический пользовательский интерфейс (GUI или ГИП) для легкого доступа к инструментам и функциям.

Данные. Это, вероятно, наиболее важный компонент ГИС. Данные о пространственном положении (географические данные) и связанные с ними табличные данные могут собираться и подготавливаться самим пользователем либо приобретаться у поставщиков на коммерческой или иной основе. В процессе управления пространственными данными ГИС интегрирует пространственные данные с другими типами и источниками данных, а также может использовать СУБД, применяемые многими организациями для упорядочивания и поддержки имеющихся в их распоряжении данных.

Исполнители. Широкое применение технологии ГИС невозможно без людей, которые работают с программными продуктами и разрабатывают планы их использования при решении реальных задач. Пользователями ГИС могут быть как технические специалисты, разрабатывающие и поддерживающие систему, так и обычные сотрудники (конечные пользователи), которым ГИС помогает решать каждодневные дела и проблемы.

Методы. Успешность и эффективность (в том числе экономическая) применения ГИС во многом зависит от правильно составленного плана и правил работы, которые устанавливаются в соответствии со спецификой задач и работы каждой организации.

Как работает ГИС?

ГИС хранит информацию о реальном мире в виде набора тематических слоев, которые объединены на основе географического положения. Этот простой, но очень гибкий подход доказал свою ценность при решении разнообразных реальных задач: для отслеживания передвижения транспортных средств и материалов, детального отображения реальной обстановки и планируемых мероприятий, моделирования глобальной циркуляции атмосферы.

Любая географическая информация содержит сведения о пространственном положении, будь то привязка к географическим или другим координатам либо ссылки на адрес, почтовый индекс, избирательный округ или округ переписи населения, идентификатор земельного или лесного участка, название дороги или километровый столб на магистрали и т.п. При использовании подобных ссылок для автоматического определения местоположения или местоположений объекта (объектов) применяется процедура, называемая геокодированием. С ее помощью можно быстро определить и посмотреть на карте, где находится интересующий вас объект или явление (дом, в котором проживает ваш знакомый или находится нужная вам организация; место, где произошло землетрясение или наводнение; маршрут, по которому проще и быстрее добраться до нужного вам пункта или дома).

Векторная и растровая модели. ГИС может работать с двумя существенно различающимися типами данных - векторными и растровыми. В векторной модели информация о точках, линиях и полигонах кодируется и хранится в виде набора координат X,Y (в современных ГИС часто добавляется третья пространственная и четвертая, например, временная координата). Местоположение точки (точечного объекта), например буровой скважины, описывается парой координат (X,Y). Линейные объекты, такие как дороги, реки или трубопроводы, сохраняются как наборы координат X,Y. Полигональные объекты типа речных водосборов, земельных участков или областей обслуживания хранятся в виде замкнутого набора координат. Векторная модель особенно удобна для описания дискретных объектов и меньше подходит для описания непрерывно меняющихся свойств, таких как плотность населения или доступность объектов. Растровая модель оптимальна для работы с непрерывными свойствами. Растровое изображение представляет собой набор значений для отдельных элементарных составляющих (ячеек); оно подобно отсканированной карте или картинке. Обе модели имеют свои преимущества и недостатки. Современные ГИС могут работать как с векторными, так и с растровыми моделями данных.

Задачи, которые решают ГИС

ГИС общего назначения, в числе прочего, обычно выполняют пять процедур (задач) с данными: ввод, манипулирование, управление, запрос и анализ, визуализацию.

Ввод. Для использования в ГИС данные должны быть преобразованы в подходящий цифровой формат. Процесс преобразования данных с бумажных карт в компьютерные файлы называется оцифровкой. В современных ГИС этот процесс может быть автоматизирован с применением сканерной технологии, что особенно важно при выполнении крупных проектов. При сравнительно небольшом объеме работ данные можно вводить с помощью дигитайзера. Некоторые ГИС имеют встроенные векторизаторы, автоматизирующие процесс оцифровки растровых изображений. Многие данные уже переведены в форматы, напрямую воспринимаемые ГИС-пакетами.

Манипулирование. Часто для выполнения конкретного проекта имеющиеся данные нужно дополнительно видоизменить в соответствии с требованиями вашей системы. Например, географическая информация может быть представлена в разных масштабах (осевые линии улиц имеются в масштабе 1:100 000, границы округов переписи населения - в масштабе 1:50 000, а жилые объекты - в масштабе 1:10 000). Для совместной обработки и визуализации все данные удобнее представить в едином масштабе и одинаковой картографической проекции. ГИС-технология предоставляет разные способы манипулирования пространственными данными и выделения данных, нужных для конкретной задачи.

Управление. В небольших проектах географическая информация может храниться в виде обычных файлов. Но при увеличении объема информации и росте числа пользователей для хранения, структурирования и управления данными эффективнее применять системы управления базами данных (СУБД), специальные компьютерные средства для работы с интегрированными наборами данных (базами данных). В ГИС наиболее удобно использовать реляционную структуру, при которой данные хранятся в табличной форме. При этом для связывания таблиц применяются общие поля. Этот простой подход достаточно гибок и широко используется во многих ГИС- и «не ГИС»-приложениях.

Запрос и анализ. При наличии ГИС и географической информации вы сможете получать ответы как на простые вопросы (кто владелец данного земельного участка? на каком расстоянии друг от друга расположены эти объекты? где расположена данная промзона?), так и на более сложные, требующие дополнительного анализа (где есть место для строительства нового дома? каков основный тип почв под еловыми лесами? как повлияет на движение транспорта строительство новой дороги?). Вопросы можно задавать простым щелчком мыши на определенном объекте, а также посредством развитых аналитических средств. С помощью ГИС можно выявлять и задавать шаблоны для поиска, проигрывать сценарии по типу «что будет, если…». Современные ГИС имеют множество мощных инструментов для анализа. Среди них наиболее значимы два: анализ близости и анализ наложения. Для проведения анализа близости объектов относительно друг друга в ГИС применяется процесс, называемый буферизацией. Он помогает ответить на вопросы следующих типов: сколько домов находится в пределах 100 м от этого водоема? сколько покупателей живет на расстоянии не более 1 км от данного магазина? какова доля добытой нефти из скважин, находящихся в пределах 10 км от здания управления данного НГДУ? Процесс наложения включает интеграцию данных, расположенных в разных тематических слоях. В простейшем случае это операция отображения, но при ряде аналитических операций данные из разных слоев объединяются физически. Наложение, или пространственное объединение, позволяет, например, интегрировать данные о почвах, уклоне, растительности и землевладении со ставками земельного налога.

Визуализация. Для многих типов пространственных операций конечным результатом является представление данных в виде карты или графика. Карта - это очень эффективный и информативный способ хранения, представления и передачи географической (имеющей пространственную привязку) информации. Раньше карты создавались на столетия. ГИС предоставляет новые удивительные инструменты, расширяющие и развивающие искусство и научные основы картографии. С ее помощью визуализация самих карт может быть легко дополнена отчетными документами, трехмерными изображениями, графиками, таблицами, диаграммами, фотографиями и другими средствами, например мультимедийными.

Связанные технологии

ГИС тесно связана с рядом других типов информационных систем. Ее основное отличие заключается в способности манипулировать и проводить анализ пространственных данных. Хотя единой общепринятой классификации информационных систем не существует, приведенное ниже описание должно помочь дистанцировать ГИС от настольных картографических систем (desktop mapping), систем САПР (CAD), дистанционного зондирования (remote sensing), систем управления базами данных (СУБД или DBMS) и технологии глобального позиционирования (GPS).

Системы настольного картографирования используют картографическое представление для организации взаимодействия пользователя с данными. В таких системах все основано на картах, карта является базой данных. Большинство систем настольного картографирования имеет ограниченные возможности управления данными, пространственного анализа и настройки. Соответствующие пакеты работают на настольных компьютерах - PC, Macintosh и младших моделях рабочих станций UNIX.

Системы САПР способны создавать чертежи проектов, планы зданий и инфраструктуры. Для объединения в единую структуру они используют набор компонентов с фиксированными параметрами. Они основываются на небольшом числе правил объединения компонентов и имеют весьма ограниченные аналитические функции. Некоторые системы САПР расширены до поддержки картографического представления данных, но, как правило, имеющиеся в них утилиты не позволяют эффективно управлять большими базами пространственных данных и анализировать их.

Дистанционное зондирование и GPS. Методы дистанционного зондирования - это и искусство, и научное направление для проведения измерений земной поверхности с использованием сенсоров, таких как различные камеры на борту летательных аппаратов, приемники системы глобального позиционирования и другие устройства. Эти датчики собирают данные в виде наборов координат или изображений (в настоящее время преимущественно цифровых) и обеспечивают специализированные возможности обработки, анализа и визуализации полученных данных. Ввиду отсутствия достаточно мощных средств управления данными и их анализа, соответствующие системы в чистом виде, то есть без дополнительных функций, вряд ли можно отнести к настоящим ГИС.

Системы управления базами данных предназначены для хранения и управления всеми типами данных, включая географические (пространственные) данные. СУБД оптимизированы для подобных задач, поэтому во многие ГИС встроена поддержка СУБД. Эти системы в массе своей не имеют сходных с ГИС инструментов для анализа и визуализации.

Что ГИС могут сделать для вас?

Пожалуй, главным «козырем« ГИС является наиболее естественное (для человека) представление как собственно пространственной информации, так и любой другой информации, имеющей отношение к объектам, расположенным в пространстве (так называемой атрибутивной информации). Способы представления атрибутивной информации различны: это может быть числовое значение с датчика, таблица из базы данных (как локальной, так и удаленной) о характеристиках объекта, его фотография или реальное видеоизображение. Таким образом, ГИС могут помочь везде, где используется пространственная информация и/или информация об объектах, находящихся в определенных местах пространства. С точки зрения областей своего применения и экономического эффекта, ГИС могут следующее:

  1. Делать пространственные запросы и проводить анализ. Способность ГИС проводить поиск в базах данных и осуществлять пространственные запросы позволила многим компаниям заработать миллионы долларов. ГИС помогают сократить время получения ответов на запросы клиентов; выявлять территории, подходящие для требуемых мероприятий; выявлять взаимосвязи между различными параметрами (например, почвами, климатом и урожайностью сельскохозяйственных культур); выявлять места разрывов электросетей. Риэлтеры используют ГИС для поиска, к примеру, всех домов на определенной территории, имеющих шиферные крыши, три комнаты и 10-метровые кухни, а затем для выдачи более подробного описания этих строений. Запрос может быть уточнен введением дополнительных параметров, например стоимостных. Можно получить список всех домов, находящихся на заданном расстоянии от определенной магистрали, лесопаркового массива или места работы.
  2. Улучшить интеграцию внутри организации. Многие организации, применяющие ГИС, обнаружили, что одно из основных их преимуществ заключается в новых возможностях улучшения управления собственной организацией и ее ресурсами на основе географического объединения имеющихся данных, в возможности их совместного использования и согласованной модификации разными подразделениями. Возможность коллективного использования и постоянно наращиваемая и исправляемая разными структурными подразделениями база данных позволяют повысить эффективность работы как каждого подразделения, так и организации в целом. Так, компания, занимающаяся инженерными коммуникациями, может четко спланировать ремонтные или профилактические работы, начиная с получения полной информации и отображения на экране компьютера (или на бумажных копиях) соответствующих участков, например водопровода, и заканчивая автоматическим выявлением жителей, на которых эти работы повлияют, и уведомлением их о сроках предполагаемого отключения отопления или перебоев с водоснабжением.
  3. Помогать принятию более обоснованных решений. ГИС, как и другие информационные технологии, подтверждают известную поговорку о том, что лучшая информированность помогает принять лучшее решение. Но ГИС - это не инструмент для выдачи решений, а средство, помогающее ускорить и повысить эффективность процедуры их принятия. Оно обеспечивает ответы на запросы и функции анализа пространственных данных, представление результатов анализа в наглядном и удобном для восприятия виде. ГИС помогают, например, в решении таких задач, как предоставление разнообразной информации по запросам органов планирования, разрешение территориальных конфликтов, выбор оптимальных (с разных точек зрения и по разным критериям) мест для размещения объектов и т.д. Требуемая для принятия решений информация может быть представлена в лаконичной картографической форме с дополнительными текстовыми пояснениями, графиками и диаграммами. Наличие доступной для восприятия и обобщения информации позволяет ответственным работникам сосредоточить свои усилия на поиске решения, не тратя значительного времени на сбор и осмысление доступных разнородных данных. Можно достаточно быстро рассмотреть несколько вариантов решения и выбрать из них наиболее эффективный и экономически целесообразный.
  4. Создавать карты. Картам в ГИС отведено особое место. Процесс создания карт в ГИС более прост и гибок, чем в традиционных методах ручного или автоматического картографирования. Он начинается с создания базы данных. В качестве источника получения исходных данных можно пользоваться и оцифровкой обычных бумажных карт. Основанные на ГИС картографические базы данных могут быть непрерывными (без деления на отдельные листы и регионы) и не связанными с конкретным масштабом или картографической проекцией. На основе таких баз данных можно создавать карты (в электронном виде или как твердые копии) любой территории, любого масштаба, с нужной нагрузкой, с ее выделением и отображением требуемыми символами. В любое время база данных может пополняться новыми данными (например, из других баз данных), а имеющиеся в ней данные можно корректировать и тут же отображать на экране по мере необходимости. В крупных организациях созданная топографическая база данных может использоваться в качестве основы другими отделами и подразделениями; при этом возможны быстрое копирование данных и их пересылка по локальным и глобальным сетям.

«САПР и графика» 5"2000

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то